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Stochastic Process of Double Strand Break (DSB) Generation and Repair. In 

eukaryotic cells, DSBs trigger two major repair mechanisms: homologous recombination 

(HR) and nonhomologous end joining (NHEJ) (1, 2). Although the NHEJ and HR 

pathways predominate in different stages of the mammalian cell cycle and may use 

independent repair enzymes (3), it has been reported that the DNA complex formed by 

DSB and repair proteins Mre11, Rad50, and NBS1 activates ATM upon IR in both the 

NHEJ and HR repair of DNA DSBs. Our model describing DSB repair is based on the 

experimental evidence and the assumptions put forward in the two lesion kinetics (TLK) 

model (4) that radiation creates both rapidly and slowly repaired DSBs.  In the TLK 

model, the fast dynamics refers to repair of simple DSBs, envisioned as a section of the 

DNA 10 - 20 bp in length with a break in each strand of the DNA. The slower dynamics, 

on the other hand, refers to the repair of complex DSBs, envisioned as a simple DSB that 

contains additional elementary damage sites (base damage, strand breaks, base deletion, 

etc.) within the same section of DNA. Fig. 9 (extracted from Fig. 2) illustrates our 

implementation of the TLK model, which differs from the original TLK model on two 

important counts. First, our model explicitly includes the formation of DSB-repair 

enzyme complexes. Second, there is a finite supply of repair enzymes, and these are 

treated as dynamic variables. The latter feature of our model is necessary if we consider 

high radiation doses when the number of unrepaired DSBs is much greater than the 

number of available repair enzymes. Each of the fast and slow pathways in the model 

contains a first-order reaction (represented by the rates kfb1 and kfb2 in Fig. 9) and a 

second-order repair process (represented by the rate kcross). DSB repair is a first-order 

process if break ends associated with the same DSB are rejoined and a second-order 

process if the break ends associated with two different DSBs are involved in the repair 

event.  In our model, we do not need to distinguish between correct repair and misrepair 

of DSBs (a distinction made in the original TLK model), even though this has profound 

consequences for the subsequent viability of the cell. Instead, we are only interested in 

the signaling from the DSB to the downstream p53-Mdm2 system through ATM, and this 

signal will subside whether the DSB was correctly or incorrectly repaired. 



 

The two pathways envisioned in the TLK model should not be confused with the HR or 

the NHEJ repair pathways known to be essential for DSB repair in mammalian cells. In 

our model, HR is primarily responsible for the first-order repair process, whereas NHEJ 

is at work in the second-order component of our model, in which a DSB can be repaired 

(or misrepaired) by ligating one end of the break with the end of any other break. In our 

model, we assume that the DSB sites form complexes C1 and C2 with the same repair 

enzymes, and we have RP number of them. This is a simplifying assumption given that 

the HR and NHEJ pathways are known to use independent repair enzymes. However, it 

has been reported that the Rad50/NBS1/Mre11 nuclease complex plays an important role 

in both the NHEJ and HR repair of DNA DSBs (5).  

 

Earlier studies suggest that ≈ 60-80% of DSBs are quickly rejoined, whereas the 

remaining 20-40% of DSBs rejoin more slowly (4), with the precise relative contributions 

of slow and fast processes depending on the cell type.  In our simulations, it is assumed 

that 70% of the initial DSB yield is processed by fast repair. Previous fitting of the TLK 

model with experimental data indicated that the rates in fast kinetics are ≈ 6-40 times 

those in the slow kinetics (4, 6). For our simulations, the ratio of all the fast rates over 

their respective slow rates is chosen to be ≈10 (kfb1/kfb2 = krb1/krb2 = kfix1/kfix2 = 10). We 

also assume that the binding of repair proteins to DSBs is much faster than the process of 

lesion repair (e.g., kfb1/kfix1 = kfb2/kfix2 = 5-10). Once these ratios are chosen, the remaining 

parameters are adjusted so that the downstream trends evolved from DSBs in our 

simulations agree with those obtained from the experimental observations in Lahav et 

al.’s (7) work. The parameters used in the simulations reported in the main paper are 

listed in Table SM1. The simulation time step ∆t is set to be 10-3 min, 25 times smaller 

than the fastest time scale in the repair process given by kfb1RP (0.025 min).  

