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Theory of Deformable Substrates for Cell Motility Studies

Mark A. Peterson
Mount Holyoke College, South Hadley, Massachusetts 01075 USA

ABSTRACT Linear theory is used to relate the tractions F applied by a cell to the resulting deformation of fluid, viscoelastic,
or solid substrates. The theory is used to fit data in which the motion of a fluid surface in the neighborhood of a motile
keratocyte is visualized with the aid of embedded beads. The data are best fit by modeling the surface layer as a
two-dimensional, nearly incompressible fluid. The data favor this model over another plausible model, the planar free
boundary of a three-dimensional fluid. In the resulting diagrams for the distribution of F, it is found that both curl F and div
F are concentrated in the lateral extrema of the lamellipodium. In a second investigation, a nonlinear theory of weak wrinkles
in a solid substrate is proposed. The in-plane stress tensor plays the role of a metric. Compression wrinkles are found in
regions where this metric is negative definite. Tension wrinkles arise, in linear approximation, at points on the boundary
between positive definite and indefinite regions, and are conjectured to be stabilized by nonlinear effects. Data for the wrinkles
that would be produced by keratocyte traction are computed, and these agree qualitatively with observed keratocyte
wrinkles.

INTRODUCTION

Albert Harris (Harris et al., 1980) has described wrinkles
generated in a thin rubber substrate by living cells. The
wrinkles reveal the tractions exerted by cells on the sub-
strate, but only indirectly. The wrinkles are suggestive, but
no quantitative theory of this nonlinear phenomenon is
available that has been found to be useful in this context.

It is known, however, that there is a nonzero thresh-
hold for wrinkling, and that for sufficiently small in-
plane stresses the response will also be in plane (see A
Theory of Harris Wrinkles, below). In this regime the
response should be linear and analysis straightforward.
Recently Tim Oliver and Ken Jacobson observed this
regime, visualizing the in-plane displacements by the
movement of latex beads embedded in the silicone rubber
sheet (Oliver et al., 1993, 1994). They have used linear
elasticity theory to deduce the tractions produced by
motile keratocytes on such sheets (Dembo et al., 1996).
The cross-linked substrates suitable for this analysis,
however, had a shear modulus sufficiently large that the
resulting bead displacements were small and difficult to
measure.

In this paper it is suggested that fluid substrates are also
suitable for such experiments and have the advantage of
giving much larger displacements to applied tractions. For
linear theory to apply it is no longer necessary that displace-
ments be small, only that they be slow. Oliver and Jacobson
observed such substrates in earlier experiments, but never
analyzed them quantitatively. I analyze some of their fluid
substrate data, assuming that the surface behaves as a two-
dimensional fluid, and show that the traction pattern agrees
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with the pattern they found on a solid substrate (Dembo et
al., 1996). The larger displacements in the fluid substrate,
however, mean that the pattern is determined with higher
accuracy. (Of course it is possible that the pattern of trac-
tions really depends on the substrate, as the cell adjusts its
behavior to its environment, but the similarity between
these two independent determinations of traction is sugges-
tive.) The details of the two-dimensional fluid model are in
Appendix A.
The possibility that the substrate was not a simple fluid

but rather a viscoelastic material was checked by consider-
ing a one-parameter family of models that interpolate be-
tween simple fluid at one extreme and elastic solid at the
other, parameterized by a memory time. The memory time
is zero in a simple fluid and infinite in an elastic solid. The
goodness of fit to the model improves as the memory time
decreases, down to the shortest time that the measurement
can resolve. That is, the data are best explained by the
model with no elasticity at all, the simple fluid. If it is
possible to produce truly viscoelastic films, however, the
more general model developed here might be useful in
analyzing them. The viscoelastic model is described in
Appendix B.
The two-dimensional fluid model is motivated by the

preparation method for the substrate layer, going back to
Harris et al. (1980). The free boundary of a silicone fluid is
briefly heated; if cross-linking is not achieved, because of
insufficient heating, it is still assumed that a thin layer of
higher viscosity is formed, and that the internal forces
within this thin layer will be more important than forces
from adjoining material, as is surely true in the fully cross-
linked substrate. This can actually be checked. It is easy to
elaborate the two-dimensional model to include the effect of
the adjoining material, with an independent parameter to
govern the strength of the coupling. This amounts to a
one-parameter family of models that interpolate between the
two-dimensional fluid and a model that might seem more
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natural, the surface layer as the mathematical boundary of a
three-dimensional isotropic fluid. Within this family the
two-dimensional fluid still gives the best fit to data. These
models are described in Appendix C.

If it is true, as it appears, that the surface layer behaves
like a two-dimensional fluid, it may be because the heat
treatment has created a thin layer with its own mechanical
integrity, and with a large viscosity that dominates the
dynamics. It also appears possible, although there is cer-
tainly no compelling reason to believe it, that normal fluid
surfaces, even without such treatment, might respond to
gentle perturbations in a two-dimensional way. The regime
visualized in this experiment, in which very small tractions
are applied to a free surface, has perhaps not been very
much studied. Familiar phenomena like surface tension
accustom us to regard free fluid surfaces as more than
simply mathematical boundaries-they have their own
proper physical characteristics. It is at least conceivable that
free surfaces have their own mechanical integrity that small
perturbations do not immediately disrupt. For some pur-
poses one can model surface tension as the effect of a thin
elastic membrane at the free surface of a fluid; the idea
suggested here (tentatively, and strictly as an aside) would
ascribe even more reality to this membrane than is usual. A
peculiarly two-dimensional response to traction would show
up as having a longer range than the response in a simple
three-dimensional fluid. That is presumably what lies be-
hind the consistently better fit to two-dimensional models in
this experiment (where there is a much less speculative
reason to expect two-dimensional behavior). The data seem
to exhibit a longer range response to traction than the
three-dimensional model predicts. It should be said, in the
end, that the pattern of traction that emerges is actually very
similar for both two- and three-dimensional models. The
pattern of traction is thus a fairly robust result and does not
depend crucially on the two-dimensional model.

