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Ligand Binding to Heme Proteins. VI. Interconversion of Taxonomic
Substates in Carbonmonoxymyoglobin

J. Bruce Johnson, Don C. Lamb, Hans Frauenfelder, Joachim D. Miiller, Ben McMahon, G. Ulrich Nienhaus,
Robert D. Young
Department of Physics, University of lllinois at Urbana-Champaign, Urbana, lllinois 61801-3080 USA

ABSTRACT The kinetic properties of the three taxonomic A substates of sperm whale carbonmonoxy myoglobin in 75%
glycerol/buffer are studied by flash photolysis with monitoring in the infrared stretch bands of bound CO at 1{A,) ~ 1967
cm™ ', 1A,) =~ 1947 cm ™", and v (A;) ~1929 cm ™' between 60 and 300 K. Below 160 K the photodissociated CO rebinds from
the heme pocket, no interconversion among the A substates is observed, and rebinding in each A substate is nonexponential
in time and described by a different temperature-independent distribution of enthalpy barriers with a different preexponential.
Measurements in the electronic bands, e.g., the Soret, contain contributions of all three A substates and can, therefore, be
only approximately modeled with a single enthalpy distribution and a single preexponential. The bond formation step at the
heme is fastest for the A, substate, intermediate for the A, substate, and slowest for A;. Rebinding between 200 and 300 K
displays several processes, including geminate rebinding, rebinding after ligand escape to the solvent, and interconversion
among the A substates. Different kinetics are measured in each of the A bands for times shorter than the characteristic time
of fluctuations among the A substates. At longer times, fluctuational averaging yields the same kinetics in all three A
substates. The interconversion rates between A, and A; are determined from the time when the scaled kinetic traces of the
two substates merge. Fluctuations between A, and A; are much faster than those between A, and either A, or A,, so A, and
A; appear as one kinetic species in the exchange with A;. The maximum-entropy method is used to extract the distribution
of rate coefficients for the interconversion process A, < A, + A; from the flash photolysis data. The temperature
dependencies of the A substate interconversion processes are fitted with a non-Arrhenius expression similar to that used to
describe relaxation processes in glasses. At 300 K the interconversion time for A, <> A, + A3 is 10 us, and extrapolation yields
~1 ns for A, < A;. The pronounced kinetic differences imply different structural rearrangements. Crystallographic data
support this conclusion: They show that formation of the A, substate involves a major change of the protein structure; the
distal histidine rotates about the C,-C,; bond, and its imidazole sidechain swings out of the heme pocket into the solvent,
whereas it remains in the heme pocket in the A, < A, interconversion. The fast A, <> A; exchange is inconsistent with
structural models that involve differences in the protonation between A, and A,.

PROTEIN SUBSTATES AND FUNCTION

Protein substates

Many proteins possess at least two states. Myoglobin, for
instance, exists in the ligand-bound form (MbO, or MbCO)
or in the deoxy form (Mb). If each state were unique and
rigid, adaptation would be difficult. Within each state, how-
ever, a protein can assume a large number of conformational
substates (CSs) that endow the protein with flexibility (Aus-
tin et al., 1975; Frauenfelder et al., 1978, 1988, 1991; Elber
and Karplus, 1987). Proteins in different CSs perform the
same function but usually with different rates. At physio-
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logical temperatures, proteins fluctuate among the thermally
accessible CSs. The environment controls protein reactions
by modifying the energies, entropies, and volumes of the
CSs, thus changing the relative populations (Ansari et al.,
1987; Morikis et al., 1989; Frauenfelder et al., 1990; Hong
et al., 1990; Zhu et al., 1992).

The CSs in sperm whale MbCO are arranged in a hier-
archy that consists of a number of tiers (Ansari et al., 1985,
1987; Frauenfelder et al., 1991; Steinbach et al., 1991). In
tier O the barriers between the valleys in the energy hyper-
surface are largest, and three taxonomic substates, denoted
Ay, A}, and A3, can be distinguished. These A substates are
characterized by the infrared absorption bands of the bound
CO, 1Ay ~ 1967 cm™!, ®(A,) ~ 1947 cm ™', and v (A;)~
1933 cm™'. Equilibrium populations of the A substates
depend on external conditions such as temperature, pH,
solvent composition, and pressure (Ansari et al., 1987;
Hong et al., 1990; Iben et al., 1989; Frauenfelder et al.,
1990; Morikis et al., 1989; Zhu et al., 1992; Mourant et al.,
1993). Below 160 K, conformational transitions between
the A substates do not occur, and rebinding of CO after
photodissociation to each individual A substate is nonexpo-
nential in time. Therefore, the population within each A
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substate is kinetically inhomogeneous; each substate of tier
0 in MbCO comprises a large number of substates of tier 1.

Although MbCO is one of the best-studied proteins, the
protein—ligand interactions that give rise to the different A
substates are still under intensive study (see, for instance,
Springer et al., 1994). Recent Fourier-transform IR studies
of a large number of distal pocket mutants have elucidated
how structural modifications in the distal pocket affect the
IR bands of bound CO (Braunstein et al., 1993; Li et al.,
1994). They showed that electrostatic interactions between
the bound CO and the residues lining the heme pocket play
an important role. Especially important is the interaction
with the key distal residue His-E7. Further information
comes from NMR (Park et al.,, 1991), resonance Raman
experiments (Ray et al., 1994), and x-ray crystallography
(Quillin et al., 1992; Yang and Phillips, 1995). Whereas the
nature of the A, substate is clarified, disagreement still
exists over the assignment of A; and A; (Oldfield et al.,
1991; Ray et al., 1994; Li et al., 1994; Jewsbury and
Kitagawa, 1994).

