Supplementary Materials for

Chemical Synthesis and Thermodynamic Characterization of Oxanine-Containing Oligodeoxynucleotides

Seung Pil Pack^{1,2}, Mitsuru Nonogawa³, Tsutomu Kodaki^{2,3} and Keisuke Makino^{1,4}*

¹ International Innovation Center, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan, ² CREST, JST (Japanese Science and Technology), Kyoto University, Gokasho, Uji 611-0011, Japan, and ³ Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan.

Figure Legend

Figure S-1. Preparative RP-HPLC separation of the HNO₂-treated dGuo solution. Reaction condition: dGuo; 100 mM, HNO₂ solution; a mixture of NaNO₂ (100 mM) and sodium acetate buffer (3.0 M, pH 3.7), temperature; 45° C, time; 4 hr. HPLC condition: mobile phase; sodium phosphate buffer (400 μ M, pH 7.4) containing 10% CH₃CN, flow rate; 6 ml/min, column; preparative COSMOSIL C₁₈-PAQ (250 x 28 mm, 5 μ m; Nacalai Tesques (Osaka, Japan)).

Figure S-2. RP-HPLC separation of DMT-dOxo and by-product generated from dOxo in the 5'-*O* selective dimethoxytritylation for 3 hr. Rreaction conditions: dOxo, 4-4'-dimethoxytritylchloride, DIEA-Mes and imidazole (the molar ratio being 1: 2: 2: 2). HPLC conditions: mobile phase; 90% aqueous methanol, flow rate; 0.7 ml/min, column; Ultron VX-Nucleotide (150 x 4.6 mm, 5 μm; Shinwa Co. (Kyoto, Japan)).

Figure S-3. ¹H NMR (a) and ¹³C NMR (b) spectra (CD₃CN at 30°C) of DMT-dOxoamidite, which was prepared by phosphoramidation of DMT-dOxo using 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphoramidite and tetrazole in anhydrous CH₃CN, 3 hr.

Figure S-4. Mass spectroscopy analysis (FAB; m/z 1504 (M+H⁺)) of 5 mer Oxa-ODN

(5'-GCOAT-3'; $C_{49}H_{61}N_{19}O_{29}P_4$ (theoretical MW: 1503.283318)), synthesized by the method established here. (note : Matrix; glycerin, Inlet; direct, Ion mode; FAB+, Spectrum type; Normal ion [MF-linear], RT; 0.70min, Scan; (2,13), BP; m/z 102.000, Int.; 1599.98, Output m/z range : 102.000 to 159.9097, Cut level; 0.00%).

Figure S-5. CD spectra data for investigating the base-pair effect of Oxa on whole structure of DNA duplex at 37° C (total concentration of the samples; 16 μ M, buffer; 1 M NaCl, 10 mM Na₂HPO₄, 1 mM Na₂EDTA (pH 7.0)). All the CD data were accumulated 10 times and processed through a noise reduction program.

Figure S-6. Linear van't Hoff equation plotting of $T_{\rm m}^{-1}$ vs $\ln(C_t/4)$ for getting thermodynamic parameters, ΔH° and ΔS° of DNA duplexes containing O:N base pairs and G:C match.

Figure S-1.

Figure S-2.

Figure S-3.

Figure S-3. (continued)

Figure S-4.

Figure S-5.

Figure S-6.