Because the tractions exerted by keratocytes are now
well characterized, and because keratocytes have been
observed to produce weak wrinkles on solid substrates, it
is of interest to attempt a quantitative theory of wrinkles
in this case. The last section of the paper takes a first step
in this direction, with an infinitesimal stability theory
approach. It describes in linear approximation the regions
where a keratocyte developing small tractions could be-
gin to produce weak wrinkles in a solid substrate. Ac-
cording to this weak wrinkle theory, the keratocyte trac-
tion should produce wrinkles that are qualitatively like
those that have been observed. This is additional evi-
dence for the correctness of the keratocyte traction pat-
tern found in Dembo et al. (1996) and the first sections of
this paper. The infinitesimal weak wrinkle theory given
here complements a long-known wrinkle theory called
tension field theory, which describes the opposite ex-
treme, strong wrinkles due to large anisotropic tension.
The relationship of these two wrinkle theories is
described.

IN-PLANE MOTIONS

I model the substrate layer as a two-dimensional compress-
ible Newtonian fluid. Appendix B describes a more general
model, in which the layer is viscoelastic, but the best fits to
data are for this model, which is also the simplest. Of
course, the fluid layer is incompressible in a three-dimen-
sional sense, but this does not constrain the surface to
appear incompressible, hence the inclusion of compressibil-
ity in the model. With the assumption of two-dimensional-
ity, the model is a consequence of the same phenomeno-
logical arguments that lead to the equations of motion of
any fluid. The effect of coupling to the bulk fluid, including
the other extreme, that the surface layer is simply the
surface of a three-dimensional isotropic fluid, is considered
in Appendix C. Again, these more general models do not
lead to better agreement with data.

Inertial effects are negligible at the slow time scales of
these cell experiments, so the fluid may be considered to be
always in mechanical equilibrium.

If v(r) is the in-plane velocity of an isotropic two-dimen-
sional fluid, then the associated stress tensor, in Cartesian
coordinates, is (Landau and Lifshitz, 1959)

Sij = KVk,k8ij + 'r(vij + Vj.i)9 (1)

where K and 7q are two-dimensional viscosities. In particu-
lar, K is a two-dimensional "bulk viscosity," associated with
area changes, and q is the shear viscosity.
The mechanical equilibrium of the fluid is expressed by

(2)

where Fext is the force per unit area applied to the substrate
by the cell in the contact area D. Equation 2 is a classical
partial differential equation for i'. As in other two-dimen-
sional flow problems, the introduction of complex variables
gives an efficient solution. This method (Timoshenko and
Goodier, 1951) is described in Appendix A. The Green's
function solution to Eq. 2 is

V(z) I J K +3 F lnIz-wI

(3)

+ it- + ImF(fz-w 7V] dAw,

where the integral goes over the region D in which the
applied force is nonzero, i.e., the contact area of the cell. In
Eq. 3 the various 2-vectors are represented as complex
scalars according to the usual identification

z=x+iy, v=vX+ivY, F=Fex"t+iF ext, (4)

that is, x and y components of 2-vectors become real and
imaginary parts of complex numbers. The solution is iden-
tical to that given by Lamb (1932), in the incompressible
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Theory of Deformable Substrates

case K -> oo; Lamb also points out that the solution behaves
badly at infinity unless

JFdAw=0 (5)
JD

a condition that is of course satisfied here, because the net
force on the cell due to the substrate is zero to excellent
approximation.

DATA ANALYSIS

In this section I use the result of the previous section to
analyze tractions imposed by a motile keratocyte on a fluid
substrate. As described by Oliver et al. (1993), the data
consist of a sequence of digitized video frames, taken every
2 s, of a keratocyte moving with essentially uniform veloc-
ity (about 12 Am/min) in a direction I take as the x axis.
There are over 100 latex beads visible in these pictures,
embedded in the substrate. I analyzed their motion as fol-
lows. I selected a sequence of 10 frames, uniformly spaced
in time, at an interval At = 40 s, and in each of these frames
digitized the positions bij (ith frame, jth bead) of each of 95
beads, to an accuracy of better than 1 pixel. I also digitized
a sequence of points around the cell outline in each picture.
The outline did not change shape very significantly during
the sequence. Finally, I digitized the location o0, in each
frame (i = 1-10) of an organelle visible in the cell body that
seemed to keep a fairly fixed position relative to the rest of
the cell. Translating the data for each frame to bring o0, to
the origin gives bead positions

Bii = bij - oi, (6)

80

60

40

FIGURE 1 The tracks of individual beads are 20
shown in the cell rest frame. The beads move from
right to left in this view, corresponding to the
motion of the cell in the laboratory frame from left 0 _
to right. The average stationary cell outline is also
shown. Numbers on axes are coordinates in
microns. -20 _

as measured from a fixed point in the cell. The tracks Bij are
graphed in Fig. 1, with the average cell shape also indicated.
Because oi, is not an unambiguous position, Bii has a small
systematic error associated with each i (each frame). This
shows up as a slight waviness in the tracks of the beads. The
cell is moving from left to right in the original sequence, but
here one must imagine the cell as fixed, and the beads as
moving from right to left. One has the impression of a
steady flow that is perturbed by the cell.

