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Binding of Ionic Ligands to Polyelectrolytes*

Dirk Stigter and Ken A. Dill
Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 USA

ABSTRACT Ionic ligands can bind to polyelectrolytes such as DNA or charged polysaccharides. We develop a Poisson-
Boltzmann treatment to compute binding constants as a function of ligand charge and salt concentration in the limit of low
ligand concentration. For flexible chain ligands, such as oligopeptides, we treat their conformations using lattice statistics.
The theory predicts the salt dependence and binding free energies, of Mg2` ions to polynucleotides, of hexamine cobalt(lll)
to calf thymus DNA, of polyamines to T7 DNA, of oligolysines to poly(U) and poly(A), and of tripeptides to heparin, a charged
polysaccharide. One parameter is required to obtain absolute binding constants, the distance of closest separation of the
ligand to the polyion. Some, but not all, of the binding entropies and enthalpies are also predicted accurately by the model.

INTRODUCTION

We consider the binding of charged ligands to polyelectro-
lytes in monovalent salt solutions. The strength of binding
of ligands such as proteins and other multivalent ions to
DNA often depends strongly on the supporting salt concen-
tration (Latt and Sober, 1967; Riggs et al., 1970a,b; Record
et al., 1976; Plum and Bloomfield, 1988; Mascotti and
Lohman, 1990). This indicates the importance of interionic
interactions. Manning (1978) has applied his counterion
condensation theory to the binding of multivalent ions to
polyelectrolytes. Wilson et al. (1980) used a Poisson-Bolt-
zmann model for the polyelectrolyte. They found that pre-
dictions are not very different from those of Manning's
approach, in fair agreement for the binding of Mg2+ and
spermidine3+ to double-stranded DNA. Other previous
work treats the slope of binding versus salt, alogKobs/
alogMsalt, but not the actual binding constant KObS itself.
These treatments range from counterion condensation and
thermodynamic theories (Record et al., 1976; Manning,
1978; Friedman and Manning, 1984; Anderson and Record,
1982, 1993) to the more detailed structural modeling of
protein-DNA and antibiotic-DNA complexes using the non-
linear Poisson-Boltzmann (PB) equation (Misra et al.,
1994a,b). In our work, we treat the binding equilibrium
using the PB theory instead of the counterion condensation
model, based on our view that PB is a more accurate model
of electrostatics (Stigter, 1995), starting from Mayer cluster
integrals for binary interactions. We do not treat the struc-
tural detail, as is done in finite difference PB methods
(Misra et al., 1994a,b). We find that the theory agrees well
with experiments on the binding to B-DNA, single-stranded
polynucleotides and heparin of small ions such as Mg2+ and
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Co (NH3)3 and of larger ions such as oligolysines and
polyamines.

Fig. 1 indicates the process of interest here, of binding
ligand L to polynucleotide P to form a bound complex B:

P + L ->B (1)

The measured binding constant is defined as KObS =

[B]/[L][P] where [L] is the concentration (molarity) of free
ligand, [P] is the concentration of free binding sites (nucle-
otides) on the DNA, and [B] is the concentration of the
bound complex. This binding constant KOb5 may depend on
salt concentration. It is standard practice to extrapolate KobS
to infinite dilution of ligand concentration, and to determine
the dependence on salt concentration, alogKobs/dlogMsalt.
Fig. 2 shows experimental results of Mascotti and Lohman
(1990) for the binding of oligolysines, with z = 2 to 10
charges per ion, to poly(U) as a function of salt concentra-
tion. Table 1 gives the slopes of the straight lines in fig 2,
alogKobs/alogMsalt, and the intercepts. In the next section
we develop microscopic theory in which the binding is
given by the pair cluster integral for the interaction between
a polyion and a ligand ion. For cases in which the ligand
itself is a chain molecule, we treat the conformational and
charge distributions using a polymer lattice model.

Fig. 1 shows the equilibrium binding of a z-valent ion LZ+
with solution concentration [L] to a sequence of z negatively
charged sites on a polyion with concentration [P] to form a
complex B. We treat the association as an ion exchange
reaction that formally releases z K+ counterions from the
polyion P and z Cl- counterions from the ligand L to the
bulk solution having salt concentration [KCI]. The starting
point of the theory is that ligand ions assume a Boltzmann
distribution in the electrostatic field around the polyelectro-
lyte, just as the salt ions do. Binding is then defined in terms
of the excess amount of ligand near the polyion compared
with the bulk ligand concentration. In the zero binding limit
of small multivalent ionic ligands such as Co (NH3)3+ this
approach requires only the electrostatic PB field around the
polyelectrolyte in the supporting monovalent salt solution.
In the case of polymeric ligands, such as oligolysines, we
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+ LZ+ + zCl-=

[L] [B]

FIGURE I Complex formation between z-valent ligand and polyelectrolyte.

must also account for the conformational entropy change of
the ligand ion upon binding.