 

Given the small number of DSBs generated for typical radiation doses and the relatively 

small number of repair proteins, the DNA repair process was simulated stochastically. In 

the stochastic representation of the DNA repair dynamics, each locus in which a DSB is 

created can be in one of three states corresponding to intact DSB (state 1), DSB in 



complex with repair proteins (state 2), and (correctly or incorrectly) fixed DSB (state 3). 

At time step k, the number of DSBs in states 1, 2, and 3 are represented by D(k), C(k), 

and F(k), respectively. By using subscripts ‘1’ and ‘2’ to differentiate simple DSBs (fast 

kinetics) and complex DSBs (slow kinetics), we have D(k) = D1(k) + D2(k), C(k) = C1(k) 

+ C2(k) and F(k) = F1(k) + F2(k). We will assume that we have a fixed total number RPT 

of repair proteins, or more precisely, at most RPT number of DSB foci that can be 

repaired simultaneously. At any time, a variable RP out of RPT number of repair proteins 

are free to bind to DSBs. The Monte Carlo algorithm for the evolution of DSBs induced 

by an irradiation dosage of x Gy during time [0, tT] is as follows:  

 

1. Set the initial conditions. Set t = 0. The initial number DT of total DSBs is generated 

from a Poisson distribution with mean value 35x. This assumes that on average 1 Gy 

produces 35 DSBs per cell. The initial split of DSBs into simple and complex breaks 

is DT1 = 0.7DT, and DT2 = 0.3DT. Initially, all the DSBs are in state 1, that is for t = 0, 

we set D1(0) = DT1, D2(0) = DT2  and C1(0) = C2(0) = F1(0) = F2(0) = 0. We choose the 

number of total repair proteins to be RPT = 20. Given that initially all repair proteins 

are free, the simulation starts with RP=20.  

2. Increment time. Set t = t + ∆t. Let k = t/∆t.  

3. Update the states for each of the DT1 damages sites controlled by fast repair. Compute 

the transition probabilities as follows: from state 1 to state 2, 

[ tkDkDkkRPP CD ]∆−+−+=→ ))1()1(( 21crossfb111 ; from state 2 to state 1, 

; and from state 2 to state 3,  tkP DC ∆=→ rb111 tkP FC ∆=→ 1fix11 . For each damage locus i, 

with 1 ≤ i ≤ DT1, draw a value X from a uniform distribution with support between 0 

and 1. If the damage at locus i is in state 1, a transition to state 2 occurs if 0 ≤ X < 

, while it stays in state 1 if  ≤ X ≤ 1. If the damage is in state 2, a 

transition to state 1 occurs if 0 ≤ X < , or a transition to state 3 occurs if  

≤ X<  + , or no transition occurs if  +  ≤ X ≤ 1. If the 

damage is in state 3, it stays in state 3 (i.e., state 3 is absorbing). Set RP = RP - 1 if 

transition from state 1 to state 2 occurs; set RP = RP + 1 if transition from state 2 to 

state 1 occurs; otherwise RP remains the same. When the last damage site i = DT1 has 

11 CDP → 11 CDP →

11 DCP → 11 DCP →

11 DCP → 11 FCP → 11 DCP → 11 FCP →



been updated, count the number of fast repaired breaks at time t in states 1, 2, and 3 to 

be D1(k), C1(k), and F1(k), respectively.  

4. Update the states for each of the DT2 damages sites controlled by slow repair. 

Compute the transition probabilities as follows: from state 1 to state 2, 

tkDkDkkRPP CD ∆−+−+=→ ))]1()1(([ 21crossfb222 ; from state 2 to state 1, 

; and from state 2 to state 3,  tkP DC ∆=→ rb222 tkP FC ∆=→ fix222 . For each damage locus 

j, with 1 ≤  j  ≤ DT2, draw a value X from a uniform distribution with support between 

0 and 1. If the damage at locus j is in state 1, a transition to state 2 occurs if 0 ≤ X < 

, while it stays in state 1 if RP > 0 or  ≤ X ≤ 1. If the damage is in state 

2, a transition to state 1 occurs if 0 ≤ X < , or a transition to state 3 occurs if 

 ≤ X <  + , or no transition occurs if  + ≤  X ≤ 1. 