Taxonomic substates exist in a number of carbonmonoxy
heme proteins. In MbCO the existence of A substates is
clearly indicated by the appearance of different CO stretch
bands (Makinen et al., 1979; Alben et al., 1982; Shimada
and Caughey, 1982). Many other heme proteins, for in-
stance, cytochrome oxidase (Alben et al., 1981), cyto-
chrome P450 (Tsubaki et al., 1986; Porter and Coon, 1991),
horseradish peroxidase (Doster et al., 1987; Uno et al.,
1987), and hemoglobin (Potter et al., 1990), all exhibit
multiple CO stretch bands in the CO-ligated form and thus
possess A substates. Taxonomic substates are also observed
in other classes of protein, for example, retinal proteins and
blue copper proteins (Nar et al., 1991; Ehrenstein et al.,
1995). Theoretical ideas suggest that these substates are a
general property of proteins (Honeycutt and Thirumalai,
1990). The observation of taxonomic substates in many
proteins makes the investigation of their dynamic properties
in MbCO relevant beyond the working of a single protein.
The focus of this paper is on conformational transitions
between the A substates.

Protein function and control

Using many different distal pocket mutants, Li et al. (1994)
investigated correlations between the frequencies of the IR
stretch bands of the bound CO in myoglobin and the overall
dissociation and association rates. They showed that the
dissociation rates at room temperature, measured for many
different distal pocket mutants, correlate well with the wave
number of the CO, reflecting an increase in bond strength
between Fe and CO with decreasing voq, as expected from
the backbonding relation (see Discussion and Conclusions).
The correlation between the association rates and voo wWas
much worse. This behavior is expected because the bound
state does not necessarily bear information about how it was
formed. Ligand binding is a complicated multistep process
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and, for example, displacement of water from the distal
pocket and other steric effects may slow the binding without
leaving an imprint on the interaction of the bound CO with
distal pocket residues (Li et al., 1994). Infared kinetic ex-
periments over wide temperature ranges enable us to sepa-
rate kinetic processes that contribute to the overall rebinding
rate coefficients.

The presence of multiple taxonomic substates with dif-
ferent ligand binding properties in myoglobin is a nice
example of how the function of a protein can be controlled
by the environment (Ansari et al., 1987; Frauenfelder et al.,
1989). The environment can influence the relative popula-
tions of taxonomic substates, for example, by changing the
pH. The overall association coefficient A is given by
(Frauenfelder et al., 1989)

A=k, (1)

where ¢; is the fractional population and A; is the rate
coefficient of substate i in deoxy Mb. Because the different
substates bind CO at different rates, the overall binding rate
changes with the relative populations. Experimental evi-
dence supporting this scenario has come from kinetic ab-
sorption and Raman studies of ligand association and dis-
sociation rate coefficients in sperm whale Mb as a function
of pH (Doster et al., 1982; Tian et al., 1993). Detailed
understanding of such a control mechanism requires knowl-
edge of the rate coefficients for interconversion among
taxonomic substates.

In the bound state, conformational transitions among the
A substates occur. We previously published MbCO rebind-
ing Kinetics monitored in the A, substate between 230 and
260 K that showed evidence for the interconversion process
Ay < A, + A; in 75% glycerol/buffer (Young et al., 1991;
Steinbach et al., 1992). Double-pulse flash photolysis ex-
periments of the rebinding of MbCO confirmed these results
(Tian et al., 1992). Here we report flash photolysis studies
of the interconversion processes A; <> Azand Ay <> A; + A,
in sperm whale MbCO between 200 and 300 K. The results
are compared with measurements made with pressure relax-
ation techniques (Iben et al., 1989; Frauenfelder et al., 1990;
Scholl, 1991).

METHODS
Sample preparation

Samples for flash photolysis with monitoring in the visible were prepared
as described previously (Steinbach et al., 1991). For flash photolysis in the
IR, samples with a final protein concentration of 15 mM in a glycerol/
buffer solvent (75%/25% v/v) were used. Samples at pH 5.7, in which a
significant fraction of the population is in each of the three A substates,
were prepared with 1.3 M potassium citrate buffer (pH 4.3). Samples at pH
9.1, prepared with potassium carbonate buffer (pH 11.0), were used to
study the A, <> A, exchange because they show essentially only these two
substates (Ansari et al., 1987; Morikis et al., 1989; Hong et al., 1990).

Spectroscopic methods

Flash photolysis experiments were conducted on two systems, one moni-
toring in the visible (Soret band at 440 nm) and one monitoring in the IR
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CO stretch bands (~5 pm). The flash system with monitoring in the visible
was described previously (Steinbach et al., 1991). In the IR flash photolysis
system a 300-ns (full width at half maximum) pulse from a dye laser
(model DL2100C; Phase-R, New Durham, NH), lasing broadband at 530
nm with 100 mJ of energy, photodissociated the sample. Rebinding was
monitored with a lead-salt laser diode (Laser Photonics, Analytics Divi-
sion, Bedford, MA). It was tunable from 1900 to 2000 cm ™' and focused
on the sample, monochromator, and detector with calcium fluoride optics.
The monochromator was used only for wavelength determination or rejec-
tion of unwanted modes because each mode of the IR laser diode is ~3 X
107* cm™' wide. The signal from the photovoltaic InSb IR detector
(Infrared Associates, Cranbury, NJ) was digitized with a logarithmic time-
base digitizer from 1 us to 1 ks. A closed-cycle helium refrigerator (Helix
Technology Corp., CTI Cryogenics Division, Waltham, MA) cooled the
laser diode and the sample.