Because the flow in Fig. 1 appears steady, the time-
dependent velocity V of the substrate in the laboratory frame
has the form

V(x, y, t) = v(x - vot, y), (7)

where v0 is the constant speed of the cell, and the function
v(x, y) is a steady flow velocity in the cell frame, due to an
assumed constant distribution of force F. This steady flow
pattern is something one can construct from the bead posi-
tions. One can then fit this information by choice ofF in Eq.
3, and so get information on the force exerted by the cell.
The beads give one a table of 855 complex values for the

steady velocity vi, each assigned to a midpoint position zi1,
(i = 1-9, j = 1-95):

=b+ j -bj
At (8)

jj Bi+ Ij + Bij
2 (9)

These data are shown graphically in Fig. 2. The systematic
error in Bij pointed out after Eq. 6 becomes a small system-
atic error in the assigned positions zij. The velocity vectors
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FIGURE 2 The velocities of individual beads
are shown in the laboratory frame, assigned to their
mean position with respect to the cell during the
interval the velocity was determined. Each bead
determines a velocity at nine different relative po-
sitions because of the motion of the cell and the
way the data were sampled. The sense of the
velocity vectors (not indicated to avoid clutter) can
be inferred from Figs. 1, 3, and 4.
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vij themselves, however, do not have this error. They are as

accurate as the raw data. Thus Fig. 2 gives a more accurate
picture of how the beads actually move than Fig. 1 does,
even allowing for the change in reference frame.
The problem is to choose F within the cell outline to fit

the data in Fig. 2.
I use an inverse Monte Carlo technique. If F were known

and one were to evaluate the integral in Eq. 3 by a Monte
Carlo method, one would select many points w randomly
within the cell outline, evaluate the integrand at each one,

add the results, and scale appropriately. In the inverse
method one selects points w randomly, does the evaluation
for each ziJ, but leaves it open what values will be taken for
F, then finally chooses F to minimize the mean square

deviation from the known values vii. This produces values F
at random points w in the cell. One gets a feeling for the
distribution of F and the consistency of the method by
repeating this process. F is quite consistent from one trial to
the next.
The goodness of fit can be determined by finding the root

mean square deviation of the fitted v j's from the data. I am
considering a family of fluid models, parameterized by the
viscosities K and -q. The best model, in the sense of the best
fit, is for

K/17=:::: 20 (10)

(an overall scale factor is unknown, because the substrate is
not calibrated). The rather large ratio of bulk viscosity K to
shear viscosity q means the two-dimensional fluid is almost
incompressible (in the two-dimensional sense). This model
was used for the remaining computations in this section.

After repeated fittings one has an estimate of the applied
force at many points in the cell. Using these, one can assign
a force to any point in the cell by averaging the fit values at

nearby points, weighting the closest points more heavily (I
used a Gaussian weighting function with a characteristic
width less than the minimum distance between points in any
one fit). This averaging also smooths out the probabilistic
fluctuations present in each fit individually. The result is
very accurately reproducible. Fig. 3 shows the force calcu-
lated in this way at 80 random points, 40 in the interior of
the cell and 40 on the edge. Fig. 3 confirms the pattern
found by Dembo et al. (1996) in all essential respects, but
because of the improved signal-to-noise in the raw data
shows a higher level of detail. The same pattern appears in
each half of the cell, although no requirement of symmetry
is built into the procedure. (A second cell, moving similarly,
on a similar substrate, showed a virtually identical traction
pattern.)
The net F, found by summing the F's in any one fit, or in

principle integrating over the contact area D, should of
course be zero. This is sure to be approximately true in the
fitting procedure, even if it is not imposed as a constraint,
because, as pointed out after Eq. 5, otherwise the computed
v's will not go to zero at large distances from the cell, and
in the data there are many points at large distance, all with
very small v. Thus it is no surprise that in an unconstrained
fit, IF 0. I have also done all the fits with the constraint

that EF = 0, using a Lagrange multiplier method. There is
no appreciable difference in the outcome of any quantity
when one uses this constrained fitting procedure. The results
reported below were obtained with unconstrained fits.
F computed in this way, using random points, averaging,

etc., is of course a random variable, but because I use many
fits, and the individual fits are very consistent with each
other, the random component in the computed F is small
enough that meaningful numerical derivatives of F can be
computed. Because F is a vector field, the natural deriva-
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Theory of Deformable Substrates

FIGURE 3 The force F exerted by the cell on the
substrate is shown at 80 random points labeled x.
Each force is in the direction of the corresponding o.

tives are the divergence and curl, shown in contour maps in
Figs. 4 and 5.
The curl of the force seems to be concentrated in four

principal regions in Fig. 4, which one might call "force
vortices," because the force rotates within them like the
velocity vector in a flow vortex. Each represents a region
where the cell applies a torque to the substrate. The sense of
the torque alternates as one moves around the cell from one
region to the next, that is, the force vortices tend to coun-
terrotate like meshed gears. The net torque exerted by the

cell as a whole must be zero, of course, so a force vortex
cannot exist in isolation.
The divergence is negative, and concentrated in two

lateral areas in the lamellipodium, and is closely associated
with the lateral regions of nonzero curl, as shown in Fig. 5.
In this region the force applied by the cell tends to compress
the substrate, in what one might call a "force sink." The
sinks occur right between the vortices.

Both divergence and curl are concentrated in the lateral
extrema of the lamellipodium. Even without knowing the

20F

FIGURE 4 Curl F is shown in a contour plot.
The sense of rotation in each of four "force vorti-
ces" is indicated by arrows. The sense alternates as
one moves from one vortex to the next. The same
alternating sense of rotation of F can be understood
by comparison with Fig. 3. The force vortices
coincide fairly well with the lamellipodium, except
that the leading edge of the lamellipodium, on the
right half of the cell outline, is free of them. The
rear vortices are stronger than the leading ones.
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of corroboration of the keratocyte traction pattern found in
the analysis of fluid substrates, and so, in a sense, represent
a semiquantitative interpretation of wrinkles. I point out the
difference between compression wrinkles and tension wrin-
kles, and how these ideas complement tension field theory
(Mansfield, 1969; Reissner, 1938; Wagner, 1929), a theory
of strong wrinkles.