If the damage is in state 3, it stays in state 3 (i.e., state 3 is absorbing). Set RP = RP - 

1 if transition from state 1 to state 2 occurs; set RP = RP + 1 if transition from state 2 

to state 1 occurs; otherwise RP remains the same. When the last damage site j= DT2 

has been updated, count the number of slowly repaired breaks at time t in states 1, 2, 

and 3 to be D2(k), C2(k) and F2(k), respectively.  

22 CDP → 22 CDP →

22 DCP →

22 DCP → 22 DCP → 22 FCP → 22 DCP → 22 FCP →

5. Let D(k) = D1(k) + D2(k), C(k) =C1(k) + C2(k), and F(k) =F1(k) + F2(k). 

6. Repeat steps 2-5 until t=tT. 

 

Typical results of these stochastic simulations are shown in Fig. 5. 

 

Equations for the ATM Activation Module. The processes of autophosphorylation of 

ATM and the activation of ATM by signaling of DSBs in complex with repair proteins 

are schematized in Fig. 10. Its implementation in terms of ODEs is:  
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where [ATM], [ATM*], and [ATMD] represent the concentrations of ATM, active ATM, 

and ATM dimer molecules, respectively; C counts the number of DSBs in complex with 

repair proteins (obtained from the simulations described above); kdim and kundim are the 

ATM dimerization and the undimerization rates, respectively; kar is the ATM inactivation 

rate; and kaf is a parameter representing the strength of ATM activation per unit time. The 

reactions of dimerization, undimerization, and dephosphorylation follow the principle of 

mass action. Because the precise mechanism of activation of ATM is not well 

understood, we model ATM activation with a simple function 

 that captures some of the observed 

dependencies. The functional form of f (C, [ATM*]) was chosen because of its 

parsimonious simplicity (it is a simple bilinear relation) and in an attempt to interpret 

mathematically previous qualitative experimental results. For example, the term α1C is 

conjectured from the results of ref. 8, which suggests that DSBs must somehow activate 

ATM molecules at a distance, given that the fast activation of many ATM molecules by 

only a few DSBs seems inconsistent with the possibility that ATM has to bind directly to 

DSBs to become activated. This mechanism may possibly be initiated by chromatin 

restructuring (8), produced by phosphorylation of the minor histone H2AX over a region 

of 2 Mbp proximal to the DSB (9). Furthermore, it has also been reported that the MRN 

complex, which plays a central role in DSB repair both in HR and NHEJ, stimulates the 

kinase activity of ATM toward its targets (10) and is required to activate ATM by DNA  

damage (11). The third term α3[ATM*] expresses the mechanism of autophosphorylation 

of ATM (8). The cross term  indicates an interaction between the DSB-

repair protein complexes and activated ATM, suggested by the appearance of localized 

foci of ATM* around the repair complexes (8). The observed foci of active ATM are 

consistent with a diffuse activation of ATM and migration of a fraction of ATM* protein 

to the sites of DNA strand breaks introduced by IR, presumably to phosphorylate 

substrates at the breaks, possibly including ATM itself. 
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The functional dependence between the number of DSB bound complexes and [ATM*] at 

steady state can be solved analytically. By setting the right-hand side of any two of the 

three differential equations in Eq. 1 to be zero and using the conservation equation 



]ATM[]*ATM[ATM][]2[ATM T
D =++ , where [ATMT] is the total concentration of all 

forms of ATM molecules, we obtain ATM* as a function of C.  The result is a lengthy 

formula, which we omit here.   