Data analysis

The absorbance change in the sample that is due to the photolyzing laser flash
is given by AA(H) = log(I(0™)/I(t)), where I(0™) is the intensity measured
before photolysis and I(¢) is the intensity of light measured through the sample
after photolysis. We divide AA(#) by the maximal absorbance change, AA,,,,,,
to obtain the normalized absorbance change, N(f), which is the fraction of
molecules in the dissociated state at time ¢ after photolysis. It can be repre-
sented by a spectrum of exponential rate processes,

N(») = | dlog Mfin)e ™. )

The rate distribution function f(A) gives the probability density for absor-
bance changes with rate coefficient A on a logarithmic scale. In the IR
experiments described in this paper the absorbance changes arise not only
from rebinding but also from a net flow of population from one A substate
to another (vide infra).

We employ various numerical inversion techniques to extract {A) from
the N(t) curves (Steinbach et al., 1992). Data analysis using the maximum-
entropy method and Gaussian model fits led to essentially the same results.
Here we calculate AA) with the maximum-entropy method (MEM), a
technique that can be used whenever the measured data represent a trans-
form of the function of interest. Inevitably, experimental data are always
incomplete and subject to noise. The MEM algorithm selects from the
many solutions that fit the data equally well, namely, those with a normal-
ized x? of 1, a unique solution that is free of spurious correlations. We
employ the MEM to extract rate distributions from individual kinetic traces
by inversion of Eq. 2, and we also use a “global MEM,” in which the
algorithm was modified to study the interconversion between the A sub-
states by simultaneously analyzing kinetics data of the three different A
substates. In the global MEM the absorbance changes are modeled by a
rebinding rate distribution fi(A) for each A; substate plus one exchange
distribution f(A) that describes the transfer of population from A, to A, +
A;. With an appropriately modified definition of the entropy S, the method
yields the most probable set of rate distributions, fi(A) and f.(A). For
technical details, we refer the reader to the paper by Steinbach et al. (1992).

RESULTS
Low-temperature rebinding

Below 160 K, ligands do not escape into the solvent but
rebind geminately from the heme pocket. Moreover, there
are no interconversions between taxonomic substates, and
measurements of the transient absorbance changes in the
CO stretch bands yield the rebinding to the individual A
substates, as shown in Fig. 1, a—c. The kinetics of the
different A substates differ considerably, with A, being
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FIGURE 1 Ligand rebinding between 60 and 160 K. The fraction of

myoglobin without a CO bound to the heme iron, N(#), as a function of time
after photolysis is shown for (a) A, (b) A, (c) A;. (d) The distribution of
activation enthalpy barriers g(Hg,) that generates the fits shown as solid
curves in a—. To fit g(Hg,), a gamma function was used for A, and A, and
a Gaussian for A;. Solvent: 75% glycerol/water (v/v).

fastest and A; being slowest. They are nonexponential,
reflecting an inhomogeneous population of myoglobin mol-
ecules that possess different activation enthalpies Hg, and
consequently rebind ligands with different rates. The frac-
tion of molecules within each A substate that have not
rebound a ligand at time ¢ after photolysis, N(¢), is given by
(Austin et al., 1975)

Ni(1) = | dHpagi(Hga)e ¥, 3)
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where the inhomogeneous population within each taxo-
nomic substate is characterized by a single, temperature-
independent distribution of barriers, g;(Hg,). Above ~50
K, the rate coefficient k(Hg,, T) = Aga(T/Ty)exp(—Hga/
RT), where T, is a reference temperature taken to be 100 K.

The g;(Hy,) distributions for rebinding to the three A
substates are plotted in Fig. 1 d, and the parameters are
listed in Table 1. For comparison we also give peak enthal-
pies as calculated from temperature-derivative spectroscopy
measurements (Berendzen and Braunstein, 1990), using the
preexponential values Ag , obtained from the data presented
in this paper. We see good agreement of the H,,, parameter
for temperature-derivative spectroscopy and IR flash pho-
tolysis for the three A substates. The solid curves in Fig. 1,
a—c show rebinding curves calculated from the g;,(Hga)
distributions using Eq. 3. Whereas the A substate popula-
tions depend on pH, the g;(Hg,) distributions are essentially
pH independent (Mourant et al., 1993).

Flash photolysis studies with infrared monitoring
above 200 K

Comparison of Soret and infrared kinetics

Experiments probing electronic bands in the visible measure
the overall rebinding and do not distinguish among different
taxonomic substates. Infrared monitoring, however, yields
additional information about substate transitions.

Flash photolysis data above 200 K reflects a complex
behavior. Undulations on the kinetic traces can be resolved
into several peaks in the rate distribution function f{A) by
the MEM. Fig. 2 shows the Soret rebinding kinetics be-
tween 200 and 300 K together with f{A) for 230 and 250 K.
In Fig. 2 b various peaks, labeled 1-3 and S, stand out. This
pattern is found in all Soret data between 200 and 250 K. At
T = 250 K, separate peaks 1 and 2 are no longer observed
(Fig. 2 ¢).