BINDING THEORY

We model the polyelectrolyte as a cylinder with a radius a

A, and a uniform surface charge corresponding to one

negative charge e per b A in length, in a monovalent salt
solution. We neglect end effects, so the electrostatic poten-
tial qf around the cylinder has radial symmetry. The elec-
trostatic field +i(r) is obtained by integrating the PB equa-

tion using the method of Stigter (1975). We consider only
the cases of high ligand dilution. Hence the PB theory
should be applicable to the binding of multivalent ligand
ions, even though the PB theory is generally not a good
approximation if all counterions are multivalent. Because
the ligand is dilute, we can assume the electrostatic potential
field is unperturbed by the presence of ligand ions which
are treated as point charges, as are the small ions. Extensive
data of Mascotti and Lohman (1992) show that ligand
binding is not significantly dependent on the nature of the
cations or anions of the supporting electrolyte, except for
valency effects. This justifies the use of a nonspecific model
such as the PB equation.

Computing binding constants from
cluster integrals

What is the meaning of binding, and how should we com-

pute a binding constant for a charged ligand to a polyelec-
trolyte? Because electrostatic interactions are long-ranged,
at what distance from the polyion should a ligand be con-

sidered to be "bound?" Experimentally, binding constants
are determined from the ligand concentration in a polyelec-
trolyte compartment that is separated by a membrane from
a multicomponent solvent. Let us consider a solution con-

sisting of water (component w), polyelectrolyte such as

K-DNA (p), monovalent supporting salt KCl (s), and
ligand LClI (1). The polyions cannot pass the membrane, so

in the solvent compartment we have only components w, s,

and 1. In the notation of Fig. 1 the concentrations in the
solution compartment are cp = [P], cs = [KCl]. In the
solvent compartment concentrations are denoted c!, i.e., c*
for KCl and cl = [L] for the free ligand. The difference in

FIGURE 2 Binding constants versus monovalent salt concentration for
binding of oligolysines to poly(U). Numbers indicate ligand charge z. From
Mascotti and Lohman (1990).

ligand concentration between the compartments, c - c =

[B] gives the binding constant

[B] cl-cl
K0bs =os[L][P] c*cp

How do we compute this quantity from theory? As de-
fined in Eq. 2, Kob, is the preferential interaction coefficient
between polyelectrolyte and ligand. Such interaction coef-
ficients have an exact interpretation in terms of statistical
mechanical cluster integrals. This interpretation is based on
the work by McMillan and Mayer (1945) who applied the
pressure virial expansion of nonideal gases to the osmotic
pressure in solution/solvent membrane equilibria, and de-
veloped the virial coefficients as cluster integrals. Hill
(1958) extended this approach with the cluster integral
expansion for the distribution of an equilibrium component
in multicomponent membrane equilibria. Stigter and Hill
(1959) applied the results to the salt distribution in a Don-
nan membrane equilibrium such as is considered here, but
without ligand component 1, and with colloidal spheres as
polyions. These differences, however, do not change the
formalism. The appropriate virial expansion for the ligand

TABLE 1 Experimental binding data of z-valent oligolysines
to poly(U): intercept at 1 M salt and slope of logK0b,
versus 1ogM,alt
z Intercept* Slope* Slope#

2 0.26 + 0.24 -1.68 + 0.20 -1.75
3 0.36 + 0.24 -2.30 + 0.19 -2.54
4 0.20 0.22 -3.10 0.21 -3.17
5 0.37 + 0.22 -3.76 + 0.22 -3.65
6 0.49 + 0.22 -4.36 + 0.22 -4.18
8 0.46 + 0.24 -5.95 + 0.25 -4.98
10 0.77 + 0.27 -7.02 + 0.34 -5.47

*Mascotti and Lohman (1990).
#From Fig. 7, dashed lines.

- zK+

[P]

Lz+

+ zK+ + zCl-

logKobs

[KCI]

-2.0 -1.0 0
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distribution between the compartments is

C1 +
-=I *A.+- Tp, ji-l1 constant (3)

when the ligand, salt, and solvent components exchange
freely through the membrane and have fixed activity in the
solvent and solution compartments. The virial coefficient A
in Eq. 3 depends on the potential of mean force W between
one polyion and one z-valent ligand ion in the limit cp ->0
(in solvent):

A = C (e-W/kT l)dV (4)
distance into solution

The constant C in Eq. 4 depends on the units of V and of the
concentrations in Eq. 3. Comparing Eqs. 2 and 3 shows that
KObS = A, so to compute binding constants we must obtain
A through use of Eq. 4. Although the binary cluster integral
for KObS = A in Eq. 4 is exact, approximations enter when
we specify the domain of integration, and when we use the
PB theory to obtain the local electrostatic potential in
W = -zelf.