 

In ref. 8 it was shown that the activation of ATM saturated about 5-10 min after 

irradiation. Comparing this time scale to the kinetics of downstream oscillations with a 

period > 400 min, the reactions of the ATM module are extremely fast. Accordingly, the 

rate constants for ATM phosphorylation were chosen to be ≈ 50 times the rate of 

oscillations (Table 1).  

 
Equations for the p53-Mdm2 Oscillator Module. The schematic diagram of the p53-

Mdm2 oscillator is illustrated in Fig. 11 (the same as Fig. 4). The p53 protein is translated 

from p53 mRNA and is inactive for transactivation of its targets unless phosphorylated 

by ATM*. In its active state, p53* transcribes Mdm2 mRNA in a process that involves a 

time delay. Mdm2 also has a constant basal transcription rate, accounting for the p53-

independent promoter (12). Mdm2 protein promotes a fast degradation of p53 and a slow 

degradation of p53*. Mdm2 has a basal degradation rate, but in the presence of active 

ATM, Mdm2 degradation is further stimulated. The equations used in the paper to model 

the p53-Mdm2 oscillatory module of Fig. 11 are 
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In writing these equations, we have modified slightly our notation of the gene products to 

avoid confusion. In the equations above, [P53] and [MDM2] represent protein 

concentrations of p53 and of Mdm2, respectively, and [p53] and [Mdm2] represent their 

respective mRNA concentrations. We will discuss the meaning and estimates of the 

parameters below. The actual parameter values used in the simulation can be found in 

Table 1. An in-depth analysis of this set of equations as a dynamical system can be found 

in ref. 13. Here we emphasize only a few key aspects of the model: 

(A) The transcription rate of Mdm2 mRNA activated by p53* depends on the 

concentration of p53* at time 1τ−t . The rate of production of nuclear Mdm2 depends 

on the concentration of Mdm2 mRNA at time 2τ−t . The delays τ1 and τ2 are 

convenient representations of the time required for some processes that we have 

omitted in our model. Delay τ1 corresponds to the transcription and splicing processes 

of the Mdm2 gene into mature Mdm2 mRNA, while τ2 corresponds to the 

translocation of Mdm2 mRNA to the cytosol, the translation of Mdm2 mRNA into 

Mdm2 protein, and the transport of Mdm2 back to the nucleus to become nuclear 

Mdm2 at time t, Mdm2(t). It is this Mdm2(t) that interacts with p53(t), tagging it for 

degradation. But it is the p53 τ1 units of time earlier, p53( 1τ−t ), that promoted the 

transcription of Mdm2, and Mdm2 τ2 units of time earlier, Mdm2( 2τ−t ), that gets 

transported out of the nucleus, translated, and translocated back to the nucleus. In 

other words, the transcriptional and translational/translocation time delays are the 

price we have to pay in order to reduce the dimensionality of the problem and 

describe only nuclear concentrations. Note that these time delays are incorporated 

based on the assumption that there is no degradation during the delayed processes. 

We estimate the transcriptional time delay τ1 to be 30 min based on the assumption 

that elongation rate is 20 nucleotides per second (25 min of elongation) (14, 15) and 

that splicing rate is 25 seconds per intron (5 min of splicing) (16). The 

translational/translocation delay τ2 is assumed to be 10 min assuming a translation 

rate of four amino acids per second (2 min of translation) (16) and nuclear import and 

export time of 4 min each   (16, 17).  



(B) The transcription rate of Mdm2 mRNA is an nth order Hill function of 

p53*( 1τ−t ). The Hill coefficient n is chosen to be 4 to account for the cooperativity 

of the tetrameric form of p53* as a transcription factor (18).  