If a solid substrate film wrinkles, it is because it can
thereby lower its elastic energy. Consider a two-dimen-
sional solid with Lame constants ,u and A, representing a
fully cross-linked thin silicone rubber substrate; let iu be the
in-plane displacement, and let w be the displacement normal
to the x-y plane, both regarded as functions of x and y. The
strain tensor, to lowest nontrivial order in iu and w, is
(Landau and Lifshitz, 1959)

1
ai (i uj,j + ,w) (1 1)

and the elastic energy is

FIGURE 5 Div F is shown in a contour plot. The divergence is negative
and concentrated mainly in regions between the force vortices of Fig. 4.
The force exerted by the cell tends to compress these regions.

mechanism, one can be quite sure that some mechanism shap-
ing the pattern of force generation is operating in these regions.
Outside these regions F is approximately a harmonic vector
field, which is simply the smoothest interpolation between one
region and another. This suggests that the rest of the cell, from
the point of view of force generation, conforms more passively
to these obviously active regions. From the standpoint of
mathematics it is natural to say that the force pattern is deter-
mined in those regions where the divergence and curl are
appreciable, that is, in the lateral lamellipodium. It will be
interesting to know, when the mechanism for the production of
this force is understood, whether the biology agrees with this
mathematical hint.

It has been observed that fragments of lamellipodium can
crawl autonomously, mimicking a whole cell (Euteneuer
and Schliwa, 1984; see sequence in Fink, 1995, filmed by
Mark Cooper). It would be interesting to know if such
fragments also contain a pair of force vortices, and if
motility in keratocytes is always associated with this pattern
of force. It is of course possible that the forces responsible
for motility, which could be much smaller than the forces
that are visualized in this experiment, are quite independent
of the phenomenon seen here, and that this pattern of force
has more to do with anchoring the cell than with moving it,
for instance. Observations of motile fragments on a fluid
substrate could help to answer this question.

A THEORY OF HARRIS WRINKLES

I turn now to the question of interpreting the weak wrinkles
produced by cells in solid substrates. The observations here
are still of a preliminary character, but they provide a kind

E = frjt [ (V2W)2 + 2()2 + LcTj] . (12)

The first term is the curvature energy, with coefficient the
bending modulus K. Repeating for the most part the above
conventions (see In-Plane Motions), let u(z) be the in-plane
displacement at position z. The equilibrium response to
force F in the absence of wrinkling is

u(z)
I A ~+ 3p.

nz '

4,fftk J1 -A + 2A
(13)

+ i A + A1 I[F(Z -Z )]] dA/

just the analog of Eq. 3 for an elastic solid. Now imagine
that, for fixed force F and in-plane displacement u, the
substrate is allowed to move normal to itself by an amount
w(z). Can it thereby lower its energy? This is the question of
stability against buckling. Because in-plane strain oa de-
pends on w only in second order, the stress tensor

Sij = AUk,k8ij + 4(Uij + Uj) (14)

can be considered constant in a lowest order theory. The
part of the energy that depends on w is

E = 2 J{ [K(V2w)2 + SjW,iWj + |Vw14 .

(15)

The variational condition that E be minimal with respect to
variations of w is

,an|. X

,in,
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KV2V2W S-ijwij- FextWi + + F)(Wiw
(16)

I have used the fact that

Sij= -Fext (17)

in equilibrium.
Qualitatively, one notes that the curvature energy, the

term with coefficient K in Eq. 15, is nonnegative, and in fact
positive definite for a sample of finite size. Any lowering of
the energy must therefore come from the second term,
involving the stress tensor. But the stress tensor is linear in
F. Hence for sufficiently small F the positive curvature
energy dominates, and the film is infinitesimally stable
against buckling. The argument goes back to Euler.
The surprising thing about wrinkles is that they have one

large principal curvature, almost by definition, in spite of
the fact that this obviously costs curvature energy. Curva-
ture seems to be not so relevant in a wrinkle solution. This
suggests that one might find singular wrinkle solutions by
ignoring the curvature energy altogether, invoking it only to
prevent the curvature from becoming infinite. That is, one

thinks of the curvature energy as perturbing the wrinkle
solution associated with F rather than F as perturbing a

solution dominated by curvature energy.

Without K the equilibrium condition becomes

Sjjw jj-FJxtWj + (2 + Pt V2W|IWI2
(18)

+ (A + 2j,)w jjw,jwj = 0.

This is a second-order quasilinear equation in two indepen-
dent variables, for which there exists a very extensive theory
(Courant and Hilbert, 1962). The crucial ingredient in the
theory is the notion of characteristic curve. For a quasilinear
equation the characteristic curves cannot be computed once

and for all, but rather depend on the particular solution one

has in mind. However, if one is interested particularly in
wrinkle solutions, one may note that wrinkles physically do
not suddenly appear at nonzero amplitude. Rather, they
seem capable of bifurcating smoothly from the flat solution.
Therefore one should look at the linearized version, re-

garded as a guide to infinitesimal buckling instability,

SjjW'ij - FextWj = ° (19)

For this linear equation the characteristics can be computed
once and for all. They depend entirely on the in-plane stress
tensor S, Eq. 14, which plays the role of a metric. In
particular, if S is indefinite, like the Lorentz metric, then
there are real characteristics, and the equation is hyperbolic.
In this case the partial differential equation requires distur-
bances to propagate along the bicharacteristics: there are

two characteristic directions at each point. (This propaga-

tion is not "in time," of course; rather, the static solution can

be generated in this way.) If S is definite, on the other hand,
there are no real characteristics, and the solution cannot be
thought of as "propagated." The equation is elliptic.
The actual situation is more complicated and more inter-

esting than either of these possibilities. The "stress geome-
try" realizes both possibilities, in different regions. The
equation is hyperbolic in some places, elliptic in others. The
elliptic regions fall into two types, type P, where S is
positive definite, and type N, where S is negative definite.
Buckling is energetically unfavorable in P regions and fa-
vorable in N regions. Thus we would expect buckling in N
regions. These buckled N regions appear to be nothing other
than compression wrinkles.
A third type of point also arises, on the boundary curves

between hyperbolic and elliptic regions, the parabolic
points. At a parabolic point the two characteristic directions
degenerate to a single direction. Characteristics from the
hyperbolic side of the parabolic curve come into parabolic
points tangent to each other, and end. (The Tricomi equation
is a much studied example of this (Garabedian, 1964).)

