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Finger-Like Lysing Patterns of Blood Clots
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ABSTRACT One-dimensional modeling of fibrinolysis (Senf, 1979; Zidansek and Blinc, 1991; Diamond and Anand, 1993)
has accounted for the dissolution velocity, but the shape of the lysing patterns can be explained only by two- or three-
dimensional models. Here we report on finger-like drug-induced blood clot dissolution patterns obtained by proton nuclear
magnetic resonance imaging, which can be described by the enzyme transport-limited system of fibrinolytic chemical
equations with diffusion and perfusion terms (Zidansek and Blinc, 1991) in the reaction time approximation if the random
character of gel porosity is taken into account. A two-dimensional calculation based on the Hele-Shaw random walk models
(Kadanoff, 1985; Liang, 1986) leads to fractal lysing patterns as, indeed, is observed. The fractal dimension of the
experimental lysing patterns changes from 1.2 at the beginning of the experiments to a maximum of -1.3 in the middle and
then decreases toward one when the clot is recanalized.

INTRODUCTION

Dissolving coronary thrombi by administering thrombo-
lytic drugs has improved survival in patients with myo-
cardial infarction (Stampfer et al., 1982; Yusuf et al.,
1985; GISSI, 1987; ISIS-2, 1988; AIMS, 1990), yet
thrombolytic therapy is not universally successful and
the physical origin of the various dissolution patterns has
not been explained yet. Magnetic resonance imaging
(MRI) has shown that clot dissolution proceeds in a
finger-like manner whenever plasminogen activator en-
ters the clot by pressure-induced flow (Blinc et al., 1993,
1994). Even when recanalization of the previously oc-
cluded vessel segment is achieved, dissolution of the
blood clot is virtually never complete and a remaining
thrombus often is found attached to the arterial wall.
The observed finger-like lysing patterns are here de-

scribed by the enzyme transport-limited system of fibrino-
lytic chemical equations, taking into account the random
character of the clot porosity.

MATERIALS AND METHODS

MRI experiments
We used an in vitro experimental approach for lysing occlusive blood
clots under a pressure gradient, thus simulating thrombolysis under
conditions of laminar blood flow (Blinc et al., 1991, 1993). Retracted
clots were formed by mixing freshly drawn human venous blood with
thrombin and calcium (Blinc et al., 1993). Adhesion of the retracted
clots to the tube was secured by a tixothropic low reactive type
polyester (by Helios, Domzale, Slovenia), which we found not to inhibit
fibrinolysis of [125 ]fibrinogen-labeled blood clots. Occlusive clots
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were exposed to plasma containing 400 units/ml urokinase (Ukidan,
Serono, Germany). The resulting plasma flow through the porous clots
with a diameter of 4 mm under an initial pressure gradient of 2 kPa/cm
(6 kPa pressure difference along 3-cm-long clots) was 1.0 ± 0.3 ,ul/min.
The permeability (Darcy constant) of the retracted clot was thus 1.1 X
10-14 m2 if the viscosity of plasma was taken as 1.7 X 10-3 kg m-ls-1
at room temperature. This is less than 1% of the published permeability
of nonretracted whole blood clots (Carr and Hardin, 1987). Dissolution
of the clots was observed by spin-echo MRI, which distinguishes
between nondissolved clot areas and dissolved areas that are replaced
by inflowing plasma. A typical sequence of dissolution patterns is
presented in Fig. 1 showing clot lysis in a finger-like pattern with the
dominant finger progressing through the middle part of the clot.

Fibrinolytic system

We propose to explain our experimental results in terms of enzyme
transport-limited chemical reactions occurring in the gel network. We have
extended the previously described two-dimensional random walk models
(Kadanoff, 1985; Liang, 1986) by introducing a nonzero reaction time.
This approach allows for a discrete representation of equations linking the
transport and enzymatic properties of the fibrinolytic system, which have
been described in detail elsewhere (Zidansek and Blinc, 1991; Zidansek
et al., 1993).
A thrombus is described as a homogeneous cylinder that is separated

by a sharp boundary from the blood. The clot G has the boundary B =

B1 U B2 U B3, where B1 is the inflowing blood-clot boundary, B2 is the
outflowing blood-clot boundary, and B3 is the clot-vessel boundary
(Fig. 2 a).