Fig. 3 shows the corresponding data for monitoring in the
IR at the position of the A; band. In Fig. 3 a the experi-
mental data are shown as points, whereas the solid curves
are calculated with Eq. 2 from the rate distributions f(A),
which are shown for 230 and 250 K as solid curves in Fig.

TABLE 1 Parameters characterizing the geminate rebinding
in MbCO at low temperature

Hpeox H,e o, TDS
Marker log(Aga/s™") (kJ/mol) (kJ/mol)
Soret 8.8 0.2 9702
Ay 8.7*0.1 82*+04 8.2
A, 9.1 +0.2 10.1 = 0.5 10.0
A, 104 £ 0.2 19.5 = 0.6 18.3

The rebinding parameters were determined by flash photolysis in the Soret
(Steinbach et al., 1991) and in the CO stretch bands (this work). Also listed
is Hpeqy Of the A substates obtained by temperature-derivative spectroscopy
(TDS) (Berendzen and Braunstein, 1990). The Soret, A,, and A, kinetics
were fitted to a gamma distribution (Young and Bowne, 1984), and the A,
and TDS kinetics to a Gaussian distribution.
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FIGURE 2 Rebinding kinetics and rate distributions of sperm whale
MbCO measured in the Soret band. (a) Survival probability in the unbound
state after photolysis, N(#). Rate distribution functions f{A) at (b) 230 K and
(c) 250 K, calculated using the MEM. Peaks 1-3 and S are discussed in the
text. Solvent: 75% glycerol/water (v/v), pH 6.8.

3, b and c. Differences between measured and calculated
data are very small and cannot be visualized on any reason-
able scale. Thus, we plotted the differences between mea-
sured and calculated transmittance data, AJ, normalized to
the statistical noise of the data (standard deviation o~ 10~
in transmittance), in the bottom parts of Fig. 3, b and c. The
IR kinetics show the same general pattern of peaks as the
Soret data, with consistent peak positions over the entire
temperature range. However, the IR data reveal an addi-
tional peak, labeled E. At 230 K this peak is still ambiguous
from the A, kinetics alone. We have labeled it here only
because of the additional information from the A, kinetics,
which we discuss below. At 250 K, however, Peak E is
clearly visible and calls for an explanation.

To demonstrate the ability of the MEM to resolve the
various peaks, we have included as dashed curves in Fig. 3,
b and c results from MEM calculations that were aborted at



Johnson et al.

0
o -1t
-4
&p
L -2t
-3
-6
.6
—~ 4
=
“ 2
0
b
0
S s
<
=
=
b
S
<

-6 -5 -4 -3 -2 -1 0
~log (\/s™)

FIGURE 3 Rebinding kinetics and rate distributions of sperm whale
MbCO measured in the A, band at ¥ ~ 1947 cm™'. Solvent: 75%
glycerol/water (v/v), pH 5.7. (a) Fraction of unbound Mb, N,(#), between
200 and 300 K. Points represent the experimental data; curves give the
kinetics calculated with Eq. 2 from the rate distributions f,(A) obtained by
the MEM. Distributions of rebinding rates f,(A) at (b) 230 K and (c) 250 K.
Also shown are the differences between the experimental transmittance and
the transmittance calculated from f;(A) with Eq. 2, AJ, normalized to the
statistical error, o. For the traces shown, o is ~107* at all times. To
illustrate the ability of MEM to extract the various peaks 1-3, E, and S,
which are discussed in the text, the dashed curves show MEM calculations
that were aborted before convergence of the algorithm (x> = 5), whereas
the solid curves represent the final result (x> = 1).

)(2 = 5. The normalized residuals, AJ /o, show large sys-
tematic deviations, indicating that the fewer features in
those rate distributions are inconsistent with the data. After
convergence of the MEM algorithm to x* = 1, all peaks are
present and the residuals are much smaller. We emphasize
that the low noise, which is a direct consequence of loga-
rithmic data averaging, is essential to resolution of the
various peaks in rate distributions.

Peaks 1-3 are independent of the concentration of the CO
in the solvent and therefore represent geminate processes.
The position of peak S varies with the CO concentration in
the solvent and represents the bimolecular binding of Mb
and CO. Whereas the solvent process is nearly exponential
in the dilute Soret samples (Fig. 2) because of pseudo-first-
order conditions, the bimolecular conditions in the concen-
trated IR samples (Fig. 3) give rise to a nonexponential
solvent rebinding. As explained below, peak E represents
not a rebinding process but an interconversion among the A
substates. Processes 1-3 occur before peak E; they represent
rebinding on time scales faster than the A substate intercon-
version. Thus, they correspond to processes that occur
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within the individual substate populations. We discussed
them in a previous paper (Nienhaus et al., 1994). Rebinding
from the solvent, peak S, is slow compared with the inter-
conversion and hence is governed by an average rate coef-
ficient (Eq. 1).

Monitoring in the A, and A; bands

Fig. 4 shows IR data for CO rebinding with monitoring at
the positions of the A; and A; bands at pH 9.1 in 75%
glycerol/buffer at 220 and 250 K. For comparison we scaled
the A, data to the A, data, using the population ratio deter-
mined at lower temperatures. At 220 K the A; trace is
markedly above that of A, for times shorter than 10* s,
indicating that less rebinding has occurred in A; up to that
time. This result is consistent with the much higher barriers
for the transition B; — A,, as measured below 160 K (Fig.
1). At ~107* s the A, and A, traces merge, which we
explain by the onset of fluctuations that lead to kinetic
averaging. Thus, A; and A, are a single kinetic species at
longer times, and the scaled kinetics measured in the indi-
vidual A substates are identical (Steinbach et al., 1992). The
geminate peak 3 and the bimolecular peak S are governed
by averaged kinetics. With increasing temperature the point
where the A; and A, kinetics meet moves to shorter times,
and at 250 K the kinetics of the two substates become
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FIGURE 4 Rebinding kinetics of A, (solid curves) and A; (dashed
curves) substates of MbCO at 220 and 250 K. The A, data were scaled to
the A, data. Solvent: 75% glycerol/water (v/v), pH 9.1.
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identical in the entire time range covered by the experiment
(Fig. 4).