I propose that tension wrinkles are initiated at parabolic
points where the tension direction is tangent to a parabolic
curve. The justification for this idea is as much physical as
mathematical. Because tension wrinkles are well localized,
there must be some reason why the disturbance they repre-
sent does not smoothly propagate over the entire hyperbolic
region. The parabolic points on the boundary of a P region
(P-parabolic points) represent a barrier to such propagation,
because the P region itself must be flat. One can think of a
disturbance that is propagated as far as the P region as being
trapped against the "wall" of P-parabolic points, able to
propagate no farther. If the tension direction happens to be
aligned tangent to the curve of P-parabolic points, then
tension can do nothing to inhibit the formation of a wrinkle
(as it could if it had a component perpendicular to the
wrinkle, able to pull the wrinkle flat).
A little more detail is helpful in explaining this sugges-

tion. At parabolic points S has a zero eigenvalue (this
characterizes the parabolic points). At hyperbolic points the
eigenvectors of S and the characteristic directions for Eq. 19
have no simple relationship, but at a parabolic point the
unique characteristic direction coincides with one eigenvec-
tor of S, the one belonging to the nonzero eigenvalue. At a
P-parabolic point this is what I called the tension direction
in the paragraph above, belonging to a positive eigenvalue
of the stress tensor. Thus the characteristic direction should
be tangent to the P-parabolic curve. This condition will be
met only at isolated points, generically speaking, but at
these points disturbances may grow. Then, I suggest, the
nonlinear terms stabilize the new wrinkled configuration
and allow it to extend along the local tension direction.
A simple test of these ideas is the wrinkle pattern gener-

ated by a force applied at one point; one can, for example,
scald milk to form a thin solid film on the surface, then
stress it with a needle. V-shaped wrinkles form behind the
needle. In the theory, with the solid assumed incompress-
ible, the stress tensor due to a force F applied at the origin
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0 has a zero eigenvalue at every point (this is a very
degenerate case). That is, all points are parabolic points.
They are P-parabolic behind the needle, and N-parabolic in
front of the needle, if we name them by the sign of the
nonzero eigenvalue. The characteristic directions are radial
and centered on 0, so that the tension directions are exactly
the rays extending behind the needle from 0, agreeing with
the observed wrinkles. The computation is in Appendix D.
The above example of force applied at a point recalls the

ideas of "tension field theory" (Mansfield, 1969; Reissner,
1938; Wagner, 1929). This is a theory of wrinkles valid in the
limit of large stress. Its starting point is the idea that under
some circumstances the stress is so large and so anisotropic
that one eigenvalue of stress is negligible compared to the
other: in effect, that the parabolic points form not curves, but
regions, as they rather accidentally do, even for small applied
force, in the case of stress applied at one point to an incom-
pressible membrane. In tension field theory the problem is to
find the tension lines in these parabolic regions. It is a principal
result in this limiting case that the lines are straight, like the
V-shaped wrinkles in the example. These tension lines are the
candidate wrinkles of the theory. Instead of isolated points
where the tension direction is tangent to a P-parabolic curve,
there are whole families of integral curves of the tension field
consisting entirely of P-parabolic points.

It is clear that the weak wrinkle theory suggested here
represents as much of tension field theory as one can build
into a linear theory with general stress tensor. That is
perhaps its best justification. It seems plausible that the
effect of the nonlinear terms of the more general theory
would be to interpolate between the two theories, i.e., once
tension wrinkles are nucleated at a P-parabolic point, their
effect on the stress tensor is to promote the development of
more P-parabolic points along curves tangent to the tension

FIGURE 6 This figure shows the features of
the stress geometry relevant to the formation of
wrinkles for the force F in Fig. 3. Elliptic regions
of the governing differential equation are labeled
P or N, depending on whether S is positive or

negative definite. The two small P regions are

contoured. In hyperbolic regions the direction of
the positive eigenvector of stress S is shown at

selected grid points, with length proportional to

the eigenvalue, This eigenvalue goes to zero on

the boundary of an N region. That it appears not
to do this at the lateral extrema of the cell means

that the stress is rapidly varying there, and there
may be small P regions there that were too small
to outline with contours. The cell could have a

compression wrinkle in the large N region, and
tension wrinkles could nucleate on the boundaries
of P regions.

direction until, in some limit of very large stress, all points
have this character. I have not shown this, but I suggest it as
a plausible scenario.
A computed example is interesting in this regard. Fig. 6

shows data for the stress that would be produced in an incom-
pressible substrate by the forces in Fig. 3. There is a large N
region, blank except for the label N. There are two small P
regions at the rear of the cell, labelled and contoured in an
attempt to make them visible. The remaining region is hyper-
bolic, with the eigenvector corresponding to the positive eig-
envalue of stress indicated: the length of the line indicating
direction is chosen proportional to the magnitude of the eig-
envalue, to indicate the strength of the tension as well. As one
approaches a P-parabolic point, this direction approaches the
tension direction (characteristic direction). As one approaches
an N-parabolic point, the positive eigenvalue goes to zero, and
the line goes toward zero length. One sees at the lateral
extrema of the cell that the tension does not always seem to
approach zero at the boundary, even though according to the
labeling, these should be N-parabolic points. Apparently there
are small P-regions there, too small to be resolved by the
contouring routine. (The stress is rapidly varying there.) Ac-
cording to the ideas above, there could be a large broad
compression wrinkle along the symmetry axis of the cell, and
tension wrinkles could be nucleated at isolated P-parabolic
points (on the boundaries of the elliptic regions where the
tension does not approach zero).