Plasminogen (PLG) is activated by plasminogen activator (A) into
the active protease plasmin (P) in a process that can be described by
Michaelis-Menten kinetics as

kA k2

A + PLG =E-S -->A +P,

where E-S is the intermediate enzyme-substrate complex. Plasmin is inac-
tivated by a specific inhibitor, a2-antiplasmin. If the concentration of
plasmin remains small compared with the concentration of a2-antiplasmin,
inactivation of plasmin proceeds by pseudo-first-order kinetics:

P -> P-AP,
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where P-AP denotes the inactive plasmin-antiplasmin complex.
The system of fibrinolytic chemical equations with diffusion and per-

fusion transport can be approximated as (Zidansek and Blinc, 1991):

a3c5 -= D'ca- VFVCa - kiCaCpig + (k-l + k2)Ces,
at a

ces = DesV2Ces - VFVCes + kiCaCplg- (kl + k2)ces,
at

acpig 2

at = DpigV2cpig - VFVCPlg- kCaCplg + k-lCesq

'P DpV2c
at = P p VFVCP +k2Ces-k3Cp.I

(1)

(2)

(3)

(4)

Here ca is the concentration of a non-fibrin-specific plasminogen activator
such as urokinase, cp is the concentration of plasmin, cplg is the concen-
tration of plasminogen, c is the concentration of the enzyme-substrate
complex activator-plasminogen, kl, k2, k-1, and k3 are the reaction con-
stants, Da, Dp, Dpig, and De, are the corresponding diffusion constants, and
VF iS the perfusion flow velocity.

Initially, there is no plasminogen activator inside the clot and the
plasminogen concentrations outside and inside the clot are assumed to be
equal. The initial activator concentration in plasma is caO, and initial
plasminogen concentration in the clot is cP1,O. If diffusion is neglected with
respect to the flow, the boundary conditions for the activator and plasmin
at the boundary B, are given as

c.(r) = c5o, r E B1,

cp(r) = O, r E B1,

(5)
(6)

and the normal derivatives of all concentrations equal zero at boundaries B2
and B3.

The clot is dissolved when more then -1/3 of the plasmin-susceptible
peptide bonds in the fibrin network are cleaved (Weinstein and Doolittle,
1972). The fibrin bond concentration Cf is initially equal to cfo inside the
clot and zero outside the clot. During the lysis fibrin bonds are cleaved, and
the concentration Cf decreases as

aCf - -k c

at 4pfs (7)

where k4 is the reaction constant for the clot degradation, and the clot is
dissolved at a given position r, when the plasmin-susceptible fibrin bond
concentration cf(r) falls to 2/3 of the initial value Cfo.

The fibrinolytic system can be mathematically treated in various ways.
Simple one-dimensional models (Senf, 1979; Zidansek and Blinc, 1991)
have been extended to describe very complex reaction dynamics (Diamond
and Anand, 1993). Here we analyze a simple two-dimensional model in the
reaction time approximation. In the case of perfusion of clots with lytic
plasma, the sequence of fibrinolytic reactions can be characterized with a
single reaction time tR representing the time lag between the arrival of the
plasminogen activator and the actual clot dissolution at a given point
(Zidansek and Blinc, 1991).

If diffusion transport is negligible compared with the flow, a sharp
boundary between the plasminogen activator-invaded part of the clot
and the rest of the clot can be defined. The clot is thus divided into two
parts:

* The reaction region between the inflow blood-clot boundary B1 and the
plasminogen activator front boundary B4 (Fig. 2 a), and

* The clot region without any fibrinolytic enzymes.