Monitoring in the A, band

The rebinding of photodissociated CO as measured in the A,
band shown in Fig. 5 displays a surprising behavior: We
would normally expect Ny(f) to reflect only rebinding and
thus to decrease monotonically with time. The actual be-
havior is different. At 230 K, for instance, Ny(#) decreases
until ~1 ms and then increases again. Because Ny(¢) gives
the fraction of unbound Mb molecules in the A, substate,
this behavior indicates that fewer CO molecules are bound
in the substate A, at 10 than at 1 ms. Thermal dissociation
is negligible at these temperatures; consequently, another
explanation is needed.

Interconversion among the A substates explains the non-
monotonic behavior. Before the photolyzing flash the A
bands represent the equilibrium population of the A sub-
states. Immediately after photolysis the A bands have dis-
appeared. With time, they reappear as the CO rebinds.
Because A, rebinds faster than A, its population initially
rises faster than that of A, and A, leading to population
ratios Ay/A; and Ay/A, that are larger than in equilibrium.
This situation prevails for times shorter than the inverse rate
of transitions between A and the other two substates. When
the time approaches the inverse interconversion rate, a net
population transfer from A, to A; and A, occurs until equi-
librium is established. The data in Fig. 4 show that the rate
coefficients for transitions between A, and A; are ~3 de-
cades faster than the observed transfer of population out of
Ag; A, and A; are thus in equilibrium and appear in the
exchange with A, kinetically as one species, A; + A;. At
times longer than the interconversion between A, and A; +
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FIGURE 5 Kinetics of sperm whale MbCO (pH 5.7) measured in the A,
band at v =~ 1966 cm ™. It represents the fraction of MbCO “missing” from
the A, substate owing to both rebinding and interconversion to other A
substates: (a) for 230-260 K, (b) for 270-300 K.
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Aj, all three A substates maintain their equilibrium ratios
until the ligands have completely rebound.

The fraction of the population transferred out of A, must
appear in the rate distributions fi(A) of A; and f5(A) of A;.
Furthermore, the interconversion should not show up in the
sum of the rate distributions of the three A bands or in the
rate distribution from the Soret band. Comparison of Figs. 2
¢ and 4 ¢ confirms that peak E shows up in the A, kinetics
but not in the Soret kinetics.

The rate distribution f,(A), attributed to the interconver-
sion Ay <> A; + A,, has been extracted from the data by the
global MEM and is shown in Fig. 6 for 230-300 K. As this
method uses kinetic data from all three A substates, it
provides the most precise measure of the position of peak 3.
The temperature dependence of peak E yields information
about the exchange mechanism. Peak E initially grows in
area with increasing temperature, indicating an increase in
the amount by which A is out of equilibrium with A; + A,
at the time the interconversion between them begins. Above
270 K the area of peak E decreases again, because most
ligands escape into the solvent. Rebinding from the solvent
is slower than the A state exchange and thus cannot produce
the nonequilibrium situation that is needed for observation
of peak E.

Gaussian fits to the exchange distribution f,(A) at each
temperature yielded the average rate coefficients for peak E,
which were then fitted by an Arrhenius relation, k(7T) = A
exp(—E/RT), with a temperature-independent preexponen-
tial. The results of the fits are summarized in Table 2. The
Arrhenius fits yield unphysically large preexponential fac-
tors. Such large values imply fluctuation phenomena in a
complex, cooperative system and indicate that the Arrhe-
nius relation is inappropriate (Bissler, 1987; Frauenfelder et
al., 1991; Stillinger, 1995). Consequently, we use the Ferry
relation (Ferry et al., 1953; Iben et al., 1989):

k(T) = Agp exp(—(EF/RT)Z], 4

and plot the logarithm of the rate coefficients versus (1000/
T)? in Fig. 7. The fit parameters are included in Table 2.
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98 -5 -4 -3 -2 -1
-log (A/s™)

FIGURE 6 Temperature dependence of peak E between 230 and 300 K,
determined by the global MEM. Peak E characterizes the interconversion
Ay A + A,
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TABLE 2 Temperature dependence of the interconversions A, <> A, + Az and A, < A3

Process T Range (K) log(A/s™") E (kJ/mol) log(Ag/s™") Eg (kJ/mol)
Ay A + A; 180-280 23 x4 95+ 10 11814 93*x04
A oA, 180-250 31*+4 120 = 10 164+ 14 99 +04

The data in Fig. 7 were fitted to an Arrhenius relation, k = A exp(—E/RT), and a Ferry relation, Eq. 4.

DISCUSSION AND CONCLUSIONS
Relevance of low-temperature infrared kinetics

Traditionally, ligand binding data on heme proteins were
collected with monitoring in the Soret band and analyzed by
a least-squares fit, assuming a single functional form for
g(Hg,) and a unique preexponential Ag,. However, the
Soret band involves a superposition of bands for the differ-
ent A substates with varying weights, depending on exper-
imental conditions (Ansari et al., 1987; Mourant et al.,
1993). The fact that the preexponential for rebinding to A,
differs markedly from that of the other A states (Table 1)
implies that the parameters obtained from the Soret data can
only approximately model the kinetics (Steinbach et al.,
1992).