We derive the constant C in Eq. 4 by first considering the
bound ligand [L]Kobs = [B]/[P] in mol of complex, B, per

mol nucleotide, P, or in number of bound LZ+ ions per

binding site. Because the cylinder has radius a A and the
length per binding site is b A, we have

[B]-2I
[P] = [L] NAV1O 27j1 (5)

II = [b (eZ4 - 1)2'nr dr - ra2b (6)

where = leq4/kTI. The factor NAV10-27 in Eq. 5 converts
the units of [L], mol/l, into number of ligand ions per A3, the
reciprocal of which are the units of II. The integration is
over the entire double layer outside the cylinder, with radius
r from a to oo; with W = so for r < a, the term wra2b accounts
for the volume of the cylinder per binding site. Dividing
both sides of Eq. 5 by [L] yields the ligand binding constant

[B]

Kobs = [L] = NAvIo 271 (7)
[L][P]

The units of KObs are 1 per mol of binding sites.
The integral in Eq. 6 gives the integrated excess concen-

tration of ligand ions. Hence, it is in the nature of the
Poisson-Boltzmann double layer distribution that some

small fraction of the ligand ions that are defined as "bound"
will not necessarily be spatially close to the polyelectrolyte.
This is shown in Fig. 3, which is the standard view of the
way in which a polyelectrolyte molecule perturbs the local
small ion concentrations in a KCI solution. Compared with
the bulk concentration [KCI] there is an excess of K+
counterions (horizontal shading) and a deficit of Cl- ions

FIGURE 3 Distribution of small ions near negatively charged surface.

(vertical shading), but they neutralize the charge on the
polyion only in aggregate when they are integrated over all
space. Thus counterion "binding" refers to this enhance-
ment of K+ concentration integrated over space. The curves

in Fig. 3 indicate that the local concentration of K+ is given
by the Boltzmann distribution [KCl]eO. Now consider add-
ing a small concentration of the ligand, LCl,. As with K+,
the concentration of the LZ+ ions will obey a Boltzmann
distribution. The excess concentration of ligand near the
polyion (relative to the bulk) is [L](ezO - 1), where [L] is
the concentration in bulk solution far from the cylinder
where (A = 0. The integral over all space of this excess is
defined as "bound" ligand in Eqs. 5 and 6.

Binding constants for chain molecule ligands

Now if the charged ligand molecule is a flexible chain
instead of a point charge, it introduces additional complex-
ity, for two reasons. First, a flexible ligand will lose con-

formational entropy on binding. Second, a flexible ligand
will have its charge distributed along the chain, and there-
fore different parts of the ligand will be in different parts of
the electrostatic potential field around the polyion. Each
charge on the ligand is at a different electrostatic potential.
We suppose flexible ligands adopt an ensemble of chain
configurations and we compute Boltzmann averages. We
treat the electrostatics as before, assuming the polyion is a

rod with a uniform surface charge and a PB ionic atmo-
sphere around it. However, now the polyelectrolyte rod is
surrounded by a cylindrical lattice containing an ensemble
of flexible ligand conformations that are Boltzmann
weighted in the PB field around it.
We consider the binding of a linear positively charged

polymeric ligand, consisting of n segments, to a negatively
charged polyelectrolyte. Some or all of the ligand segments
may carry one protonic charge. We compute the conforma-
tional ensemble of an isolated bound ligand using the one-

dimensional Ising model matrix method, first applied to

[KCL]
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polymer adsorption by Rubin (1965), and reviewed by Dill
et al. (1988).
A cross-section of the polyion rod and surrounding ligand

lattice is shown in Fig. 4. The shaded circle represents the
central polyelectrolyte rod with radius a. The salt solution
around the rod is divided into concentric layers of lattice
cells. Each cell has a volume vo and accommodates either
one segment of the ligand or else solvent. We assume a
pseudo-cubic lattice with a thickness c = v113 for each
successive layer, numbered 1, 2, . . . i, n from the inside
out. Because all lattice sites have the same volume, the
number of lattice sites in layer i is proportional to the radial
distance ri of the cell centers from the polyelectrolyte axis

r, = a + i -2 c (8)

In general, conformations are built up by starting with the
first segment of the ligand molecule in a cell in layer i and
propagating the chain, segment by segment, through the
lattice, sideways in the same layer, outward from layer i into
layer i + 1 or, if i > 1, inward from layer i into layer i - 1.
If z, = 6 is the coordination number of the pseudo-cubic
cells, each cell in layer i has zc- 2 neighbors in layer i,
rj+1/r1 neighbors in layer i + 1 and, when i > 1, r1 l/ri
neighbors in layer i - 1.
We represent the distribution of segment k throughout the

layers i = 1 to n by the vector

v(k) = [v1(k) v2(k) . . vi(k) . . v.(k)] (9)

Each step direction is intrinsically equally probable, if we
neglect ligand intrachain excluded volume. Thus, given v(k)
by Eq. 9, the distribution for segment k + 1 is a conse-

quence of radially outward steps from segment k, vi,I(k +
1) = (rj+j1/r)vj(k); lateral steps parallel to the polyion sur-
face, v1(k + 1) = (zc- 2)vi(k); and, for i > 1, radially
inward steps, vi- (k + 1) = (rj_j1/r)vj(k). Every component
of v(k) has a similar propagation relation. But the step
directions are biased by local interaction potentials. For
example, if segments are held in the first layer by a short
range adsorption potential OkT, compared with segments in
the bulk solution, the probability of a segment moving into
the first layer is multiplied by the Boltzmann factor e0.
Similarly, for a charged ligand the step of a protonated
segment into layer i with electrostatic potential 4i is favored
by the Boltzmann factor eci where (i = le&fi/kTI is the local
PB potential in layer i. In sum, v(k + 1) can be generated
from v(k) by multiplying v(k) by the n X n propagation
matrix