(C) The ratio between the maximal p53*-activated Mdm2 transcription rate 2Mdmε  and 

the basal Mdm2 transcription rate  is set to be around 10 (12).  2Mdms

(D) The degradation of both p53 and p53* promoted by Mdm2 are described by 

Michaelis-Menten kinetics because the catalytic role of Mdm2 as an ubiquitin ligase 

in this process is similar to the role played by an enzyme in the conversion of a 

substrate to a product. Previous experiments indicate that ubiquitination of p53 may 

follow alternative pathways depending on the concentration of Mdm2, with p53 being 

polyubiquitinated and subsequently degraded in the nucleus for high levels of Mdm2, 

whereas low levels of Mdm2 activity induce monoubiquitination and nuclear export 

of p53 (19). After p53 is phosphorylated at serine 15, the interaction between p53* 

and Mdm2 is reduced drastically (20), and the effective activity of Mdm2 

experienced by p53* is lower than that experienced by p53. Therefore, the results on 

the control  of mono- versus polyubiquitination of p53 by Mdm2 (19) suggest that  

p53* and p53 may follow different degradation pathways, with p53* having a lower 

degradation rate compared to p53, probably due to a slower polyubiquitination pace 

in face of inhibited interaction with Mdm2 (19, 21). Therefore, we assume that the 

binding affinity between Mdm2 and p53* is 10-fold less than that between Mdm2 and 

p53 (20, 22) and that the Mdm2-mediated degradation rate of p53* is 5-fold less than 

that of p53. Specifically, νp53*/νp53 = 0.2 and .  10/ d
*
d =KK

(E) The phosphorylation of p53 catalyzed by ATM* is modeled as a first-order 

Michaelis-Menten mechanism.  

(F) The degradation rate of Mdm2 is composed of a basal self-degradation rate µMDM2 

and an ATM*-dependent accelerated rate of maximal value νMDM2. The ratio 

MDM2MDM2 / µν  is assumed to be 5-fold, in the spirit of the experimentally measured 

reduction of half-life of Mdm2 in DNA damaged cells  (23).   

(G) With respect to the remaining model parameters, the decay rates of proteins and 

mRNA are set to be in the range of 0.02-0.008 min-1 under basal conditions, 



corresponding to ~35- to 87-min half-lives (24, 25). The reactions of p53 

phosphorylation and dephosphorylation are assumed to be about 10 times faster than 

other reactions of transcription, translation and degradation in this module. Notice 

that the transcription rate of p53 mRNA is invariant, leading to a constant mRNA 

steady state as well as to a constant protein synthesis rate. This is consistent with 

previous modeling and experimental work (25, 26).  

 

Measurement and Calibration of p53 Basal Concentration. Various cell lines growing 

logarithmically were collected, counted, and lysed in cell extraction buffer (10mM Tris, 

pH7.4/100 mM NaCl/1 mM EDTA/1 mM EGTA/1 mM NaF/20 mM Na4P2O7/2 mM 

Na3VO4/1% Triton X-100/10% glycerol/0.1% SDS/0.5% deoxycholate/1 mM PMSF/ 

protease inhibitor cocktail). The basal concentration of p53 was measured using human 

p53 Elisa kit (Biosource, Camarillo, CA) according to the manufacturer’s instruction. In 

brief, cell lysis of each cell line was added to a microtiter well precoated with human p53 

antibody and incubated at room temperature for 2 hours. The well was then washed 

thoroughly with wash buffer followed by incubation with rabbit anti-p53 antibody at 

room temperature for another 1 hour. After washing with wash buffer, anti rabbit-HRP 

working conjugate was added to each well and incubated at room temperature for 30 

minutes. The well was washed with wash buffer, and stabilized chromogen was added to 

each well for 30 minutes in dark to produce the color; the intensity of this colored product 

is directly proportional to the concentration of p53 present in the original sample. After 

adding stop solution to each well, the absorbance at 450 nm was read by Wallac Victor 3 

multilabel counter (PerkinElmer), and the concentration of p53 of each cell line was read 

from a standard curve plotted by p53 standard with known concentration. The p53 

concentration of each cell line was measured 3 times. As shown in Fig. 12, the p53 

concentrations in various cell lines range from 2.1-19.57 ×104 molecules per cell. 

Specifically, the basal p53 concentration in MCF7 cell is 15.84 ×104 molecules per cell.   

  
Assuming that basal p53 molecules are uniformly distributed in a spherical cellular 

volume of radius 5-10 µm, we estimate the molar concentration of basal p53 in MCF7 

cell to be between 0.06 and 0.5 µM.  