We pointed out in the second subsection of Protein Sub-
states and Function that the overall association rates for CO
and O, binding increase when the pH is lowered. The pH
dependence is consistent with a model that connects the
association rates with the population in the A substates
(Frauenfelder et al., 1989; Tian et al., 1993). Fig. 1 d shows
that the A, substate, which becomes the dominant species at
low pH, has smaller geminate barriers and thus rebinds
faster than A; or A;. The smaller geminate barrier leads to
an increased overall binding rate coefficient (Steinbach et
al., 1991). The connection between the distal pocket struc-
ture and the changes in the barrier at the heme iron in the
different A substates needs further attention.

260K 220K 200K 180K 160K
T 1 T T T T
el Flash photolysis

log (x/sh

Pressure release

-6 I I I I I
0 15 20 25 30 35 40
(1000/T)2 (1/K2)

FIGURE 7 Characteristic rate coefficients for the interconversions A, <>
A, + A; (O, W) and A, & A; (D) from IR flash photolysis and pressure
relaxation experiments. Solid lines are fits of Eq. 4 to the data. l, Rate
coefficients excluded from the fits.

Interconversion between A, and A;

Here we have studied the interconversion process A; <> A,
above 200 K, using flash photolysis with IR monitoring.
Previously we had investigated this process below 200 K on
longer time scales with a pressure jump perturbation and
Fourier-transform IR monitoring (Iben et al., 1989; Scholl,
1991). The pressure jump studies showed that the intercon-
version A, <> A, is ~10° times faster than the interconver-
sion Ay <> A, + A;, demonstrating that A, and A, are in
equilibrium before interconversion from A, starts. This re-
sult is confirmed by the data in Fig. 4, which allow us to
estimate the interconversion rate coefficients k; = k3 +
K3,. Here, k;; and k5, denote the rate coefficients for the
transitions A; — A; and A; < A;. These data are shown in
Fig. 7 together with the rate coefficients from the pressure
studies (Iben et al., 1989; Scholl, 1991). The curves are fits
to both flash photolysis and pressure data using the Ferry
relation, Eq. 4, with parameters Ag and Ep. listed in Table 2.

Interconversion between A, and A, + A,

The present study of the interconversion process Ay <> A; +
A, with flash photolysis in the IR extends our previous
study with a pressure relaxation technique (Iben et al., 1989;
Frauenfelder et al., 1990). Because of its limited time res-
olution (¢ > 10 s), the pressure relaxation was able to
measure the interconversion only below 200 K, whereas the
IR flash photolysis yields data between 200 and 300 K with
microsecond time resolution. The IR kinetics and the pres-
sure relaxation experiments measure the rate coefficient k,
= Kgo; + K, Where ky; and k,, denote the rate coefficients
for the transitions A, — A; + A; and A, < A, + A;. With
Ko and the equilibrium ratio Ay/(A; + A;) the individual rate
coefficients can be determined.

Fig. 7 shows the average rate coefficients for this inter-
conversion as obtained from the two methods, plotted as a
function of (1000/7)2. Pressure relaxation actually shows a
fast exponential and a slow nonexponential component
(Frauenfelder et al., 1990). Inasmuch as the fast component
accounts for ~90% of the magnitude of the interconversion,
we use the rate coefficient of this component for the com-
parison with k,, from the IR kinetics data. The IR kinetics do
not reveal the details of the interconversion kinetics and are,
therefore, analyzed only in terms of an average rate coeffi-
cient (k). Fig. 7 shows saturation behavior at higher tem-
peratures, which we discuss below. Up to 280 K, however,
the average rate coefficients (k,) from both techniques can
be fitted well with a single straight line plotted as a function
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of (1000/T)>. The Ferry law, Eq. 4, consequently describes
the interconversion A, <> A; + A; over 8 decades in time.
The parameters Ag and Ep resulting from a fit to the entire
temperature range are listed in Table 2. The fact that the two
data sets match well implies that the rate with which A, and
A, + A; return to equilibrium is insensitive to the pertur-
bation that creates the nonequilibrium situation. An Arrhe-
nius fit to the data in Fig. 7 over the same temperature range
deviates significantly from the experimental data. This
Ferry behavior implies dynamics on a rough potential en-
ergy surface and demonstrates a similarity between proteins
and glasses (Iben et al., 1989; Frauenfelder et al., 1990).

Connections among structure, kinetics,
and function

In recent years substantial progress has been made in un-
derstanding the structural features that give rise to the
different A substate bands. Earlier x-ray (Kuriyan et al.,
1986) and neutron (Cheng and Schoenborn, 1991) struc-
tures had been refined with multiple positions of the bound
CO, suggesting different geometries of the heme-CO unit in
the different A substates. These structures showed large
bending angles « of the CO with respect to the heme normal
in the range 40°-60°. However, a linear Fe-C-O geometry
is electronically favorable and normally seen in small heme
model compounds (Li and Spiro, 1988). The large distortion
in MbCO was thought to arise from a repulsion between the
CO and the His-E7 imidazole sidechain. Molecular dynam-
ics simulations (Case and Karplus, 1978; Kuczera et al.,
1990; Jewsbury and Kitagawa, 1994) and Debye—Waller
factors (Kuriyan et al., 1986) indicate that the His-E7
sidechain is relatively mobile, and it is hard to rationalize
that that sidechain can exert enough force to bend the CO
away from the favored perpendicular geometry. Linear di-
chroism measurements gave independent information about
the geometry of the Fe-C-O unit and revealed much smaller
angles (Moore et al., 1988; Ormos et al., 1988). The most
recent studies reported o < 10° (Ivanov et al., 1994; Lim et
al., 1995). The discrepancy between the crystallographic
and spectroscopic observations still awaits a satisfactory
explanation.

