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1 Model building

The binomial model for the molecular selection process is simple and natural. At each exper-
imental step we start out with a certain number of molecules, and a selection of those which
travel along to the next step takes place. In each experimental step, a molecule has a certain
probability to ’survive’, and that probability depends on sample t, gene g and array a and is
modulated with several covariates.

Below we discuss which covariates act in the different experimental steps, how conditional
independence among molecules can be assumed, and hence argue that in each step, a binomial
model is suitable.

Looking to the experiment from cDNA synthesis to hybridisation and washing as a whole,
the sequence of binomials will nest up. The final binomial formula connects the number of
molecules in sample t that in the end is available for imaging on spot s on array a to the
initial number of transcripts from the corresponding gene in sample t, via the over all survival
probability pt,a

s , appearing in Eq. (1) below.

Preparation of the mRNA solution.

The known quantity of material for sample t on array a is denoted q t,a, for example the
weight of mRNA after amplification. For each gene g let K t

g denote the unknown number of
transcripts per weight unit in sample t.

cDNA synthesis and dye labelling.

Dye labelled cDNAs are achieved by incorporation of Cy3-dUTP and Cy5-dUTP during or
after cDNA synthesis. The amount of dye and nucleotides are assumed to be in excess, so that
all mRNA molecules can in principle be reverse transcribed and labelled. We assume that the
expected number of actually bound Cy3- or Cy5-dUTP’s is the same for all transcripts of all
genes, since the number of binding sites, though different, is always large enough (order of a
few hundreds) to allow for such an approximation. The expected number of actually bound
CyX-dUTP’s does however depend on dye, since there is a chemical dye effect.

The qt,a · Kt
g molecules reverse transcribe and are labelled independently of each other with

a certain probability depending on gene and sample specific covariates (like purity of the
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sample). The resulting number of labelled cDNA molecules (or target molecules) for sample
t, gene g and array a, then follows the binomial distribution with parameters q t,a · Kt

g and a
certain gene and sample dependent success probability.

Purification.

The two solutions are mixed. Excessive CyX-dUTP molecules are washed away. During this
process also some of the target molecules will be lost. For sample t, gene g and array a,
given the number of molecules from the step above, the number of molecules independently
remaining in the solution after purification, is then again binomial with a certain success
probability (success now means that a molecule is not washed away, but remains in the
solution). We suggest that this probability might depend on the target sequence length of
gene g, since target length possibly influences purification as longer molecules are less likely to
be mistakenly washed away. After purification, the solution will still contain some remaining
free CyX-dUTP’s that will be washed away after hybridisation. Target length has not been
included directly in the current model because target length information was not available.
Differences in the probability of remaining in the solution specifically caused by target length
will instead be absorbed in a gene specific covariate (βg).

Hybridisation.

The variability of probe material and microarray production modulates the probability of
successful hybridisation. Both array and pen information are included as covariates in the
model, in addition to probe quantity and quality covariates. Because each of the pens is used
on a specific subgrid of the microarray, the pen effect may be confounded with spatial effects.

Quantity of the probe material may vary. A test slide of each printing batch is stained with
SYBR green, a fluorophore with specific affinity for ssDNA (1). The fluorescence intensity is
used as an estimate of probe quantity of each spot of the arrays and is included as a covariate
in the model. We do not distinguish here between spot center and periphery, assuming for
simplicity that each part of a spot is equally covered by probe. Quality of the probe material
may also vary. We distinguish two probe quality related covariates; the probe identification
(PID) and the replication identification (RID). PID and RID distinguish genes replicated with
equal or different probe sequence. PID accounts specifically for the effect of different probes,
and RID for replications of equal probe.

We assume that target molecules do not cluster nor repulse. Let na
s be the number of pixels in

spot s on array a. A proportion c ·na
s of the gene molecules in the purified solution candidates

to reach the correct spot s for hybridisation. Each of these molecules has a certain probability
to hybridise and it is reasonable to claim independence because of ’probe in excess’. Hence
again the number of molecules hybridised in spot s follows a binomial distribution. The
success (hybridisation) probability depends on probe properties and technical experimental
conditions as well as on target properties. The first two classes include probe quantity, probe
length, PID, RID, pen and array. Target length influences the diffusion coefficient of target
molecules and could have been included here also, if available. Hybridisation is assumed to
be dye independent (2), and the hybridisation probability is assumed to be constant in time.
The model does not include cross-hybridisation.

Washing.