Here the activator front boundary B4 is determined by the flow of plasma
with enzymes into the clot since the beginning of fibrinolysis. The plasma

FIGURE 1 Magnetic resonance images of lysing patterns of a retracted
blood clot exposed to pressure-induced perfusion with plasma-containing
urokinase, obtained at 0.5, 2, 3, 4, and 5 h after the beginning of clot lysis.
The fractal dimension of lysing patterns is between 1.3 and 1. MRI was
performed in a 2.35 T-superconducting magnet with a spin-echo sequence.
The recovery time was 2 s, the interecho time 60 ms, and the imaging time
-8.5 min with a 256 X 256 pixel matrix. Longitudinal views of clots were
recorded with a 4-mm-slice thickness. Regions of interest from a 10-cm
field of view are shown.

flow depends only on the pressure gradient, and the flow velocity VF inside
the clot is given by Darcy's law:

k
VF --VP.

711
(8)

Here k is the Darcy permeability and q is the viscosity.
The boundary B4 at the beginning of fibrinolysis (t = 0) is the same as
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1991): pressure is a linear function of the distance, the flow velocity is
constant, and the lysing patterns are planar. We can also estimate the
Reynolds number Re for the plasma flow through the clot as Re = vdln'q,
where v is the average velocity of the flow, d is the pore size, n is the
porosity, and q is the viscosity. Typical values for the clot (v ' 10-4 m/s,
d - 10-6 m, n- 0.1, andq- 1.7 X 10-3 kg m-1 s-1) yield Re ' 10-6.
Inclusion of the Brinkman correction (Martys et al., 1994) to Eq. 8 and the
no-slip condition at the wall could also lead in principle to nonplanar lysis
in the two-dimensional model with homogeneous media. The Brinkman
equation can be written as

Pl>P2

(b)
133

inflowing 13 .r4. ...

plasma reaj Ion outftowing
with * fgjOJJ * 35 plasma
enzymes . * . . . . 32

clot regionII ! clotrgion I

B3

FIGURE 2 Schematic presentation of a blood clot and its boundaries. (a)
In the reaction time approximation, the clot is divided into the reaction
region and the region without the enzymes with the boundary B4. B1 is the
inflowing blood-clot boundary, B2 is the outflowing blood-clot boundary,
and B3 is the clot-vessel boundary. Here a sharp activator front boundary
B4 can be defined, if the enzyme diffusion is negligible in comparison with
the flow transport. (b) Schematic presentation of the random walk model.
Here the clot is represented as a two-dimensional network of points that are

separated by the same boundaries as in a. The boundary B5, which divides
the clot into two regions, is added for the simplification of the random walk
calculation.

'Vp= - qk VF + TieV2VF, (11)

where dynamic viscosity Be is calculated to be of the same order of
magnitude as viscosity q (Martys et al., 1994). Analytical solution of
Brinkman's equation for a homogeneous medium in two dimensions is
decreasing exponentially at the glass-clot boundary with a characteristic
magnitude yo = (kIJ/rj)1/2 10-7 m. This is much too small to account for
the observed effects. Flow velocity VF is zero at the wall and reduced only
at the distance a few yo from the wall. In the experimental case of a

three-dimensional cylindrical clot VF is also reduced only at the distance of
the order yo from the glass-clot boundary and, thus, this correction seems

not to be responsible for the nonplanar lysing patterns.
However, the analytical solution is unstable in the case of a nonhomo-

geneous clot structure or roughness in the boundary that is never exactly
planar in real clots. Both possibilities are taken into account in the random
walk type "pedestrian model" (Kadanoff, 1985). This model with zero

surface tension is the same as the above described fibrinolytic model, if the
reaction time tR = 0 and, thus, B, = B4. If tR > 0, the "pedestrian model"
(Liang, 1986) requires a modification (see Appendix A) because the
boundary condition is given at the inflow boundary B1 and the flow is
observed at the activator front boundary B4.