(z, - 2)eo' r2e 2

ri
0

-e+' (z, -2)e2 -e3
'2 r2

0 r2e (z, -2)e
r3

O O ~~~~~~r3e+
r4

0

0

r4(z4
r3

(Z,c-2)e 14

1

(10)
In Eq. 10 any short range adsorption potential 0 is included
in 40. Taking the relation

v(k) = v(k - I)G11

down to the first segment we find that

v(k) = v(1)Gk-I

(1 1)

(12)

The matrix Gn can also be used for uncharged chains, for
which the electrostatic potentials are j = 0 for all i.
Equation 12 gives the distribution function for segment k
throughout all the lattice layers as a function of the distri-
bution function of segment 1. For example, if for a charged
ligand v(l) = [e+' 0 0.. .0], the vector v(n) = v(l)G'-'
comprises all ligand conformations anchored with the first
segment at the surface of the polyelectrolyte, in layer i = 1.
The total number Z1 of such adsorbed conformations is the
sum of all components of v(n), which is given by the matrix
product of v(n) with the n-dimensional unit column vector
Un = col[I 1. . .1]

Z, = E v1(n) = v(n) un = v(1)Gnnu-
i=l

(13)

FIGURE 4 Cylindrical lattice for ligand chain conformations around
polyelectrolyte rod with radius a (shaded area), with cell layers i = 1, 2,
3, . . n of thickness c each and center distance ri = r,, r2, . . from axis.

Z1 is the canonical partition function of a chain having a
distribution v(1) of segment 1.

There are two different types of binding experiments.
Because they measure somewhat different properties, they
require different theoretical treatment. First, as in the ex-
periments of Mascotti and Lohman (1992, 1993), a fluores
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cent probe in the ligand is quenched when it is sufficiently
close to the polyion. We call this "localized binding." Ac-
cording to this type of measurement, "binding" refers only
to ligands in very close proximity to the polyion. Second,
binding may be the excess ligand concentration observed in
a membrane experiment as described above. In that case,
molecules will also be "bound" that are more distant from
the polyion. We call this "delocalized binding." The latter
procedure is closely related to Eq. 7 and to the Gibbs
definition of adsorption.

Localized binding

Mascotti and Lohman (1990, 1992, 1993) monitored the
binding of oligolysines by the fluorescence quenching of
tryptophan that was incorporated as the second residue of
the ligand chain. To treat this case, we divide a ligand chain
into n segments, one for each of the lysines and one for the
tryptophan residue. A ligand is considered bound when its
tryptophan, the test segment, resides in layer i = 1. We treat
the partition function of the bound ligand, Zbound, as the
product of two components: Zshort for segment 1 plus the
tryptophan and Zlong for the remainder of the chain, given
the tryptophan in layer 1.

Table 2 shows the charge distribution on the ligands used
by Mascotti and Lohman (1990). The peptides with z = 2
and 5 charges have a terminal carboxyl group so the last
lysine residue carries no net charge. The other peptides have
C-terminal amides. In all cases the first, N-terminal, lysine
residue is doubly charged. To determine the influence of the
tryptophan marker Mascotti and Lohman (1992) have com-
pared the binding to poly(U) of oligolysines (z = 6) con-
taining one, two, and three tryptophan residues. The exper-
iments give approximately eo = 3 so we use this value in
Eq. 14 for Zshot. Hence the partition function for the short
chain K2+W common to all ligands is

ZShO. = (z, - 2)e2'+0 + e(14)

where the Boltzmann factor e6 accounts for the tryptophan
in layer 1, and the factors e24" and e22 account for the
doubly charged lysine, K2+, in layer 1 or 2. Table 2 gives
expressions for ZIound = ZshortZlong for the cases of Mas-
cotti and Lohman given the tryptophan in layer 1, that is,

TABLE 2 Binding of z-valent peptides to poly(U): partition
function for bound n monomer ligands

Peptide* z n Partition function Zbound

.2+WK- 2 3 ZshO,v(l) G2 (4) = 0) u2

.2+WK+ 3 3 Zshortv(l) G2 u2
[(2+W (K+)2 Z4 4 shortV() G3 U3

k2+W(K+)3K- 5 6 ZshortV(l) G3 G5(4 = 0) U5
K2+W (K+)4 6 6 ZShO1V(l) G4 U5
K2+W (K+)6 8 8 Zsboflv(l) G6 U7
K2 W (K )8 10 10 Zshortv(l) G8 us

*K, lysine; W, tryptophan.

with v(l) = [1 0 ... 0] in Ziong. The matrix G.(4 = 0) in the
expressions for z = 2 and 5 accounts for the endchain
uncharged segment; it equals the matrix Gn of Eq. 10 with
all /i = 0. The calculation of the binding constant KObS from
Zbound will be given in the next section.

