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ABSTRACT The cable model of a passive, myelinated fiber is derived using the theory of electromagnetic propagation in periodic
structures. The cable may be excited by an intracellular source or by an arbitrary, time-varying, applied extracellular field. When the
cable is stimulated by a distant source, its properties are qualitatively similar to an unmyelinated fiber. Under these conditions
relative threshold is proportional to the cube of the source distance and inversely proportional to the square of the fiber diameter.
Electrical parameters of the model are chosen where possible, from mammalian peripheral nerve and anatomic parameters from
cat auditory nerve. Several anatomic representations of the paranodal region are analyzed for their effects on the length and time
constants of the fibers. Sensitivity of the model to parameter changes is studied. The linear model reliably predicts the effects of
fiber size and electrode-fiber separation on threshold of cat dorsal column fibers to extracellular electrical stimulation.

INTRODUCTION

There have been many attempts to model electrotonus
in myelinated nerve analytically. Most studies treat the
node as a lumped parameter with a distributed parame-
ter internode (18, 24, 26, 30, 34, 35, 43, 44). Koide was
the first to consider a completely distributed node-
internode unit, but his analysis was limited to the DC
case (23). Dun performed the first AC analysis for the
distributed node-internode, making predictions of nodal
anatomy (15). Although an error in his logic was
reported by FitzHugh (18), Dun's technique for calculat-
ing the complex attenuation constant of the node-
internode unit was correct. A similar approach, taking
advantage of the near periodicity of myelinated fibers,
will be used in this study.

In previous papers (41, 42), the history of models for
extracellular electrical stimulation of nerve has been
reviewed and a technique described for applying cable
models of unmyelinated fiber to the problem of extracel-
lular stimulation. Since then, models for stimulation of
fiber bundles have been reported using a bidomain
model to account for current flow in both intracellular
and interstitial compartments (2, 36). Others have con-
sidered the effects of the statistical distribution of fiber
size, position, and nodal location (46). Rattay has
demonstrated the importance of the "activating
function," the second spatial derivative of the stimulus
field (39). Andrietti and Bernardini have illustrated that
an "equivalent" uniform representation of the myeli-
nated fiber is a useful approximation of the segmented
model (4). Colombo and Parkins have used a spatially
extended modification of the McNeal model (27, 40) to
explain the long chronaxies associated with electrical

stimulation of the auditory nerve (14, 33). This model
included an excitable unmyelinated terminal on the
peripheral dendrite of the spiral ganglion cell.
As McNeal pointed out, the weakest part of his model

was the assumption that the myelin sheath is a perfect
insulator (27). He had no means to analyze the error
induced by this assumption but did not believe it should
significantly affect the strength-duration curve. It will be
demonstrated here that the effect of myelin conductance
and capacitance significantly increases the time constant
for extracellular stimulation of a passive cable. This
result must also apply to nonlinear cables. Thus, any
attempt to derive the chronaxie of a model auditory
nerve fiber must account for the myelin resistance and
capacitance, as was done in a recently reported model of
cochlear implantation (16).

In this paper, model results will be compared with
single unit recordings from electrically stimulated cat
dorsal column fibers as described by BeMent and Ranck
(7). Their results were modeled using a steady-state
approach, and ignored current flow across the inter-
nodal membrane (8). It will be demonstrated that a
cable model for electrical stimulation of myelinated
fiber can account for the observed threshold changes
due to changes in fiber size, electrode-fiber separation,
and stimulus polarity.

MODEL AND ASSUMPTIONS

The model myelinated fiber and monopolar stimulating
electrode are illustrated in Fig. 1. The physiological
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FIGURE 1 Myelinated fiber model in the field of a monopolar spherical current source. Fiber extends to + and -oo as indicated by the arrows.

assumptions are those of FitzHugh (17): (a) The fiber is
represented by an equivalent circuit consisting of an

axial resistance and membrane resistance and capaci-
tance distributed in x. (b) One-dimensional longitudinal
flow of intracellular current is present. (c) One-
dimensional radial flow of membrane current is present.
(d) The membrane properties of the axon may be
represented by interspersed regions of nodal and inter-
nodal membrane impedance. (e) Nodes of Ranvier are

periodically distributed inx.
In addition, the membrane is assumed to be purely

passive, with no voltage sensitive conductances and with
electrical properties comparable to those of a true fiber
near the resting potential. The fiber is placed in a purely
resistive, homogeneous, and isotropic medium. It is
assumed that the presence of the fiber does not distort
the applied extracellular field.
The symbols to be used are defined in Table 1. Model

fiber parameters, chosen to represent an average sized
peripheral process of a cat spiral ganglion cell at 37°C,
are given in Table 2.