Both major features suggested in Fig. 6 have been
observed. In undergraduate thesis work (Lasic, 1994) at
Mount Holyoke College, Morana Lasic obtained video
micrographs of keratocytes on silicone rubber which
show tension wrinkles emanating from the lateral extrem-
ities of the cell, as seen in Fig. 7. I suggest that these
wrinkles were initiated at P-parabolic points on the
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In particular, in the homogeneous case F = 0, a and ,B each solve the
biharmonic equation

V2V2ca = V2V2 = 0. (26)

This formulation is coordinate free, but it takes a peculiarly simple form
in terms of the complex coordinates z and z. A comprehensive reference on
the complex variable approach and its advantages for boundary value
problems is presented by Timoshenko and Goodier (1951). This approach
has a very long history, as one sees in references there. I summarize below
the results that are needed for the purpose of this paper. It should be
emphasized that this approach has great advantages for boundary value
problems with geometrically complicated boundaries, as may be expected
in biological problems. It is not as familiar in this context as it might be.

It is clear, using
FIGURE 7 Photograph of a keratocyte on silicone rubber taken by
Morana Lasic (unpublished senior thesis, Mount Holyoke College). The
observed wrinkles are where Fig. 6 predicts tension wrinkles could be
initiated.

boundary of the elliptic regions seen in Fig. 6. Once the
wrinkles were initiated, nonlinear terms became impor-
tant and stabilized them. Compression wrinkles that go
through the keratocyte roughly parallel to the direction of
motion seem to be typical, according to Dembo et al.
(1996). This feature is like the N region in Fig. 6.

APPENDICES

A: Two-dimensional fluid model

Following classical methods (Timoshenko and Goodier, 1951; Schutz,
1980), I solve the equation for the velocity v of a two-dimensional fluid
with viscosities ri and K,

Sj -F.t (20)

where the stress tensor Sij is given by

Sij KVk,kgij + 2770qoj (21)

0Jgj= 2(Vj + Vj j) (22)

(in Cartesian coordinates), and gi, is the Euclidean metric. Replacing the
velocity i, by the displacement u and the viscosities by Lame coefficients
gives the elastic solid problem considered above (see A Theory of Harris
Wrinkles). A viscoelastic generalization of this problem is solved in
Appendix B.

Because the substrate is in the Euclidean plane, there is a canonical
identification of it with its tangent space or cotangent space at any point.
This freedom to represent geometric objects in several different ways is
very useful in computations. A reference on the geometrical methods used
here is Schutz ( 1980). Thinking of l' and F as I-forms, one can write Eq.
20 in coordinate-free form as

V2 = 4 (27)

that general real solutions to Eq. 26 are

a =-2 Im(ff(z) + g(z))

13 = 2 Re(zh(z) + j(z)),

(28)

(29)

wheref, g, h, and j are arbitrary analytic functions of the complex variable
z. Because the representation in Eq. 24 is not unique, it is no loss of
generality to take j = 0, as I do from now on.

To exploit complex variables most efficiently, it is worthwhile to
introduce the notation of Hermitian geometry. If one takes as a basis in the
cotangent space the 1-forms dz and dz-, then Euclidean geometry is ex-
pressed by the Mermitian metric tensor

g(dz, dz) = g(dz, dz) = 2. (30)

(other components zero). The dual basis in the tangent space is ahi)z and
dI/a. The Hermitian metric in the tangent space is

(31)(az' az-) (aZ-' az 2

(other components zero). The action of the Hodge star operator is

*dz = i dz *dz- =-i dz- (32)
The identification of the (real) tangent space at any point with the complex
plane takes the form

A +A A
aZ aZ (33)

and this gives an identification of real tangent fields with complex func-
tions. The identification of the (real) cotangent space at any point with the
complex plane takes the form

A dz + A dz<--2A, (34)
and this gives an identification of real 1-forms and complex functions.
Using this identification together with Eqs. 24, 28, and 32, we have

(K + 2iq)d*d* v + i*d*dv + F= 0, (23)

where d is the exterior derivative and * is the Hodge star operator. The
velocity i* can be represented in terms of potentials

v = *da + df

locally for some real functions a and ,3, so that Eq. 23 becomes

(24)

v=2[z(h' -f')-g' +(f+h)] (35)

as a complex function. Still considering the case F = 0, one finds from Eq.
25 that

-f= (K + 2'q)h".
The once integrated form of this relationship

(36)

(K + 2i)d*d*df + q*d*d*da + F= O. (25)
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where co is an arbitrary complex constant, is also used below.
The components of the rate-of-strain tensor associated to v are

(dZaZ ) = z(hl - f"f) - g"f = (- az aZ)
./ az af I .Id

o-- - - = h' + h' = at J

(38)

where the square brackets [ I mean the jump in the enclosed function at a
presumed cut. Now using Eq. 36 and the fact that u is single valued,
implying, according to Eq. 35,

[z(h' -f ') - g'] = -[f+ h], (48)
we find the very simple result

Fsub =-8'ri [f].

(One way to compute this is to find the Lie derivative of the metric tensor
with respect to v regarded as a tangent vector field.) The divergence of v
is the trace of or (using g from Eq. 30):

Vij = 4(h' + h'). (40)

These are the ingredients of the stress tensor Eq. 1.
Now imagine a short directed line segment of length Al in the direction

of e"' somewhere in the substrate plane. Using Eqs. 40 and 38, we can find
the force exerted on this segment by the substrate to the right of the
segment. The unit normal to the segment pointing into this part of the
substrate is

,la a
n = -ie'o + ie-06az az (41)

The force AF on this line segment is found by evaluating the stress tensor
on n, i.e.,

AF = S(n, -)Al. (42)

The result is the real 1-form

AF = [2(K + q)(h' + h')(-i)ei' dz + 20i(z(h" -f")
(43)

- g")e- ' dz + c.c.]Al,
which is also represented by the complex function

AF= -4(K + q)i(h' + h')e"0Al
(44)

+ 4ni[z(h"-f")-
using the identification Eq. 34. When we integrate over a curve, thought of
as made up of many such segments, eA0Al becomes dz, and e- "'Al becomes
dz. Thus the force on a directed curve C due to the substrate material to its
right is

Fsub = 4-)i [z(" - ) -g"] dZ - 4i(K + )
JC

(h' + h') dz.