Delocalized binding

Now we apply the same matrix approach to the delocalized
binding experiment, where some ligands are considered
bound even when they are distant from the polyion. A chain
with a protonic charge e on each of its n segments is
considered bound whenever it is in excess over the bulk
ligand concentration. We compute the total partition func-
tion as a sum of components Z(j), which is the number of
configurations of a chain having at least one segment in
layer j and no segment in earlier layers, 1, 2, 3, ..., j - 1.
Let us first consider the component Z(1), the number of
chain configurations for which at least one of the chain
segments is in layer 1. We evaluate Z(1) by further dividing
the conformations into subgroups

Z(1) = Z, + 2 + * * * + Zi + ... + Zn (15)

where Z1, given by Eq. 13, counts all chain conformations
with segment 1 in layer 1, Z2 counts all chain conformations
with: 1) segment 2 in layer 1 and 2) segment 1 not in layer
1. There are no conditions on segments 3 to n (except
connectivity). Condition (2) excludes from Z2 conforma-
tions already counted in Z1, namely those with both seg-
ments 1 and 2 in layer 1. Z3 counts conformations with 1)
segment 3 in layer 1 and 2) segments 1 and 2 not in layer 1,
but with no restrictions on segments 4 to n, etc.

In this way we consider for each term Zi in Eq. 15 two
subchains, the front part consisting of segments 1 to i - 1,
and the back part consisting of segments i to n. The back
part may have all conformations of an n - i + 1 segment
chain with its first segment in layer 1. Following Eq. 13 this
number is

(16)

where, as in Eq. 13, the subscripts ofG and of u indicate the
size of the matrix or vector. Each of the conformations in
Eq. 16 may be combined with any one of the conformations
of the front part of the chain:

i Z-ln-i+l (17)

We now formulate Zi*-I for the i - 1 segment subchain
with the condition that none of its segments is in the first
layer. Because the subchain is connected to segment i in
layer 1, segment i - 1 must be in layer 2 and has, therefore,
the distribution vector

v i[r2 o°e] (18)
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Mathematically, it is most convenient to compute the
partition function by working backward from segment i - 1
in layer 2 to chain segment 1 in some outer layer. Hence,
given vi-1 by Eq. 18, the desired partition function is
generated by

-7*. = v, G*1il2 U,-, (19)

provided that the matrix GW Ipropagates the chain only in
layers 2 to i, but not into or out of layer 1. This (i - 1) X
(i - 1) matrix is formed from the i X i matrix Gi, Eq. 10,
by eliminating the first column and the first row:

Exponentiating and multiplying by the bulk ligand concen-
tration [L], the excess concentration of ligand bound in layer
j is

L]e"j/kTZ=[L] (j) - Zbulk
Zbulk

(25)

To derive KObS we proceed as in Eqs. 5 to 7, but replacing
the integration in Eq. 6 by a summation over the lattice cross
section. The result is

Kobs = NavlO-27b I Z(j) ZbulkA
j Zbulk

(26)

(Z - 2)e -er3#23
r2

0

(Zc-2)e2 e
r3

0 r3 .3
r4

(Z - 2)eX

where Ai is the cross-sectional area of lattice layerj, see Fig.
4,

(20)

Equations 15-19 now yield the total number of conforma-
tions of an n segment chain having at least one of its
segments in layer 1

Aj = IT [(a + jc)2- (a + (j -l)c)2]

In all cases treated in this report we find that Zbulk may be
neglected compared to Z(j). Furthermore, terms with j > 1
do not contribute significantly in Eqs. 22 and 26. In other
words, only binding in the first layer is significant. There-
fore, good approximations of Eqs. 22 and 26 are

Zbound = Z(1)

and

Z(M) = {[re O.. .01G*Iiuii}
Kobs Navl0-27b ZbUl 1(a + c)2 a2]

Zbulk
(29)

(21)
It is customary (Mascotti and Lohman, 1992, 1993) to

derive a molar binding free energy from the expression:
We then compute the number Z(2) of chain configura-

tions without any segment in layer 1, but at least one

segment in layer 2. We use the same method as for Z(1).
The result is the same as Eq. 21 but with e+' replaced by e+2,

r2/rIe02 by r/r2e'3, G by G*, and G* by the matrix G**
obtained from G by eliminating columns 1 and 2 and rows

1 and 2. In the same way Z(j) can be derived from Z(j - 1).
We compute successive terms in the converging series for
the excess number of conformations bound in successive
layers with the sum

Gobs =-RTInKobs (30)

The temperature dependence of Gobs gives the enthalpy and
entropy of binding, HObs and SobS, respectively.

a(GObS/T)

H.bs = at constant salt concentration

TSobs = -Gobs + Hobs

(31)

(32)