THEORY

In this section the equations describing electrotonus of a
myelinated fiber will be derived. The results will permit
the derivation of an expression describing the mem-
brane potential of a passive myelinated fiber induced by
any extracellular field. First a Green's function will be
obtained for a uniform cable and for simple nonuniform
cables. Floquet's theorem will be applied to determine
the Green's function for a periodically nonuniform
cable. Integration of this Green's function over the
applied extracellular field gives the desired result: the
membrane potential induced by that field.
The application of cable theory to the problem of

extracellular electrical stimulation of uniform axons
results in the following partial differential equation for

the intracellular potential V(x, t)

-2V,, + TVt + V= T + r't, (1)
where T(x, t) is the applied extracellular field and V,.S is
the second spatial derivative of V in the x direction (39,
41). An alternative solution to this equation than that
given in reference 41 is obtained by taking the Fourier

TABLE i Symbol definitions

Symbol Definition Units

a Internodal axon radius mm
cl Nodal membrane capacitance F/mm
C2 Internodal membrane capacitance F/mm
Cl Specific node capacitance F/mm2
d Internodal axon diameter mm
D Internodal fiber diameter mm
g Axon/fiber diameter (dID)
I Current through source electrode mA
k Spatial frequency radians/mm
1 Unit fiber length (21, + 12) mm
II Half of node length mm
12 Internodal length (L * D) mm
L Internodal length/fiber diameter
A,I Nodal length constant mm
X2 Internodal length constant mm

'I(x, z, t) Extracellular applied potential mV
Q Complex attenuation constant mm '
p Resistivity of medium fQmm
ra Axial resistance fQ/mm
r, Nodal membrane resistance fQmm
r2 Intemodal membrane resistance fQmm
Ra Axoplasm resistivity fQmm
R, Specific node resistance Qmm2
t Time ms
T, Nodal time constant ms
T2 Internodal time constant ms

V(x, t) Intracellular potential mV
Vm(X, t) Membrane potential mV
X Temporal frequency radians/ms
x Distance along fiber mm
z Distance from fiber mm
Z Input impedance fQ
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TABLE 2 Model fiber parameters at 37°C

Parameter Value Reference

d 1.5 ,um 25
D 2.5,um
g 0.6 5
L 92 5,25
21, 1pm 9,25
12 230,um
1 231 ,um
Ra 1,063 flmm 28
R, 831 lmm2 12,13
C1 0.041 pyF/mm2 12
r2 209 MfQmm 45
C2 1.6pFlmm 45
Xl 17.1 p.m
X2 589 pm

34.1 p.s
T2 334.4 ,us

Values without references are calculated from referenced values. In
deriving specific membrane properties, node length is considered to be
1.5 ,um for the large fibers used in the voltage-clamp studies (9).

where A is obtained by integrating the differential
equation for the Green's function from 0- to 0+,
yielding

G(x- Q lG(2C)~eII (3)

Note that if spatial frequency is denoted by k, the
Fourier transform in x of G is

G = Q2

GQ~2+ k2(4

which is the spatial frequency response of the continu-
ous axon as given in reference 41.

If the axon is placed in the field of a monopolar point
source at (x = 0, z) passing a current I, the Fourier
transform of the intracellular potential is given by
convolving the Green's function, given by Eq. 3, with the
applied field I(x, z). This has a closed form solution at
x = 0 which is given by

transform of Eq. 1 with respect to t. This gives

P. - Q2- Q21P

where

Q = Fi+ ](T.
X

(2)

The Green's function of the Fourier transform of V,
G (x, w) is obtained by assigning T(x, t) = 8(x) b(t)

G=E+eQX+EeQx x>0,

where the first term on the right is the positive-going
signal and the second is the negative-going signal. Q is
the complex attenuation constant. As the solution to the
homogeneous or undriven equation is also an exponen-
tial, Q is identical to that derived for intracellular
stimulation. Later it will be shown that Q is of great
importance in describing the extracellular "polarizability"
of a fiber.