Although vibrational spectroscopy cannot give direct
structural information, it is an exceedingly sensitive gauge
of interactions between ligand and protein. Therefore, once
the interactions are understood, very precise structural in-
formation can be obtained. Both vg. and vo have been
studied extensively. To explain the different A substate
frequencies, a variety of models have been proposed that are
based on the influence of electrostatic fields on the extent of
backbonding from the heme iron to the CO ligand. This
explanation implies an inverse correlation between vg.c and
Vco» @s has been observed experimentally (Tsubaki et al.,
1985; Paul et al., 1985; Li and Spiro, 1988; Park et al., 1991;
Ray et al., 1994). Recent Fourier-transform IR studies on
many distal pocket mutants support this model and give
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some insight into the nature of the A substates (Balasubra-
manian et al., 1993; Braunstein et al., 1993; Li et al., 1994).
Mutants in which His-E7 is replaced by an amino acid with
a small, aliphatic sidechain show only one A substate at the
position of A, (Braunstein et al., 1993; Li et al., 1994). This
result implies that the His-E7 sidechain in native MbCO
does not interact with the bound CO in the A, substate. The
A, population is pH dependent in native MbCO, consistent
with a protonation of the imidazole sidechain of His-E7.
This transition has a very low pK, for a histidine of ~4.5,
reflecting its low-polarity heme pocket environment (Wil-
bur and Allerhand, 1977; Fuchsman and Appleby, 1979;
Ramsden and Spiro, 1989). On protonation, the sidechain is
expected to extend out of the hydrophobic heme pocket into
the polar solvent. Indeed, the x-ray structure of MbCO at pH
4, where A, is enhanced, shows that the His-E7 sidechain
has swung out of the distal pocket (Quillin et al., 1992;
Yang and Phillips, 1995). Therefore, this open distal pocket
structure has been associated with the A, substate (Zhu et
al., 1992, Braunstein et al., 1993; Jewsbury and Kitagawa,
1994; Ray et al., 1994; Li et al., 1994).

Both A, and A, are present at higher pH. The imidazole
sidechain is uncharged for these two substates and resides
inside the heme pocket, as seen in the x-ray (Kuriyan et al.,
1986; Quillin et al., 1993), neutron (Cheng and Schoenborn,
1991), and NMR (Osapay et al., 1994) structures. In all
these structures A; and A, cannot be distinguished, and the
assignment of the structural differences on the basis of
spectroscopic data is still ambiguous. Oldfield et al. (1991)
proposed a model that explained the A substate lines by
electrostatic interactions between the CO dipole and four
different orientations of the dipole associated with the im-
idazole sidechain, arising from two ring-flip isomers of the
His-E7 sidechain in combination with two tautomers (H%'/
H<). Spiro and collaborators (Ray et al., 1994) assigned A,
and A, to two different tautomers of the distal imidazole,
with the proton on N, and N, respectively. In A, the
positive charge on the N proton is responsible for the lower
frequency of 1945 cm ™', compared with 1966 cm™" in the
absence of polar interactions. For A; they assumed a lone
pair interaction of N, with the CO 7" orbital, as originally
proposed by Maxwell and Caughey (1976). Because A, is
the dominant substate in solution at pH 5.7, one should
expect a protonated N, in the neutron structure of MbCO
(P2, crystals), but the proton is not present (Cheng and
Schoenborn, 1991). To reconcile their assignment with the
neutron data, Ray et al. (1994) argue that A; may be the
dominant substate in the monoclinic crystal. Indeed, in
crystals, a larger fraction of A; can be observed under
certain not well-understood conditions (Makinen et al.,
1979; Mourant et al., 1993). We have seen A, populations as
large as 90% in orthorhombic crystals that were partially
met-Mb (Mourant et al., 1993). Our preparations with mon-
oclinic crystals, however, never showed a dominant A;
component. The model of Ray et al. (1994) was recently
criticized by Jewsbury and Kitagawa (1994) on the basis of
their MD simulations. In these calculations the His-E7 im-
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idazole positioned itself such that the protonated nitrogen
pointed into the heme pocket, in disagreement with the
neutron structure. Protonation of N, led to a long-lived
interaction with the CO. This configuration was identified
with A;. The N; tautomer interacted more weakly with the
CO, and hence it was assigned to A,.