COMPARISON WITH EXPERIMENTS

Zbound E [Z(j) Zbulk] (22)

j=l

We now compute the binding constants, KObs, from this
partition function. In the bulk solution, at potential 0 = 0,
a ligand with n segments may assume Zn- different con-

formations:

Zbulk = zn-1 (23)

The binding free energy of ligands in layer j is with Eq. 22

Afj = kT1n Z(j) Zbulk (24)
Zbulk

We compare the theory against several sets of experimental
data involving various ligands binding to three types of
polyions: B-DNA, single stranded polynucleotides, and
heparin. Our models depend on two parameters: the radius
a of the cylinder and the axial distance b between the fixed
charges. For B-DNA we take a = 10 A, from the known
distance between the phosphate charges and the helical axis,
and b = 1.685 A, from the known axial distance between
phosphate charges. These are structural dimensions; we

compare results obtained using those values to results ob-
tained using dimensions from kinetic experiments (Schell-
man and Stigter, 1977). Diffusion and intrinsic viscosity of
B-DNA are consistent with a shear surface at a = 12 A;
electrophoresis of B-DNA in NaCl solutions indicates that

(27)

(28)
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about 27 percent of the Na+ counterions are inside the shear
surface, giving b = 1.685/0.73 = 2.308 A. Because of the
simplicity of the model, it is not clear which set of param-
eters is better justified, so we use both sets of parameters in
the theory to determine the sensitivity of the theory to them.
Next, using B-DNA as a model, we assume a = 7 A and
b = 3.37 A for single stranded polynucleotides and compare
also with the parameter set a = 6 A and b = 4 A. Heparin
is a sulfated polysaccharide, for which we use a = 6 A and
one negative charge per b = 2.9-A rod length, based on data
cited by Mascotti and Lohman (1995).

Binding of Mg2+ to polynucleotides

The binding of Mg2+ to poly(A), poly(U) and their complexes
was measured by Krakauer (1971, 1974), and reinterpreted by
Record et al. (1976). In the presence of 0.029M Na+, Eq. 7
with z = 2 gives logKobs = 2.61 although the experiments
show logKobs = 2.9 ± 0.1 to 3.7 ± 0.1. For the slopes, theory
predicts alogKbs1alogMswt = -1.72 in comparison to exper-
imental values of alogK0bJalogM,t = -1.2 + 0.1 to -1.7 ±
0.1, depending on the polynucleotide. These predictions are in
reasonable agreement with the experiments.

Binding of Co(NH33+ to B-DNA

Fig. 5 compares Eq. 7 with experiments for the binding of
Co(NH3)3+ to calf thymus DNA by Plum and Bloomfield

4.5

4

3.5

logKobs

3

2.5 _-

2

(1988). The experimental binding constants are closer to the
predictions with the kinetic than with the structural param-
eters. This may be due to the large size of the Co(NH3)3+
ions because the fraction of counterions inside the shear
surface ofB-DNA decreases with increasing counterion size
(Schellman and Stigter, 1977). The salt dependence of bind-
ing in Fig. 5 is predicted by either set of DNA parameters:
The theoretical curves in Fig. 5 are nearly straight lines,
with average slopes -2.69 for the dashed curve and -2.39
for the solid curve.

Binding of oligolysines to polynucleotides

Figs. 6 and 7 compare the theory with the experiments of
Mascotti and Lohman (1990). We found that without the
lattice modeling of the chain entropies, the slopes of the
binding constant with salt were given correctly by Eq. 7, but
the absolute binding constants (not shown) were too high:
for the z = 10 ligand the error was more than a factor of
1000. Fig. 6 shows the full theory, including the chain
entropy, which is much better, but the theory now somewhat
underestimates the experimental binding constants. One
possible source of this error is the simplification introduced
by our use of a lattice cell size of c = 6.2 A, which implies
that the ligand charges placed at the cell centers in layer 1
are a + c/2 = 10.1 iA from the rod axis. It is likely that
lysine charges may approach poly(U) more closely than
this. We then chose to allow the charge placement within
the lattice cells to be an adjustable parameter, because the
lattice itself is an arbitrary construct. When the ligand

2 '
-2.5 -2 -1.5 -1 -.5 0

FIGURE 6 Binding constants of oligolysines to poly(U) versus mono-

valent salt concentration. Full lines, experimental data from Fig. 2. Dashed
lines, theory from Eq. 14 and Table 2 with ligand charges in cell centers.
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FIGURE 5 Binding constants of Co(NH3)6 to B-DNA versus monova-

lent salt concentration. Crosses: experiments by Plum and Bloomfield
(1988) on binding to calf thymus DNA. Full curve, theory from Eq. 7 for
kinetic model of B-DNA. Dashed curve, theory from Eq. 7 for structural
model of B-DNA.
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FIGURE 7 As for Fig. 6, but with ligand charges shifted 0.8 A inward.

charges are placed 0.8 A further inward from the cell center,
Fig. 7 shows that the theory predicts well the absolute
binding constants to poly(U).