Uniform axon

Consider an infinitely long, uniform axon with a spatial
impulse located at x = 0. The Green's function of the
frequency response, G(x, w) is given by

G- Q2G = -Q2'(x).

The only physically possible solution is the decaying
signal,

G(x, w) = Ae -QIXI

Manipulating Eq. 5, using (3.387) of reference 21 and
subtracting the external field gives the transmembrane
potential

_pIQ pI
Vm(Z, w) = 8hQ [HO(Qz) - NO(Qz)] -

where Ho is the Struve and No the Bessel function of the
second kind of order zero.

The spatial Fourier transform of the intracellular
potential at x = x', x' 0, is obtained by multiplying the
spatial frequency response of the axon given in Eq. 4 by
the spatial Fourier transform of the applied field. Using
(3.754) of reference 21 and the shifting rule for Fourier
transforms gives the spatial frequency content for the
applied field T(x - x') produced by a point current
source at (x', z)

2 K,(IkIIzI )e-j1'x.

Thus, the intracellular potential is given by an inverse
Fourier transform

V(X, z, o) = kKo(Ikllzl)e k(x-x)dk. (8)

Note that at x = x' this reduces to an integral found in
(6.566) of reference 21 which returns the closed form
given in Eq. 6.

54 ipyia ora

V(Z,) 8r x +z
dx. (5)

(4)

(6)

(7)

540 Biophysical Journal Volume 60 September 1991



Nonuniform axon

Consider a nonuniform axon composed of multiple
segments i each of length lj. Each segment may have
different properties but the properties do not vary within
a segment. Properties for segment i are denoted with a

subscript i. For the case of zero extracellular potential,
the intracellular potential is given by Eq. 1 in each
segment. Thus, the longitudinal current and intracellu-
lar potential for the ith segment may be written

ra

V1(x) = V1(O) cosh Qix - Ij(O) Q- sinh Qix 0 < x < 1i (9)

Ij(x) = - V1(O) sinh Qix + Ii(O) cosh Qix 0 S x li, (10)

where x = 0 is at the beginning of the segment, ra is the
axial resistance per unit length, and Qi is the complex
attenuation constant for that particular segment as given
by Eq. 2. These may be arranged to form a matrix
equation relating the input and output of the segment

[Vj(O) pAi Bil (V(Ii)
[I1(0)1 [AC DB. [I#(i,)

Simple manipulation yields

A = cosh Qii

=i Q- sinh Qii
Q.

C, =
r

sinh Q/,
D, =4j.

If several segnents are linked together, the input and
output are related by the product of the transmission
matrices for each segment. For a three-segment cable
where the third segment is identical to the first, the
matrix coefficients are given by

A =A2A2 + A1B1C2 +AB2C, +A2B1Cl
B = 2A1A2B1 + BIC2 +A IB2
C = 2A A2C, +A C2 + B2C2
D =A.

Periodically nonuniform axon

Consider the node-internode unit, illustrated in Fig. 2.
Apply the results of the previous section to the case of an
infinitely long, myelinated fiber, exicted by an extracellu-
lar spatial potential impulse or by an intracellular point
source. Because each node-internode unit is exactly like
any other, the membrane potential at any point will be
identical to the membrane potential one unit away,

L2
.._ ..., .. ...... . ..._.

D (1) (2) .1 (3) d

iJ

L

FIGURE 2 The node-internode unit.

decreased in amplitude and increased in phase. Thus
although the field changes nonuniformly within a unit, it
decays uniformly from unit to unit, or

V(x + l) = V(x)e -Ql

I(x + 1) =I(x)e -Q,

where Q is the attenuation constant for the node-
internode unit and I is the length of the unit, 21, + 12. This
represents the application of Floquet's theorem to a

periodic cable (47). Note that this uniform unit to unit
decay holds only if the extracellular potential is zero.

This is the case for a fiber in an infinite medium with an

intracellular source or with extracellular stimulation by a
spatial impulse.