.C

Using Eq. 37, this becomes

(49)

Of course, iff is single valued (has no cut), then according to Eq. 49 the
substrate force is zero. This is to be expected, because we have been
solving the homogeneous version of Eq. 2. In equilibrium the net force on
each piece of the substrate is zero, andf is a regular function in the interior
of C.

In a similar way we can find the net torque exerted on the curve C with
respect to the origin by the substrate material on its right. It is

Tsub = 4- Re J zd[z(h' f') g'- (1 + Kh)h + coz]
c

(50)

= 4q Re d[zz(h'-f') -Zg') + g],
JC

(51)

where in the second line we used Eq. 37 and added a purely imaginary term
to the integrand. This is once again the integral of a total derivative. The
integral around a closed curve, using again Eq. 48, is the discontinuity at
a cut,

Tsub = -4q Re[z(f+ h) - g]. (52)

Of course, if the functionsf, g, and h are single valued, there is no substrate
torque, as would be expected in equilibrium.

To this point I have only solved the homogeneous problem, with
external forces applied perhaps on the boundary, but the above obser-
vations also solve the inhomogeneous problem. If a small piece of the
substrate is subject to an external force, then in equilibrium the adjoin-
ing substrate must exert a force to balance the external force-this is the
content of Eq. 20. By Eq. 49 this means f must have a logarithmic
singularity at this point. At the same time, there cannot be a singularity
in the torque at a point, and this condition determines the singularity of
g. (Alternatively, Eq. 48 determines this singularity.) Additional non-

singular terms can be added to f and g, leading to a whole family of
Green's function solutions, parameterized by two analytic functions.
This is enough freedom to fix u on the boundaries of a finite region, for
example, so it corresponds exactly to intuition. We thus have the
following singular solution, with a nonsingular term added in g to

facilitate comparison with the classical solution to this problem cited in
(Dembo et al., 1996):

f= c In z (53)

3q+ K 271q2= K-zlnz + 2 (54)2rj+ K 2r,+ K

d[z(h'-f') -g- (1 + K/n)h + coz], (46)

the integral of a total derivative. In particular, if C is a closed curve,

F,ub = 4rji[z(h' ') - - (1 + Kl/)h], (47)

where c is a complex constant. The force applied by the substrate to any
region containing the origin is, by Eqs. 49 and 53,

Fsub = 16c7Tq. (56)

(39)

Fs.b =4qiL
C

h27 + lnz (55)
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(57)

Equating this to -Fext determines

Fext
C 16T-q-

Then using Eqs. 35, 53, 54, 55, and 57, we have the velocity v in res
to the force Fext applied at the origin:

( Kc+ 3 7)q

K + '7 '\Im(zFext)
( K + 27J Z ],

and Eq. 13 follows.

B: Viscoelastic model
In this section I point out a simple viscoelastic generalization of the model
in Appendix A, and describe how it fails to improve the fit to keratocyte
data on a fluid substrate. Suppose that the two-dimensional fluid has a
"memory," so that stress at any time depends on the rate of strain not only
at that time but also in the past. This viscoelastic stress Iii can be
represented in terms of the stress Sij, which would exist in a simple fluid by
(Bird et al., 1987)

i= f G(t - t')Sij dt', (59)

where G is the relaxation function. (My conventions differ from those used
by Bird et al. by a factor of 2 in the strain tensor and a minus sign in the
stress tensor.) Typically G falls off with time, meaning that strain in the
distant past has relaxed and cannot contribute to stress in the present.
Although the form is more general, I shall take G to be characterized by a
single exponential memory time T, the so-called Maxwell model, for
simplicity. The reason is that I am not trying to give a realistic description
of viscoelastic substrates, for which there is not even any evidence, but
only trying to detect any hint of elasticity in observed substrates. The
Maxwell model says Eq. 59 is the solution of

E+ T a =S. (60)

The mechanical equilibrium of the viscoelastic fluid is expressed by

area of the cell, and

a, =
K +Tj

K + 271 (63)

(64)
K + 3 -i

a3 =K + 27

Then, inverting the linear operator on the left, as in Eq. 60, we have

(58) V(z,t) = -(1 + T-) [a3FlnIz WI
a ~t/ 4wrq

(65)

+ ial _ (JAW.

It was pointed out in Eq. 7 that for the keratocyte experiment analyzed
above (Data Analysis), the time-dependent velocity V of the substrate in the
laboratory frame has the form

V(z, t) = v(x - vot, y), (66)

where vo is the constant speed of the cell, and the function v(x, y) is a steady
flow velocity in the cell frame, due to an assumed constant distribution of
force F. From the way V depends on t it follows that on the right side of
Eq. 65 the operator a/at can be replaced by -v0a/ax. Thus the steady flow
pattern is

v(z) =- [a3FlnIz - wl+ia, _[ _ ]dAw

(67)

VOT Re(z - w) Im(z -w)
+4 r La3F - 2 + ia1F 7V)2IdAW.

If T = 0, this relationship between external force F and v reduces to that of
Appendix A (the memory fluid has no memory-it reduces to a simple
fluid). For positive Tone gets a family of models parameterized by memory
time. The data above (Data Analysis) were fit with these models using ' as
a parameter. The best fits were for T smaller than the time the experiment
could resolve. That is, the extra degree of freedom in the fitting function
led to no improvement in fit. There was no indication of elasticity in the
substrate.

(61)

where Fext is the force per unit area applied to the substrate by the cell in
the contact area D. Because E is found by integrating spatial derivatives of the
velocity V, Eq. 61 is best thought of as an integro-differential equation for the
velocity V that results from the application of the external force Pe,t.