The predicted slopes of KObs with salt, from the dashed lines
in Fig. 7, are given in the last column of Table 1. The agree-

ment with the Mascotti and Lohman data is within experimen-
tal scatter, except for z = 8 and 10 where the high salt
concentration probably makes the PB equation less reliable.

Although the free energies are well predicted by the
theory, Fig. 8 shows that the enthalpy and entropy for
pentalysine binding to poly(A) are also well predicted, but
not so accurately for binding to poly(U). The solid curves

are predictions from Eqs. 30-32, assuming that the ligand
charges are located 0.8 A inward from the cell centers, as in
Fig. 7 above. Part of the discrepancy is due to the large
uncertainty of the experimental values derived from the
dependence of Kobs on temperature, about 1.5 kcal/mol for
both Hb and TSb.
The theoretical results do not depend strongly on the

parameters of the polynucleotide model. Changing the cyl-
inder radius and the axial charge distance from a = 7 A and
b 3.37 A to a = 6 A and b = 4 A does not influence the
fit with experiments in Figs. 7 and 8 significantly, provided
that the lysine charges are placed 1.0 A, instead of 0.8 A,

inward from the cell center.
Detailed analysis of the various contributions to the par-

tition function reveals that the bound lysine residues mainly
occupy sites in the first lattice layer. This shows that the
dominant structures of bound oligolysines are wrapped
around the poly(U) strand or at least closely held by it.

1.4 -1.2 -1.0 -.8 -.6 -.4

logM,.1,

FIGURE 8 Thermodynamic functions versus monovalent salt concentra-
tion for binding of pentalysine to poly(A) and to poly(U) at 25°C. From top
down data for entropy TSb, for enthalpy Hb, and for free energy Gb. Dashed
lines, experiments by Mascotti and Lohman (1992, 1993) for binding to

poly(A) (*) and to poly(U) (0). Solid lines, theory for model of Fig. 7.

Polyamine binding to DNA

By equilibrium dialysis, Braunlin et al. (1982) have studied
the binding to T7 DNA of the following polyamines: sperm-

ine, NH2-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2; sper-
midine, NH2- (CH2)3-NH-(CH2)4-NH2; putrescine,
NH2-(CH2)4-NH2-

The experiments were carried out at pH 6.5 and with
various NaCl concentrations. We compare with the struc-
tural model of B-DNA, i.e., using a = 10 A and b = 1.685
A. We divide the amines into charged segments and assign
one charged segment to a cell, with n = 4 for spermine, n =

3 for spermidine, and n = 2 for putrescine, assuming a cubic
cell size of c = 4.37 A. In Fig. 9 Eq. 29 for delocalized
binding, with the ligand charges in the cell centers, is
compared with experiments by Braunlin et al. (1982). The
slopes are predicted within experimental error. The predic-
tions of KObs for spermine and spermidine are very good, but
low for putrescine.

Binding of tripeptides to heparin

We consider the experiments by Mascotti and Lohman
(1995) on the binding to heparin of L-lysyl-L-tryptophanyl-
L-lysine carboxylate (KWK - CO2 = K2+WK-) and L-

arginyl-L-tryptophanyl-L-arginine carboxylate (RWR-C02
= R2+WR-). The ligand binding was monitored through
spectral change of the tryptophan residue. Therefore, the

TSb
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Hb

I-I
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2071Stigter and Dill



Volume 71 October 1996

4.5

logKobs \\ t

3 +

2.5

2~~~~

2 Il
-2 -1.8 -t6 -1.4 -2 -1.0 -.8 -.6

logMs.i,

FIGURE 9 Binding constants of polyamines to T7 DNA. From left to
right putrescine, spermidine, spermine. Crosses, experiments by Braunlin
et al. (1982). Theory for structural model of B-DNA. Solid curves, theory
from Eq. 29 with ligand charges in cell centers.

theory is formally the same as developed for the localized
binding of oligolysines to polynucleotides in Eq. 14 and
Table 2, with z = 2 and n = 3 in this case. As before we
take a pseudocubic lattice with coordination number zc = 6
and layer thickness c = 6.2 A, and put the peptide charges
0.8 A inward from the cell centers, as in Fig. 7 for the
binding of oligolysines. Because there is no experimental
information on the adsorption potential of tryptophan to
heparin we choose a value for 0 in Eq. 14 that gives the best
agreement with experiment.

In Fig. 10 theoretical binding constants are compared
with experimental values. Agreement within experimental
error is obtained with 0 = 1.8kT for K2+WK- and with 0 =
2.lkT for R2+WR-. Figs. 11 and 12 compare thermody-
namic data derived from binding constants and their tem-
perature dependence, using in the model computations the
same 0 values as in Fig. 10. For binding of the lysine
peptide to heparin in Fig. lIthe agreement between theory
and experiment is within experimental errors which are 1.5
kcallmol for Hb and TSb. For binding of the arginine peptide
in Fig. 12 the discrepancies between theory and experiment
are well outside the experimental uncertainties of Hb and
TSb. In agreement with the suggestion of Mascotti and
Lohman (1995), we find that arginine binds to heparin with
greater affinity than lysine.