RESULTS AND DISCUSSION

B1, because there are no enzymes inside the clot. A given position r E B4
evolves with time as

t
r(t) = r(0) + vF(r(t')) dt'. (9)

0

The reaction at a given point r inside the reaction region starts when the
activator front boundary reaches the point r, and after the reaction time tR
the clot is dissolved at this point as shown by Zidansek and Blinc, 1991.
The time evolution of the inflow blood-clot boundary B1 for times t > tR
is thus given as

Bi(t) = B4(t - tR)- (10)

The fibrinolytic system of chemical reactions is now transformed into the
problem of moving the boundaries B1 and B4 according to the above
equations.

For the sake of mathematical convenience, we now go from a three- to
a two-dimensional problem and replace the cylindrical geometry by a

rectangular one (Fig. 2, a and b). At time t = 0 the clot is represented by
a rectangle where the boundaries B1 and B4 are equal and represent the left
(inflow) side of the rectangle, B2 is the right (outflow) side, and the
vessel-clot boundary B3 is replaced by the long sides of the rectangle. The
pressure Pt at the inflow boundary B1 is larger than the pressure P2 at the
outflow boundary B2, and the normal component of the pressure gradient
equals zero at the vessel-clot boundary B3, because there is no flow through
the vessel wall (Fig. 2, a and b). For a homogeneous medium, the analytical
solution is the same as for the one-dimensional model (Zidansek and Blinc,

A modified random walk calculation (Appendix A) was

performed for different values of the reaction time tR. If the
nonzero reaction time tR is taken into account, the dissolu-
tion patterns become wider and the dissolution is slower
than in the zero reaction time model (Fig. 3). Here tR =

(k_1 + k2)k3log l.S/(kik2k4cpIgcao) (Zidansek and Blinc,
1991), which is -15 min, and the value tR = 500to was used
in our simulation (Fig. 3 a), where to is the time of one

lattice random walk between the two neighboring points.
The time difference between the two patterns in Fig. 3 a is
chosen as At = 4tR, the lattice unit length a - 0.2 mm, the
lattice width W = 22 lattice units, the lattice length L = 100
lattice units, and the time of one lattice random walk to - 2 s.

The solutions of the random walk model of the clot disso-
lution depend on the magnitude of the dissolution time tR: High
values of tR (tR>> to) are associated with finger-like patterns
of clot dissolution (Fig. 3a, tR = 500 to), such as have been
observed by MRI, and which are expected in arterial clots.

For very small values of tR (tR -' 0), diffusion-limited
aggregation (DLA) patterns occur (Fig. 3 b) such as have
been described in chemical dissolution of porous inorganic
materials by an inflowing reactive fluid (Daccord and
Lenormand, 1987).
One can calculate the fractal dimension of the fibrinolytic
patterns, fitting the measured length L(8) at different length

(a)

133
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scales 8 to the formula

(a ) L(8) = b$l-d, (12)

00 /A

Wi

( b)

7'///////////////0
V7X

where d is the fractal dimension and the constant b would be
equal to the length for a one-dimensional line (Feder, 1988).
Experimental lysing patterns have a fractal dimension be-
tween 1.3 and 1 (Fig. 4). Here the fractal dimension was

calculated for the length scales between a few pixels (1
pixel from the MRI image -0.2 mm) and the finger width.
From Fig. 3, a and b it is also possible to determine the

dissolution velocity, i.e., the velocity of the finger growth.
Although this velocity is -8 X 10-3 lattice units (1 lattice
unit -0.2 mm) per unit time to (- 2 s) in the case of a

nonzero reaction time tR = 500 to (Fig. 3 a), it is >11 X
10-3 lattice units per the same unit of time in the case of the
zero reaction time. The velocity of the finger growth in-
creases with time as v t0 35 (Liang, 1986) in the "pedes-
trian model," which is close to the DLA result v t04.
However, this is only true for the fingers that are not large
compared with the cell width W. A similar time dependence
of the velocity was found (Liang, 1986) for the growth of
the mixing zone 0, which is defined as the distance along the
flow direction between the tips of the largest fingers in each
direction. The velocity dO/dt increases with time for small
fingers, but it becomes constant when the length of the
mixing zone 0 is larger than the width of the cell W. This is
consistent with our results where the velocity of the finger
growth is approximately constant if the fingers are long
compared with the width of the clot.

