		Value and units			
			Guatemala		
Parameter	Definition	Cameroon		Venezuela	Source
	Per capita mortality rate of L3				
σ_L	larvae		$104 { m yr}^{-1}$		1, 2
	Per capita mortality rate of				
μ_V	uninfected vectors		52 yr^{-1}		1, 2
	Excess vector mortality rate		1	1	
α_V	induced per microfilariae (mf)	0.60 yr^{-1}	0.43 yr^{-1}	0.60 yr^{-1}	2
φ	Adult worm mating probability		1		1, 3
	Per capita fecundity rate of				
	female adult worm scaled per mg				
F	of skin		$0.67 { m yr}^{-1}$		1, 4
	Maximum establishment				
	probability of an L3 larva within				
2	a human (as transmission rate		2		
O_{H_0}	tends to zero)		8.54×10^{-2}		*
	Minimum establishment				
	probability of an L3 larva within				
8	a human (as transmission rate		2		
$0_{H_{\infty}}$	becomes infinitely large)		2.99×10^{-2}		2
	Severity of transmission rate-				
	dependent constraints upon larval				
c_H	establishment within humans		$5.86 \times 10^{-3} \text{ yr}$		2
	Probability that a mf becomes an				
8	L3 larva within the vector (in the	0 00 70		0.0015	
O_{V_0}	absence of density dependence)	0.0050	0.0005	0.0015	Ť
	Probability that an L3 larva is		0.5		F - 2
a_H	shed during a blood meal		0.5		5,6

Table 4. Other parameters of the model

*In line with the value of 7.12×10^{-2} (3.82×10^{-2} , 14.91×10^{-2}) estimated in ref. 2. [†]The difference with respect to values previously estimated (2) compensates for the lack of density-

The difference with respect to values previously estimated (2) compensates for the lack of densitydependent larval establishment within the vector in this model and is consistent with the relative competence of the various vector species.

- 1. Basáñez, M.-G. & Boussinesq, M. (1999) Philos. Trans. R. Soc. London B 354, 809-826.
- 2. Basáñez, M.-G., Collins, R. C., Porter, C. H., Little, M. P. & Brandling-Bennett, D. (2002) Am. J. Trop. Med. Hyg. 67, 669–679.
- 3. Anderson, R. M. & May, R. M. (1991) *Infectious Diseases of Humans: Dynamics and Control* (Oxford Univ. Press, Oxford).
- 4. Duke, B. O. L. (1993) Trop. Med. Parasitol. 44, 61-68.

5. Renz, A., Fuglsang, H. & Anderson, J. (1987) Ann. Trop. Med. Parasitol. 81, 253–262.

6. Renz, A. (1987) Ann. Trop. Med. Parasitol. 81, 239–252.