Except for the appearance of the relaxation function G, Eq. 61 is just the
equation for the velocity field of a two-dimensional fluid subject to an
external force F. The solution is therefore (see Appendix A)

G(t - t')V(z, t') dt' = 4 7 f( [a3F lnIz -WI

(62)

+ ial - JdAw

where D is the region over which the force F is applied, i.e., the contact

C: Three-dimensional fluid model

A classical application of Green's identity to the problem of low Reynold's
number fluid flow is Oseen's integral representation (Oseen, 1927) for the
three-dimensional creeping flow of a fluid with shear viscosity i1 in an

open bounded region D in terms of boundary data on the smooth boundary
M,

Vk(ro) = 8T7 J'{ [kk(dn P )

(68)
( dtjk

i "dn Pkflj dr2
Here Po is a fixed (interior) point of D, and j and k are indices running
from 1 to 3, labeling Cartesian components of several vectors and
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tensors. The vector with components nj is the unit outer normal ni on M.
The derivative d/dn is best understood as minus the partial derivative in
the direction -fi, because it is not clear from this representation that the
flow exists outside of D. The tensor tjk and the vector Pk should be
thought of as known quantities, depending on the variable of integration
r and the parameter Po. They are three Stokes flows (labeled by k) with
a Green's function singularity at r = rO, and may be taken to be (Oseen,
1927)

where

a a
a = S :z A) = 2j,[z(h"-f -g"]

b = -, = 2(A + ,u)(h' + h').

_ jk (Xj -XoJ)(Xk XOk)
tjk(r, rO) I +-rI 3

(Xk XOk)

pk(r, ) = 2ir -r 3 ,

(Note b is real.) The parabolic points occur where the determinant van-

(69) ishes, i.e., where

lal =Ibl.
(70)

Here xj is a Cartesian component of r, etc.

Suppose an isotropic three-dimensional Newtonian fluid with shear
viscosity 'q3 fills the half-space given by z s 0, and that small tractions
are applied tangentially on some finite region of the boundary M given
by z = 0. The integral representation Eq. 68 contains as a special case

the motion of the plane fluid interface in response to these tractions. (It
is clear that this represents a possible model of the Jacobson-Oliver
experiment.) Let the point Po approach the boundary M. The integral
representation becomes

Evaluating S on a unit vector n in the direction 0 gives

S(nr, ni) = 2[Re(e2iOa) + b].

(76)

(77)

The hyperbolic regions are those where there are two distinct directions
(null directions) which make this quantity zero, which is possible only if Ibl
< lal. The two characteristic directions are the directions perpendicular to

these two null directions. At a parabolic point the characteristic directions
degenerate to a single characteristic direction given by

0=Arg() (78)

1I dvj 2

Vk(r) = 4r3 J 3 dn tjkd r. (71)

This limit is discussed by Peterson (1996). The quantity q3(dvj/dn) is just
the negative of the shear stress traction applied by the underlying fluid on

the boundary. Because the net force on the boundary must vanish, it is also
exactly the traction Fj being applied externally. Thus Eq. 71 is a formula
like those in Appendices A and B, giving the velocity of the surface in
terms of applied tractions. To put it in exactly the same form, introduce the
complex coordinate z in M (not to be confused with the Cartesian coordi-
nate defining AM)

tP(Z W)2]

v(z) = 4 J,|;[21z-| + 2 tI-wI 3 ]dw. (72)

This is a model that regards the surface as the structureless plane boundary
of an isotropic three-dimensional fluid. As noted in the Introduction, it is
not possible to choose F's to fit the observed v's with the same goodness
of fit as is achieved by the two-dimensional model of Appendix A. This
suggests that the fluid near the surface is not inherently isotropic, or that it
is not free of internal (two-dimensional) stress, or both.

As in Appendix B, we can form models that are linear combinations of
this model, representing the effect of stress from the underlying layer, and
the model of Appendix A, representing stress within the surface layer. The
result, as in Appendix B, is that the new terms, in this case representing
bulk effects, do not improve the fit, and the best fit is obtained when they
are negligible.

D: Stress tensor

With the notation of Appendix A, the stress tensor in a two-dimensional
solid film with Lam6 constants A and ,s has the form

S_(:a b) (73)

If one asks for eigenvectors of S, one is thinking of S as a map of the
tangent space to itself, which is really

02 a ba b

gS= 2 )b d (79)b

where g, the Hermitian metric (Eq. 30), maps cotangent vectors to tangent
vectors. It is easy to check that at a parabolic point the nonzero eigenvalue
is 4b and so has the sign of b (i.e., if b > 0, the point is a P-parabolic point,
and if b < 0, it is an N-parabolic point, in the language used above (see A
Theory of Harris Wrinkles).

More generally, the eigenvalues of the stress tensor are

_-+ = 2(b ± laI), (80)

and the corresponding eigenvectors are in the directions

-Arg(±a)/2. (81)

The stress tensor due to a force F concentrated at the origin can be found
from Eqs. 74-75, using the functionsf, g, and h from Eqs. 53-55, but with
the viscosities K and - replaced by Lame constants A and ,. The result is

1 [Re(tF) u, Im(zF)
a==-4T L 2 + i A+2u Z2 (82)

1 A + ,u Re(zF)
b =-4 xTA + 2, 1z2

(83)

The stress due to a superposition of forces at different points follows

straightforwardly from this. This is the method for constructing Fig. 6,
which used the limit A -> co, corresponding to an incompressible film.
A real force (i.e., pointing in the +x direction) at the origin gives rise

to a stress tensor at z = re'o with

a = -4FCM Cos 0 + i
A in 0

4wr 2-

F A+,u
4wirr A+ 2,u

(84)

(85)

(74)
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One sees from the remark after Eq. 77 that all points are hyperbolic, except
in the limiting case A -> o, in which all points become parabolic. In this
case, because of the sign of cos 0, which determines the sign of b, they are
all N-parabolic for x > 0 and P-parabolic for x < 0. The characteristic
direction according to Eq. 78 is 0 (i.e., radial), as asserted above (see A
Theory of Harris Wrinkles). The tension directions are then along rays
from the origin for x < 0, corresponding to familiarly observed wrinkles.
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