In our experiments, the observed reaction time was -15
min (Zidansek and Blinc, 1991; Blinc et al., 1991). This is
relatively small compared with the recanalization time, i.e.,
the time necessary for the dissolved finger to pass through
the whole retracted clot which was a few hours. The diffu-
sion transport terms are small compared with the perfusion
transport. After 5 h of dissolution, the activator front bound-
ary is spread for about (r2)1/2 - 2 Dt < 1 mm, which is
small compared with the clot size of 30 mm. Here the
diffusion constant D is estimated to be _10-11 m2 s-
(Zidansek and Blinc, 1991).
Our random walk model thus provides one of the possible

explanations for a nonplanar lysis. This could also be
caused, however, by dynamic instability of the interface,

FIGURE 3 Theoretical dissolution patterns, obtained from the enzyme
transport limited random walk model for different values of the reaction
time tR. The modified Liang's model without the surface tension was used
(Liang, 1986) with the following values of calculation parameters: the clot
width W = 22 lattice units, the clot length L = 100 lattice units, and the
constant M, which is described in Appendix A, is equal to 10. (a) A
nonzero value of the reaction time tR = 500to (with to - 2 s) leads to wide
fingers indicated. The time interval between the slices is At = 2000to. (b)
The instant reaction approximation (tR = 0) gives narrow and fast growing
fingers with a fractal dimension close to the theoretical value for the
diffusion limited aggregation patterns d 1.7 (Vicsek, 1989) only at early
times, whereas the fractal dimension is decreasing at later times. The clot
boundaries are here represented at equal time intervals 0.5At = 1000to.

X
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FIGURE 4 Time evolution of the fractal dimension of the observed
lysing patterns (Fig. 1), obtained from the fit to Eq. 12 for the length scales
between 5 pixels and the finger width.

large spatial variation of porosity in the clot, or no-slip
boundary condition at the wall. We believe that large scale
variation of porosity is not very likely, because fingering
was also observed in clots, which previously were not
retracted and glued to the glass wall but were obtained from
homogeneously mixed blood (Blinc et al., 1994). Dynamic
instability of the interface is not very likely because of the
low Reynolds numbers for the flow through the clot (Re <
10-6). We have also shown that the non-slip boundary
condition combined with the Brinkman equation (Eq. 11) is
effective only in the narrow surface region less than a
micrometer from the glass-clot boundary and, thus, cannot
be responsible for the fingering.

CONCLUSIONS

The finger-like drug-induced blood clot dissolution patterns
observed by MRI indeed can be described by the enzyme
transport-limited system of fibrinolytic chemical reactions
with diffusion and perfusion terms in the reaction time
approximation if the random character of clot porosity is
taken into account. The fractal dimension of the experimen-
tal lysing patterns changes from 1.2 at the beginning of the
experiments to a maximum of -1.3 in the middle and then
decreases toward 1 when the clot is recanalized.
Our random walk simulation shows remarkable similar-

ities to experimental and clinical observations not only in
the velocity of clot lysis but also in the dependence of the
shape of the lysing patterns on the enzyme transport param-
eters. Bugelski and co-workers have shown by electron
microscopy that lysis of coronary artery thrombi in dogs
proceeds through meandering channels that eventually
merge into a dominant recanalization channel, leaving sub-
stantial parts of the clot intact (Bugelski et al., 1989).
Radiological studies in humans have confirmed that finding
a residual thrombus after successful vessel recanalization by
fibrinolysis is a rule rather than an exception (Brown et al.,
1986; Gash et al., 1986; Gulba et al., 1990).
According to our in vitro MRI observations and the

random walk model of thrombus dissolution, the cost for
rapid recanalization is a residual nonlysed part of the throm-
bus. Our model also demonstrates that the peripheral parts

of occlusive thrombi with a concave proximal border dis-
solve slowly because of their disadvantaged position with
respect to the local pressure gradients and not necessarily
because of low fibrinolytic susceptibility.