 

Cooperativity of the Modeled ATM Module in Comparison with Actual Data. As 

mentioned in the main text, the mechanisms of phosphorylation of ATM, and in 

particular its detailed dependence on IR dose, has not been characterized to a high level 

of quantitative detail, and even less so in single cell experiments. Our present 

understanding  of the speed of ATM activation and its IR dependence comes 

fundamentally from immunoblotting studies from the work of Bakkenist and Kastan  (8). 

The two key plots in ref. 8 in relation to the present work is reproduced in Fig. 13 here. A 

rather abrupt onset of activated ATM that starts at 0.1 Gy and saturates at ≈ 0.4 Gy can be 

easily inferred from Fig. 13. In the same figure, we plot in a similar grayscale format the 

data from our model, which shows the qualitatively resemblance between the actual data 

and our model prediction, although the latter seems to be less cooperative than the 

experimental data. For example, our model has not yet saturated at 0.4 Gy, which may 

indicate that the Hill coefficient of 2 yielded by our model underestimates the actual 

cooperativity in the real system.   

 

Characterization of the Pulses Arising from the Model and Comparison with 

Experiments. As discussed in the main text, the time taken by the DNA repair 

mechanism to fix enough DSBs and reduce its number to a value smaller than the 

threshold of ATM activation is a fluctuating quantity that varies from cell to cell. 

Consequently, the time when p53 and Mdm2 stop oscillating, as well as the number of 

pulses, fluctuate. Fig. 14 shows three simulation results representing three single cells, for 

which the same set of parameters were used. The resulting response exhibits either one 

(Fig. 14A), two (Fig. 14B), or three (Fig. 14C) pulses of p53. Notice that the last pulse in 

the oscillation series may be cut off and its peak and period become smaller if ATM is 

turned off before the last cycle is complete. This variability in amplitude and width is 

within the range of stochasticity observed in single cells (7). Fig. 14D, adapted from ref. 

7, shows the case of the experimental single cell response at the same IR dose of 5 Gy as 

in the simulations. A comparison between Fig. 14 B and D shows a similarity in behavior 

between the model and the corresponding experimental results. In order to test system 

response to step input of DNA damage simulating the effect of continual presence of 



DNA damage agent such as MMC, a constant input of DSBs causing continual activation 

of ATM is applied. Not surprisingly, the output is sustained oscillations with constant 

amplitude and period (Fig. 14).   

 

Besides the number of pulses at a given radiation dose, there are two other features of the 

pulses that are worth studying: the period and the amplitude. The periods of the first and 

second pulses are shown in Figs. 15 A and B, respectively (diamonds). These figures 

show the same constant trend with respect to changes of IR dose as the equivalent results 

in the single cell experiments of Lahav et al. (7) (squares). Fig. 15 C and D shows the 

amplitude of first and second pulse,  respectively, as a function of IR dose. The ordinates 

in the figure represent the percentage of the pulse in reference to the average amplitude of 

the respective pulse. The solid diamonds are the simulation results, and the squares are 

the experimental data reproduced from ref. 7. The trends are qualitatively similar. 

 

Role of the ATM-Dependent Autodegradation of Mdm2, and the Transcriptional 

and Translational/Translocation Time Delays. In separate work (13), we have studied 

the role of the time delays as a central component of the p53-Mdm2 self-regulatory 

model in relation to the ability of the system to sustain stable oscillations. The time 

delays in the p53-Mdm2 module represent the time taken by a number of processes not 

explicitly considered in the model, such as transcription, splicing, translation, and 

transport to and from the nucleus. In this section, we present some results on the stability 

of oscillations in relation to the time delay and the role of the ATM*-dependent 

degradation of Mdm2. 