We assume that all non-hybridised material, including unbound CyX-dUTPs, is removed
during microarray washing, but also that some hybridised molecules might disappear. The
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number of remaining molecules is binomial and the success probability depends on probe
length, reflecting the binding strength, and on microarray effects. Let the remaining number
of molecules of sample t hybridised in spot s on array a, participating in the following imaging
process, be denoted H t,a

s . Because of nesting of binomials, we get

Ht,a
s ∼ Binomial(c · na

s · q
t,a · Kt

g, pt,a
s ),

where g is the gene spotted in spot s on array a and

pt,a
s = min[1, exp{β0 + βe + βa + βp + βg + βRID + βPID (1)

+βl · [probe length] + βq · [probe quantity] + βm · [purityt]}].

The notation for the various covariates is described in the paper.

2 Reparametrisation of the model, identifiability, constraints

and hyper-priors

On top of the binomial selection model for molecules described above (Layer (i) in the paper),
we model the scanning process and measurement and residual errors, described in detail in
the paper (Layers (ii) and (iii)). The hierarchical model then reads

Ht,a
s ∼ Binomial(c · na

s · q
t,a · Kt

g, p
t,a
s ),

pt,a
s = min[1, exp{β0 + βe + βg + βm · [purityt] + β̄Xa

s }]

µt,a
s = 2fdye PMTt,a

Ht,a
s αdye,

Lt,a
j,s =

µt,a
s

na
s

+ εt,a
j,s, εt,a

j,s ∼ Normal(0, (σt,a
s )2)

where

β̄Xa
s = βa + βp + βRID + βPID + βl · [probe length] + βq · [probe quantity].

First, for computational purposes, it is useful to approximate binomials with normal densities:

Ht,a
s ∼ Normal

(

c · na
s · q

t,a · Kt
g · p

t,a
s , c · na

s · q
t,a · Kt

g · p
t,a
s · (1 − pt,a

s )
)

.

For obtaining easier convergence of the MCMC (see Supplemental Methods 3) we reparam-
eterize in such a way that all parameters appearing in the expectations can actually be
estimated on the basis of the expectation only; all the other parameters appear instead only
in the variances. To explain this reparametrisation, it is easier to use the link function exp(x)
instead of min(1, exp(x)). Note that identifiability under the relaxed link function implies
identifiability under the min(1, exp(x)) link function, because the parameter space is smaller
due to the constraint. Let

αdye = α′

dyeα

where α′

Cy5 = 1, and α′

Cy3 and α are the new parameters to be estimated, replacing αCy3 and

αCy5. In addition H̃’s and K̃’s replace the H’s and K’s, where the H̃’s and K̃’s are defined
as follows

H̃t,a
s = Ht,a

s · α

3



K̃t
g = Kt

g · α exp(β0 + βe + βg + βm · [purityt]).

Then, we observe that

H̃t,a
s ∼ Normal

(

c · na
s · q

t,a · K̃t
g · exp(β̄Xa

s ),

c · na
s · q

t,a · K̃t
g exp(β̄Xa

s )
(

1 − exp(β0 + βe + βg + βm · [purityt] + β̄Xa
s )

)

· α

)

.

Since E[Lt,a
j,s] = Ct,a · K̃t

gα
′

dye exp(β̄Xa
s ), where C t,a is a product of known constants, all

parameters except β0, βe, βm, the βg’s and α are estimable based on the mean pixel-wise values
with the described reparametrisation, when the regression of this mean on the covariates X a

s

is identifiable.

This can be guaranteed by some constraints (see below) and with a design which has the
following characteristics: some genes must be spotted at least in duplicate, with different
pens for some of these replicates, and the whole data set must include at least one loop, i.e.
a self-self array or a dye swap or a longer chain, to identify the parameters α ′

dye, βa and βp.

The parameters β0, βe, βm, α and βg are estimable from the variances and none of these
occur in the expressions for the mean. Some care is required to handle the special situation
of samples hybridised only once on one array. This happens for example in reference designed
studies. Since there is just one piece of data relative to such samples for non-repeated genes,
these data must be excluded when inference on variance related parameters is performed,
since otherwise estimated uncertainties of the concentrations will be shrunk. We operate as
follows: First we exclude all such single data points and estimate all parameters on the rest of
the data. In a reference design, this corresponds to using all data of the reference and all data
from the samples for repeated genes. We then use the posterior distribution of all parameters
as prior in the second phase, where we consider only the rest of the data (single data points).
We thus obtain the correct estimates for all concentrations, equipped with the coherently
propagated uncertainty. In practice, all is performed within MCMC: sampled values from the
posterior distribution of all parameters given the repeatedly observed samples are used in the
model for the uniquely observed data. This second phase is not necessary in loop designs or
when dye swaps are included. Finally, transcript concentrations K t

g are estimated using the

estimates of K̃t
g, β0, βe, βm, α and βg.