Letting = e Qland defining the intracellular potential
and longitudinal current at the end of the node-
internode unit as Ve and Ie respectively, we see that

[C Di [l] [Ie]
which requires that the determinant

A -n B
C D

=

Considering only the positive going, or decaying wave,
the solution of the resulting quadratic yields

1

Q= -cosh-1A.- (11)

It will be demonstrated that the Q given by Eq. 11
approximates a weighted average of the attenuation
constants Qi for each segment of the periodic cable.

Thus, if the voltage is specified at a point, say V(O) =

VO, it is known at all integral multiples of I through

V(nl) = Voe n = 0,1,2,...

and within a segment through the use of Eqs. 9 and 10. A
simple example of this is seen with intracellular stimula-
tion. An intracellular electrode, passing a current Io is
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placed at the center of a node atx = 0. The extracellular
resistance is assumed negligible and the membrane
parameters are defined in Table 2. VO can be determined
from

[Vo] _A B][Voeo'

1IO] IC DJ [I0e
which reduces to

B
VO = IoeQe -A

defining the input impedance Z. The exact solution for
the membrane potential is then given by Eqs. 9 and 10.
An approximate solution may be obtained by

V= IoZe -'. (12)

These are both plotted in Fig. 3. Electrotonic decay in
myelinated fibers appears piecewise-linear with changes
in slope occuring at nodes of Ranvier. A detailed view of
this slope change is given in Fig. 4. It shows the
membrane potential in a node and its neighboring
internode when the fiber is stimulated by an intracellular
electrode one node away. Although electrotonic decay is
exponential in uniform node or internode, there is an

impedance mismatch at the node-internode junction
when the two are combined. This mismatch results in
approximately linear electrotonic decay along the inter-
node. The slope of decay changes at nodes so that the
node to node decay is globally exponential.

150.0

node

E 100.0

o

0

0 50.0

0.0
0.0 0.1 0.2

Far-field solution
The previous section indicates that the exact solution for
the Green's function of a periodic cable is cumbersome.
It is difficult to integrate the Green's function over a

continuous applied field because the function is de-
scribed by different equations in each segnent. This
theory, while complex, yields important results and is
described in the appendix. For the special case of
far-field solutions, it is possible to avoid complication
provided the above exact Green's function can be
approximated by the continuous function

G(x) =Q eQW (13)

Andrietti and Bernardini have performed a similar
approximation for current flow in a myelinated fiber (4)
but did not take advantage of periodicity. Eq. 13 is
identical to Eq. 3 for a continuous cable but Q is
obtained from Eq. 11 instead of Eq. 2. It equals the exact
solution at the center of each node and as such repre-

sents spatial samples of the exact solution. In theory the
approximation will be accurate if the sampling fre-
quency exceeds the Nyquist rate. This will be the case if
the applied field has no spatial frequency components
greater than one-half the spatial sampling frequency,
two pi times the reciprocal of the length 1 of the unit
membrane. Fig. 5 illustrates the spatial frequency con-

tent of the approximate response of a model fiber to a

monopolar point source at three distances, z. This

exact
exponential

nods

0.3 0.4

x (mm)

0.5

54 B_py Jora Voum 60 Setmer19

FIGURE 3 Membrane potential at first three nodes for intracellular stimulation at center of first node. Stimulus is 1 nA DC current. Fiber
parameters from Table 2. Exact solution given by Eqs. 9 and 10. Exponential or approximate solution given by Eq. 12.
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FIGURE 4 Detail of membrane potential in vicinity of the second node for the fiber model in Fig. 3.

response is calculated by multiplying the spatial fre-
quency content of the source, Eq. 7 with x' = 0, by the
spatial frequency response of the approximation, Eq. 4,
for the DC case. The bulk of the energy for all three
distances lies at spatial frequencies less than k = 6.8,
one-fourth of the sampling frequency. Thus, for stimulat-
ing myelinated fibers where the length I < 0.231 mm and

0.05

0.04

E 0.03
>

0' 0.02
E

0.01

0.00 1-
0.0

the distance z 2 1 mm, the approximation given by Eq.
13 is not degraded by aliasing. The distance z beyond
which this approximation becomes valid is smaller at
higher temporal frequencies. Because the internodal
distance 12 = 1 - 211, calculations such as those in Fig. 5

can define the fiber sizes and perpendicular distances z

for which the far-field approximation applies.