Our measurements of the interconversion rate coeffi-
cients give additional insights into the nature of the A
substates. The A, <> A, + A, interconversion is cooperative
and characterized by a steep temperature dependence, as
seen in Fig. 7. What molecular mechanism is responsible for
this transition? The His-E7 imidazole is buried inside the
heme pocket in the A, and A; substates. Transition to the A,
substate involves protonation of the His-E7 imidazole
sidechain. The chemical nature and the kinetics of protona-
tion—deprotonation processes of buried residues has been
elucidated by hydrogen-exchange experiments in great de-
tail. The chemical exchange of a labile proton in the protein
interior happens by either “local unfolding” or ‘“solvent
penetration” (Woodward et al., 1982; Englander and Kal-
lenbach, 1984). Measurements of the hydrogen exchange of
the His-E7 N_ proton in the high-pH (closed) form of
MbCN with NMR have been explained by a mechanism
involving a transient conformational change to an open state
that exposes the imidazole to the solvent (Lecomte and La
Mar, 1985; Lambright et al., 1989) in which the exchange of
imidazole NH protons is catalyzed by OH™ or H" (Wood-
ward et al., 1982; Lecomte and La Mar, 1985). The contri-
bution from water to the proton exchange is usually negli-
gible (Lambright et al., 1989). According to the low-pH
crystal structure, exposure of the imidazole side to the
solvent involves rotation of the distal histidine around the
C[a]—C[B] bond. To accommodate that motion, reorienta-
tion of Arg CD3, Asp-E3, the E helix, and the CD corner as
well as solvent molecules is necessary.

The steep temperature dependence of protein conforma-
tional changes implies that protonation—deprotonation
could become rate limiting at higher temperatures. With the
bimolecular protonation rate coefficient of imidazole in
aqueous solution at 298 K, 1.5 X 10" M~ s™! (Eigen,
1964), and a pK of ~4.5 of the His-E7 sidechain, we
estimate a deprotonation rate coefficient of ~5 X 10° s ! in
the transition A, — A;. The flattening of the temperature
dependence of k, observed above 270 K (Fig. 7) could,
therefore, reflect rate limitation that is due to protonation—
deprotonation. There is, however, another reason for this
behavior. Because the A substate transitions are cooperative
motions, they are strongly coupled to the solvent dynamics.
The relaxation rate of glycerol starts deviating markedly
from the Ferry relation above 270 K toward lower rates
(Bissler, 1987). Consequently, the A substate interconver-
sion rate K, follows this trend.

The interconversion rate coefficient of A, <> A5 is more
than 3 orders of magnitude faster than the A, <> A, + A,
exchange (Fig. 7); extrapolation of the A; <> A, rate to room
temperature yields ~1 ns. The much faster interconversion
suggests less structural reorientation than in the A, <> A, +
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A5 process. In the model of Jewsbury and Kitagawa (1994)
the A, <> A, exchange involves an imidazole ring rotation
and a protonation change. From NMR studies it is well
known that internal sidechains rotate very slowly. For ex-
ample, ring flips of buried phenylalanine sidechains in BPTI
have been observed on the millisecond time scale at 300 K
(Wagner and Wiithrich, 1986). A faster isomerization could
occur by transient rotation of the imidazole out of the heme
pocket. Such a motion should result in a rate similar to that
of A, < A, + A;. Although the model of Spiro and
collaborators (Ray et al., 1994) avoids isomerization, it also
involves a change in protonation between Ne and Nj in the
A, < A; exchange.

If a large conformational change is indeed necessary to
change the protonation of His-E7, the fast A, <> Aj; inter-
conversion cannot be associated with a protonation change.
Consequently, the most likely model for the two substates
has the proton attached to Ne in both A, and A;. Subtle
interactions between His-E7 and its environment lead to one
substate, A;, with less and one substate, A;, with more
interaction between the proton and the CO. Different
amounts of downshift of the IR lines from the A, frequency
arise from the different interactions. Such a model makes
sense in light of the following observations: The fraction of
A5 is significantly larger in some proximal mutants of
myoglobin (Abadan et al., 1995). It is difficult to see why
proximal modifications should affect the equilibrium be-
tween tautomer—isomer states of the distal imidazole. How-
ever, proximal changes can lead to a slightly altered con-
formation of the heme in the apoprotein, which can modify
the steric relation between the CO and the His-E7. Li et al.
(1994) have shown that a number of mutants at position
B10, which is in contact with the imidazole sidechain, have
a substantially increased A, fraction, with the leucine-to-
phenylalanine replacement showing only a single IR band at
1933 cm™!, the position of A;. Most likely, changes at
position B10 lead to a slightly modified structure of His-E7,
so an A;-type interaction between the imidazole and the CO
becomes more favorable.

In recent years several groups of researchers have inves-
tigated conformational changes in myoglobin after ligand
dissociation that reveal themselves in the shift of spectral
bands (band III, Soret) and in the changes of the rebinding
barriers at the heme iron (Steinbach et al., 1991; Nienhaus
et al., 1992, 1994; Tian et al., 1992; Lambright et al., 1993,
Jackson et al., 1994; Ansari et al., 1994; Panchenko et al.,
1995). These phenomena are associated with relaxations
involving the proximal side of the heme. Jackson et al.
(1994) modeled their band III relaxation data with a
stretched exponential and obtained parameters in agreement
with extrapolations of the low-temperature data by Stein-
bach et al. (1991). At 300 K (in glycerol-buffer solvent),
~90% of the shift of band III occurs on time scales shorter
than a nanosecond. By contrast, the interconversion time for
Ag <> A; + Az is 10 us, and extrapolation yields ~1 ns for
A, <> A;. Both A substate interconversion and proximal
relaxation are sensitive to solvent viscosity, indicating that
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they are not local but global motions (Young et al., 1991;
Ansari et al.,, 1994). The proximal relaxation, however, is
much faster. The different time dependencies reflect the
widely different free energy barriers between conforma-
tional substates in the various tiers of the substate hierarchy
(Frauenfelder et al., 1991).
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