We need to constrain the categorical parameters for identifiability. In order to assure iden-
tifiability of the pen parameters, we use the constraint

∑

βp = 0, where the summation
runs over the P different values βp may attain, when P different pens are used. A simi-
lar constraint is used for the parameter βe describing the effect of different non-connected
experiments and the gene related parameters βg. For each set of connected experiments
e,

∑

βa = 0, where the sum runs over all arrays of the set e. Moreover, we restrict the
mean effect of all probes per gene to be zero which is achieved by applying the constraints
∑

βPID = 0, for all genes, where summation runs over all probes in the probe set of the
particular gene. Similarly, we constrain

∑

βRID = 0, for all probes, where summation runs
over all replicates for the particular probe. In addition to these constraints we consider exper-
iment (βe), array (βa), pen (βp), gene-dependent selection (βg), probe identification (βPID)
and replication identification (βRID) as random effects. Then, we have βe ∼ Normal(0, (σe)

2),
βa ∼ Normal(0, (σa)

2), βp ∼ Normal(0, (σp)
2) and βg ∼ Normal(0, (σg)

2). Since the number
of probe products per gene is usually small, we do not use separate random effects for each
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gene, but instead we have βPID ∼ Normal(0, (σPID)2) for all probe sequences. Similarly, we
have βRID ∼ Normal(0, (σRID)2) for all replications of probe. Otherwise, all hyper-parameters
are equipped with flat improper priors.

The identifiability of all parameters, including the transcript concentrations K t
g, assures that

two experiments that both satisfy the identifiability conditions above can be combined, even

when they do not share a sample and hence non-connected designs are allowed.

For completeness, we mention that the covariates probe length, SYBR green, and purity were
normalised to mean 0 and standard deviation 1.

Competition We have not included competition among molecules in our model for hy-
bridisation. This is possible to do in terms of density dependence, for example by adding the
term βK t

gene(s) in the log-probability. Then, we expect β to be negative: the larger K t
gene(s),

the more competition and hence the smaller the probability to hybridise.

Other Bayesesian microarray studies For more examples of Bayesian inference for sta-
tistical models of gene expression data we refer to Baldi and Hatfield (3) and references
therein. None of these deal with absolute concentrations.

3 Initial values and proposal functions: Details on MCMC

The marginal posteriors of interest are not available in closed form and so we use Markov
Chain Monte Carlo (MCMC) to sample from the posterior model. Specifically, we implement a
single-update random-walk Metropolis-Hastings sampler. Convergence is difficult to monitor
(4) and we used very long chains, started after burn-in with different random seeds, and
observed convergence to the same posterior parameter densities. A block-updating strategy
might improve convergence. For all the model parameters we use a uniform proposal. More
precisely, let v be the current value of the parameter p for which a new value will be proposed,
and let cp,0 and cp,1 be two constants. If the parameter is not restricted to be positive and
the prior for the parameter is Normal(0, σ2

p), draw from

U [v − cp,1σp, v + cp,1σp]

otherwise draw from
U [v − (cp,1|v| + cp,0), v + (cp,1|v| + cp,0)].

If the parameter is restricted to be positive, draw the logarithm of the parameter from

U [log(v) − (cp,1log(v) + cp,0), log(v) + (cp,1log(v) + cp,0)].

The two constants for each parameter p, cp,0 and cp,1, were tuned such that reasonable
acceptance rates were obtained.

Initial parameter estimates for α′

Cy3 and the β’s (except for β0, βm, the βe’s and the βg’s)
are found from the data using linear regression. Initial values for the variances of the random
effects, the H̃’s and the K̃’s are then computed from these estimates. In the computations of
all these initial estimates we use formulas where all random variables are substituted by their
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expectations. The parameters β0, βm, βe’s and the βg’s are initialised such that for each gene
g, the geometric mean of the selection probabilities pt,a

s becomes 0.5. Finally, α is set equal
to the geometric mean of

(H̃t,a
s − c · na

s · q
t,a · K̃t

g · exp(β̄Xa
s ))2/(c · na

s · q
t,a · K̃t

g · exp(β̄Xa
s ) · (1 − pt,a

s )).

Details on the MCMC, such as the number of iterations, are available here:

http://www.nr.no/pages/samba/area emr smbi transcount/
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4 Materials

Array Slides. cDNA microarray slides were produced at the cDNA Microarray Facility at
The Norwegian Radium Hospital (http://www.mikromatrise.no). The probes were human
cDNA clones, derived from the I.M.A.G.E. Consortium (http://image.llnl.gov), amplified by
PCR and printed to Corning CMT GAPS slides (Corning) by using a Microgrid II printing
robot (BioRobotics) with 32 pens. Each array contained 18432 spots printed in 32 subarrays.
Some probes were printed in duplicate with different pens, and some probes with different
cDNA sequence representing the same genes. Probe length ranged from 525 to over 2000
base pairs; in this latter case, 2000 was used as covariate value in our models. Furthermore,
for validation of our method, seventeen DNA control samples (Lucidea Universal ScoreCard,
Amersham Biosciences) were printed in equal amount on six of the subarrays.