DISCUSSION

What is the physical basis for binding? Record et al. (1976)
have said that counterion release is ". . the dominant factor

4.4

42 H

4

3.8 p

°cOKobs
3.6 H

3.4 V

3.2 V

3

-2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3

FIGURE 10 Binding constant of tripeptides to heparin versus monova-

lent salt concentration, with asterisks for KWK-C02 and crosses for
RWR-C02. Dashed curves, experiments by Mascotti and Lohman (1995).
Solid curves, theory from Eq. 14 and Table 2 with = 1.8 kT for
KWK-C02 and 0 = 2.1 kT for RWR-C02.

driving complex formation between these charged ligands
and the nucleic acid. . ." That is, because electroneutrality
must be preserved, Record et al. (1976) recognized that
there is an ion exchange process: upon binding of a ligand
ion LZ+ the polyion must release counterions with total
charge z+ from its ionic atmosphere to the bulk salt solu-
tion. This assumes that ligand binding does not perturb the
distribution of coions. However, although counterion re-

lease describes the result of the electroneutrality constraint,
it is not a good description of the driving force, which we

regard as being the electrostatic attraction between poly-
electrolyte and ionic ligand.
One puzzle about the binding of ionic ligands to poly-

electrolytes is why the binding isotherm is so well described
by the theory of McGhee and von Hippel (1974) for the
adsorption of ligands that, except for excluded volume, do
not interact. That is, two ions bind to the polyion as if they
were independent, rather than repulsive. We believe this
arises because the binding of each ion is an electroneutral
displacement, so the ion atmosphere of the polyion is not
altered by the binding of each ion.

According to our theory, conformational entropy op-

poses the binding of chain ligands, leading to binding
constants around 104 - 105 (see Fig. 7). Good tight-
binding drugs such as DAPI, Hoechst 33258, Netropsin
(Misra et al., 1994a,b) have binding constants 3 to 4
orders of magnitude higher than this, perhaps because
they are more rigid or have more specific interactions
than we have treated here.

I
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FIGURE 11 Thermodynamic functions versus monovalent salt concen-
tration for binding of KWK-CO2 to heparin at 25°C. From top down data
for entropy TSb, for enthalpy Hb, and for free energy Gb. Dashed lines,
experiments by Mascotti and Lohman (1995). Solid lines, theory for model
of Fig. 10.

Our theory has the following limitations. First, we are
using the PB theory which is approximate, and does not
handle multivalent counter ions well. It has been found that
for properties most dependent on the "far" field behavior
distant from the charged rod, results in monovalent salt
solutions may not be particularly sensitive to flaws of the
model. For example, predictions by the PB theory of the
electrostatic repulsion between straight rods of B-DNA in
monovalent salt solutions (Stigter, 1977, 1987) are in ex-
cellent agreement with experiments on pair repulsions be-
tween short sections of DNA in 1) sedimentation (Brian et
al., 1981), 2) light scattering (Nicolai and Mandel, 1989;
Fixman, 1990; Stigter and Dill, 1993), and 3) probabilities
of knot formation in coiled DNA (Vologodskii and Cozza-
relli, 1994). However, ionic binding to polyelectrolytes de-
pends on attractive interactions whose short range makes
them much more sensitive to details of the model. Specific
interactions might become significant, and the geometric fit
of oligolysine ligands and polynucleotide might affect the
binding constant. Errors might also arise from our assump-
tion that the potential field tr depends only on the radial
distance from the rod, and not on angular positions around
the rod. Some of these uncertainties are probably reflected
in the adjustable parameter of the binding theory: the dis-
tance of closest approach between ligand charge and poly-
electrolyte. Experiments by Mascotti and Lohman (1993)
show that binding of oligolysines depends significantly on
the type of polynucleotide.
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FIGURE 12 Same as Fig. II, but for RWR-CO,.

CONCLUSIONS

We have presented a simple theory for the binding of ionic
ligands to polyelectrolytes modeled as charged rods. It is
based on the use of the Poisson-Boltzmann theory for the
electrostatic potential around charged rods. The dilute li-
gand binding is affected by the electrostatics of the rod
surrounding by its electrolyte solution. When the ligand
itself is a chain, having some flexibility, we account for the
conformational changes on binding using a lattice model for
chains near surfaces. This model is very simple because it
does not incorporate the structural details that are included
in finite difference PB methods; nevertheless it works re-
markably well. For small rigid molecules binding to poly-
ions, the theory predicts well the slope of binding constant
with salt, and the absolute binding constants themselves,
without adjustable parameters. For flexible ligands, free
energies are also in good agreement with experiment, pro-
vided we use the distance of closest approach of the ligand
to the rod as the one adjustable parameter. Some enthalpies
and entropies of binding are given well by the theory, but
others are not.

We thank Drs. T. M. Lohman, M. T. Record, Jr., and J. A. Scheilman for
comments on an earlier version of this paper.
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