APPENDIX A

Random walk simulation of the
fibrinolytic system

Here one first calculates for a given clot shape the pressure field inside the
clot. The model clot is described as a discrete two-dimensional network of
points G with width of W points and length of L points, surrounded by the
boundaries B1, B2, and B3. All of the boundary points are located in the
middle of two lattice points. With a given solution for the pressure field,
the flow velocity VF at any point inside the clot is obtained from Eq. 8.

If the fluid is incompressible (VVF = 0), the Laplace equation for the
pressure field p is obtained:

V2p = 0. (13)

The pressure field p inside the clot can be expressed as a sum over a
geometry-dependent Green's functions g(r, s) weighted by the boundary
values +i(s) (Liang, 1986):

p(r) = E g(r, s)q,(s). (14)

Here the boundary values 4(s) represent the pressure at the boundary and
Green's function g(r, s) solves the Laplace equation for the points r inside
a given region with the boundary condition that ti = 1 at the boundary
point s and 0 everywhere else (see Appendix B).

It was shown (Kadanoff, 1985) that Green's function g(r, s) for an
arbitrary region can be calculated with a random walk simulation (see
Appendix C).

In our simulations, the region of interest (i.e., the clot) is divided into
two parts, using the analytical solution for the Green's function (Appendix
B) in the first part and the random walk simulation (Appendix C) in the
other. The rectangle (region I) is surrounded by the boundaries B2 (the
outflow plasma-clot boundary), B3 (the clot-vessel boundary), and the line
B5s which is parallel to the outflow plasma-clot boundary B2 and lies
between the outflow plasma-clot boundary B2 and the activator front
boundary B4 (Fig. 2 b). The remainder of the clot (region II) is made of the
reaction region between the inflow plasma-clot boundary B1 and the
activator front boundary B4, and an irregular region without enzymes
between the boundaries B1, B3, B4, and B5 (Fig. 2b).

The boundary conditions from Appendix C are modified in such a way
that the random walkers are released from the boundary B. instead of the
outflow blood clot boundary B2. If a given random walker hits the bound-
ary B5, it enters the region I (the rectangle). Because the probability that it
will return to the region II at the point s is given by Green's function for
the half plane, which is calculated analytically (Appendix B), the random
walker is returned to the region II at point s with the probability

P(s) = g,(r, s), (15)

where gv is Green's function for the half plane. If the expected returning
point is outside region I, the corresponding half plane is bent so many times
that the returning point comes inside the rectangle according to the reflex-
ive boundary condition at the clot-vessel boundary B3.

The numerical simulation begins with a rectangular shape of the clot,
where initially the boundaries B1 and B4 are equal and planar. The activator
front boundary B4 is moved according to the Darcy's law (Eq. 8), where the
pressure p at a given point r is proportional to the probability P(r) that this
point is visited by a single random walker (Appendix C). The motion of the
activator front boundary B4 is obtained, therefore, by counting the number
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of random walkers N(r) traveling through every point r of the activator
front boundary B4 in the direction to the reaction region (Fig. 2 b). When
this number is larger then a given constant M or smaller than -M, then
both lattice points, which are the closest to the activator front boundary
point r, are assigned to the reaction region or to the nonreaction region,
respectively, and the activator front boundary B4 is moved accordingly. At
the same time, the inflow blood-clot boundary B1 is moved according to
Eq. 10, and the boundary B5 between the regions I and II is moved for one
lattice point to the right if it crosses the new activator front boundary B4.
Here the numberM stands for the pressure difference between the observed
pair of lattice points, which is required to move the boundary for one lattice
point according to the Darcy's law (Eq. 8), and the pressure is measured in
units of probability (Kadanoff, 1985).