 

Simulations show that if we do not incorporate ATM*-induced self-degradation of Mdm2 

(in other words, if we “cut the wire” connecting ATM* and Mdm2 in Fig. 11), the system 

cannot sustain stable oscillations but settles at stable equilibrium in response to IR no 

matter how big the transcriptional time delay τ1 and the translational/translocation time 

delay τ2 are (data not shown). However, the model proposed in the present paper does 

include the experimentally observed ATM*-stimulated Mdm2 degradation. This 

additional link allows for the existence of sustained oscillations if the total explicit time 



delay 21 τττ +=  is above a threshold of around 16 min (Fig. 16A). Note that, 

mathematically, it is the total amount of delay τ that determines the existence of 

oscillation; that is, the system dynamics does not differentiate whether τ appears in the 

transcriptional delay or in the translational/translocation delay (13).  

 

It is therefore clear that time delays play a central role in the maintenance of oscillations. 

A generic, intuitive reason for the importance of time delays in negative feedback 

systems is that a time delay can destabilize what would otherwise be a stable fixed point. 

In a linear system, this creates a divergent behavior. In a nonlinear system, this 

divergence can be stabilized by nonlinearities, generating, as is the case in our oscillator, 

a limit cycle. The period of this limit cycle in the p53-Mdm2 oscillator of this paper is 

shown in Fig. 16B as a function of the total time delay τ and for several IR doses. The 

period of the oscillations follows a linear trend with the total time delay and is relatively 

insensitive to the irradiation dose. Notice that even though there is a direct relationship 

between the time delay and the period of oscillations, the time delay is not equal to the 

period. Rather, the period of oscillations is about one order of magnitude larger that the 

time delay, reaching for a delay of 40 min the period of around 420 min observed in the 

actual p53-Mdm2 system. 

 

ATM Cooperativity and Hopf Bifurcation as a Strategy for Threshold Detection. In 

order to arrest the cell cycle in response to a small number of DSBs, it is desirable for the 

system to be able to start its response abruptly after a minimum threshold of DSBs is 

reached. When studying the p53-Mdm2 module as a dynamical system (13), we observed 

that increasing the ATM* level produces an abrupt (but continuous) onset of oscillations 

(Fig. 17A). In dynamical systems parlance, the system undergoes a supercritical Hopf 

bifurcation in which a single stable solution turns unstable (specifically at the solid red 

circle in Fig. 17A), giving rise to a limit cycle (i.e., stable oscillatory behavior). The 

abrupt onset suggests a possible role of this instability as a threshold sensor.  

 

To investigate the potential role of this threshold detection behavior, we have quantified 

the global input-to-output response (that is, the IR-p53 response) of the complete model. 



The stochastic aspects have been removed by adding a deterministic function for the 

number of DSBCs per unit of IR. This function could be interpreted as the maximum 

number of DSBs induced for a given IR level. We then modeled the transfer function that 

determines the fraction of ATM* as a function of the number of DSBCs with a Hill 

function of Hill coefficient nH. This is necessary because the exact cooperativity of the 

ATM transduction system has not yet been quantified, and several mechanisms could 

potentially generate high cooperativity. The ATM* signal is then used as input to the p53-

Mdm2 oscillator, and the output is plotted as a function of IR dose. To measure and 

compare two qualitatively different dynamics of equilibrium point and limit cycle, we 

define the output quantity as ∆p53, the normalized difference between maximum and 

minimum p53 levels. The correlation results are illustrated in Fig. 17B for nH at values 1, 

2, 4, and 8, showing switching behavior of the output. When low cooperativity is 

assumed for the ATM activation (nH = 1), the threshold behavior produced by the Hopf 

bifurcation exhibits an abrupt onset of oscillations at 0.2 Gy. However, the size of the 

oscillation does not saturate until 10 Gy. Because activation of ATM is assumed to be 

more cooperative, the transition occurs at slightly higher IR doses but the transition 

becomes sharper. These results show that a steeply cooperative activation function of 

ATM can produce a system that transits very abruptly through the Hopf bifurcation. As a 

result, the whole model behavior of ATM and the p53-Mdm2 oscillator closely resembles 

an on-off switch with an abrupt onset that quickly reaches the saturation level (for nH >1). 

Hence, once the IR dose is sufficiently large to produce oscillations, the amplitude of the 

oscillations is essentially fixed. This mechanism presents a biologically plausible 

framework for understanding the basis of the observed digital behavior.  
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