Sample Preparation and Hybridisation. Total RNA was isolated by use of Trizol reagent
(Life Technologies) from samples from 12 cervical cancers. Labeled cDNA was synthesized
from 20 µg total RNA using Superscript II transcriptase (Life technologies) and FairPlay
Micriarray Labeling Kit (Stratagene) in the presence of either Cy3-dUTP or Cy5-dUTP
(Amersham Pharmacia). Each sample was co-hybridized with a reference sample pooled
from 10 cancer cell lines (Stratagene) in a dye-swap design, yielding totally 24 data sets in
the analysis.Validation was performed adding two control samples, each containing 17 different
mRNA sequences, pre-mixed at specific concentrations (Lucidea Universal ScoreCard). 0.5
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µl of each sample was used, corresponding to a number of transcripts in the range of 5.8 ×
105 −5.8×109. The concentration ratios achieved when hybridising the two samples together
were 1:1, 1:3, 3:1, 1:10, and 10:1 at high and low level concentrations. The control samples
were prepared as described by the manufacturer and subjected to cDNA synthesis and dye
labelling as described in the paper. The labelled samples were hybridized together in a dye-
swap design. Hybridisation was performed overnight at 65oC by use of Genetac hybridisation
station (Perkin Elmer).

Scanning and Image Analysis. The slides were imaged at a resolution of 10 µm using
an Agilent G2565BA scanner (Agilent Technologies), using a laser power and PMT voltage
of 100%. Saturated spot intensities were corrected using the algorithm described previously
in Lyng et al (2004) (reference (19) in the paper). The GenePix 4.1 image analysis software
(Axon Instruments) was used for spot segmentation and intensity calculation. Bad spots and
regions with high unspecific binding of dye were manually flagged and excluded from the
analysis.

5 Quantitative real-time PCR

The pre-designed, gene-specific TaqMan gene expression assays (Applied Biosystems) Hs00364847
m1 (CDK4), Hs00170025 m1 (CTNNB1), Hs00606086 m1 (HK2), Hs00153408 m1 (MYC),
Hs00193257 m1 (CSTA), Hs00607118 m1 (PPT2), Hs00277039 m1 (CCND1), Hs00176865
m1 (PDK2) and 4326322E (TBP) were used. All assays except 4326322E had a FAM reporter
dye at the 5 end of the probe and a non-fluorescent quencher at the 3 end, whereas a VIC
reporter dye was used in the TBP-assay. Conditions for amplification were one cycle of 95
degrees Celsius, 10 min, followed by 40 cycles of 95 degrees Celsius, 15 sec and 60 degrees
Celsius, 1 min.

7



6 Figure 1

This figure should be seen together with Figure 3 in the paper. Figure below is based on
background corrected data.

Supplementary Material Figure 1: qRT-PCR validation of the methodology to estimate
absolute numbers of transcripts. Transcript concentration (number of transcripts per µg total
RNA) of 10157 genes and ESTs in twelve cervical tumors and a pool of ten cancer cell lines was
determined with our technique, and the data of eight genes covering the whole concentration
range were plotted against the corresponding data achieved with qRT-PCR. There was a
strong correlation between our estimates and the qRT-PCR data (r = 0.79, p < 0.0001,
Pearson Product Moment Correlation). There was also a significant correlation for individual
genes in some cases, despite a limited concentration range (r = 0.60, p = 0.03, CCND1;
r = 0.83, p = 0.0005, CSTA; r = 0.58, p = 0.04, HK2).
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7 Figure 2

Supplementary Material Figure 2: This figure should be seen together with Figure 5 in
the paper. It shows transcript concentration (number of transcripts per µg total RNA) for the
same ten highly concentrated genes in cervix cancer. The figure below is based on background
corrected data. As expected, background correction hardly influenced the estimates for high
concentrations.
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8 Figure 3

Supplementary Material Figure 3: Transcript concentration (number of transcripts per
µg total RNA) for ten genes in cervix cancer with estimated mean concentration without
(A) and with (B) background correction. Note that the x-axes correspond to different scales.
All genes were selected so to have lowest concentration but valid data for all 12 tumors.
Each point represents the estimated value of a single tumor. Large differences in transcript
concentration among the tumors were found, especially for background corrected data (B),
which seems to increase variability a lot. The within gene range (max-min) varies from 2.5-
fold (FGL1) to 10-fold (122702) for uncorrected concentrations and 20-fold (C4A) to 100-fold
(MAG) for background corrected concentrations.
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