This procedure is repeated until the activator front boundary B4 reaches
the outflow blood-clot boundary B2. At that time, the boundary B5 becomes
equal to the outflow blood-clot boundary B2 and the random walk simu-
lation is performed in region II only. When the inflow blood-clot boundary
B1 reaches the outflow blood-clot boundary B2 also, the clot is recanalized
and the calculation is finished. The time evolution of the inflow blood-clot
boundary B1(t) represents the fibrinolytic patterns.

APPENDIX B

Properties of the lattice Green's function
The boundary condition for the lattice Green's function in the points r can
be written in terms of the lattice Dirac function

g(r, s) = 6(r, s), (16)
where the function 8(r, s) = 0 unless r = s when S(r, r) = 1. Green's
function g(r, s) obeys the lattice version of the Laplace equation

V2g(r, s) = 0 (17)

for the points r inside the clot where the operator V stands for a derivative
with respect to r. The discrete lattice Laplacian V2 is defined here as
(Kadanoff, 1985):

V2f(x, y) = 4f(x, y) -f(x + 1, y) -f(x - 1, y)
(18)

-f(x,y + 1) -f(x,y - 1),

where Ax, y) is any function defined on the lattice points x, y inside the
region of interest (i.e., inside the clot), where the integers x and y count the
lattice points.

Green's function gd for an infinite d-dimensional regular lattice can be
written as

gd(X, y)
(19)

1 ~~~~a2
Nr 2 ,d (1 -cos(kja)) exp(ik (x-Y)),

where a is the distance between the neighboring lattice points and the sum
is taken over all of the reciprocal lattice vectors k. Green's function for a
half plane, which includes all of the points with the second (y) coordinate
larger than H, can be obtained as (Kadanoff, 1985):

g1(x, y) = g(x-y)-g(x1-Y1,x2 + Y2-2H), (20)
where

g(X - y) = g2(X, Y), (21)
and x = (xl, x2) and Y = (Yl, Y2). The function g(x) can be calculated by

replacing the sum with an integral:

g (x) (22)
f dkx f1 dky 1
J 2 J_ 2X4-2COSkX2COSkexP(ik x).

This integral diverges, but it is possible to calculate the difference g(x) -
g(0) analytically. For large x the asymptotic result is

g (x) - g (O) - - (log x + log(2 Ar) + y),

(23)

where y 0.5772166 is the Euler constant.

APPENDIX C

Random walk solution of the Laplace equation
In the case of our blood clot model, the lattice Green's function g(r, s) is
proportional to the probability P(r) that the point r inside the clot is visited
by the random walker, which is released from the point s on the outflow
plasma-clot boundary B2 and is annihilated when it hits the inflow plasma-
clot boundary B1 (see Fig. 2 b). At a given time step, the random walker
travels to any of its four neighboring points with the probability 0.25. If it
hits the clot-vessel boundary B3, it is reflected back into the clot because
there can bo no flow through the vessel wall. When the random walker is
annihilated, the next random walker is released from point s. The proba-
bility P(r) can be calculated as

P(r) = N(r) (24)

where N is the number of released random walkers and N(r) counts the
number of visits for a given point r. The probability P(r) obeys the
boundary condition of Green's function (Eq. 16): because every random
walker is released from the point s, P(s) = 1 and P = 0 for all other
boundary points because the visit of any boundary point terminates a given
random walk. The lattice Laplace equation (Eq. 17) is also satisfied
because every lattice point is visited only by the random walks from the
neighboring points. Because the probability that a given random walker at
the neighboring lattice site chooses the right direction is 0.25, the proba-
bility P(r) is given as

P(r)=4>P(r'), (25)

where the sum 2< is taken over all of the neighboring sites. Using the
definition of the lattice Laplace operator (Eq. 18), we have

V2P(r) = 4P(r) - P(r') = 0. (26)
()

The probability P(r) thus obeys the boundary condition (Eq. 16) and the
Laplace equation inside the clot (Eq. 17) and, therefore, is equal to Green's
function g(r, s). If r and s are the boundary points between the two lattice
points (Fig. 2 b), Green's function g(r, s) is equal to the probability that a
random walker that enters the region of interest through boundary point s
will leave through boundary point r.
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