2.0 4.0 6.0 8.0

k (spatial frequency)
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FIGURE 5 Spatial frequency content of far-field response to a monopolar point source at z = 0.75 mm, z = 1 mm, z = 1.5 mm. Model fiber
parameters given in Table 2. Units of spatial frequency are radians per millimeter. Temporal frequency is DC and pI = 27r V mm.
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RESULTS

Membrane potential profiles
Consider an infinite myelinated cable with parameters
defined in Table 2. Place it in a homogeneous, isotropic
medium of resistivity p with a monopolar point source
passing a current I at a distance z from the closest node
of Ranvier. This node and the source are both posi-
tioned at x = 0 as illustrated in Fig. 1. As long as z > 1
mm, a distance chosen somewhat arbitrarily from Fig. 5
to represent a conservative value, the far-field approxi-
mation applies and the intracellular potential at the
center of each node is given by Eq. 8 with Q given by Eq.
11. These two equations can be rapidly solved on a small
computer and the membrane potential plotted for vari-
ous stimulus frequencies and source distances.

Figs. 6 and 7 illustrate the effect of varying source
distance and stimulation frequency on the spatial distri-
bution of the passive membrane response. These figures
are useful in the construction of nonlinear models, as
they may help decide parameters such as the number of
active nodes and the total fiber length needed to create
an adequate numerical model for a given stimulation
paradigm. The figures also illustrate that the distribution
of membrane potential is affected differently by in-
creases in distance and frequency. Although both de-
crease the response of the fiber model, increasing z
increases the spread of membrane potential within a
fiber, while increasing frequency decreases this spread.
The curves in Figs. 6 and 7 are qualitatively similar to

1.0

1-1E

aD1

0.5 '

0.0

-0.5
0.0 1.0

those obtained for unmyelinated cables, as the equation
from which they are obtained has the same form. The
quantitative difference results from the use of a different
attenuation constant Q. For a myelinated cable, Q
approximates a weighted average of the attenuation
constants of the node and of the internode. Another
major difference is that these curves are only an accurate
portrayal of the membrane potential at the nodes; they
do not necessarily apply between nodes. Because fiber
excitation only occurs at nodes, however, this is not a

significant restriction.

Nearest node
At the center of the node nearest to the electrode, or
x = 0, Eq. 8 reduces to Eq. 6. Because only the far-field
case is being considered at present, a further simplifica-
tion is possible. For large values of the argument Qz, Eq.
6 has an asymptotic expansion, given in reference 1,
which rapidly converges. For Qz >> 1, the first term of
this expansion alone is sufficient to give an accurate
estimate. Under these circumstances, and subtracting
the extracellular potential, the membrane potential
becomes

(14)(Z, (A)) =
4'irrQ23

This simple expression defines the important geometric
parameters of extracellular electrical stimulation. It
demonstrates that the induced depolarization is propor-

2.0

x (mm)

3.0 4.0
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FIGURE 6 Profiles of the steady-state membrane potential for DC step, 3 and 10 kHz stimuli. Current is 1 mA at z = 1.5 mm. Results valid only at
nodes of Ranvier.
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FIGURE 7 Profiles of the steady-state peak membrane potential for a 1-mA DC step positioned at z = 1.5 mm, z = 2 mm, and z = 2.5 mm. Results
valid only at nodes of Ranvier.

tional to both the current applied and to the resistivity of
the medium separating electrode and myelinated fiber.
Likewise, the response is inversely proportional to the
cube of the distance separating electrode and fiber. A
dimensional analysis of threshold awaits further discus-
sion of the attenuation constant Q, but it should be clear
now that these relations must also hold for a nonlinear
fiber model up to threshold if the excitable membrane
properties are not varied between fibers. The threshold
current for initiation of an action potential in a distant
fiber should be proportional to the cube of the distance
between the fiber and a monopolar electrode and
inversely proportional to the resistivity of the medium
separating them.

Distance curves

Using Eq. 6 it is possible to determine the relative
response of the nearest node as the perpendicular
distance of the node to the source is varied. As noted
above, this should approach an inverse cubic relation-
ship as the distance becomes large. Fig. 8 shows the
relative fiber response as a function of distance at two
frequencies, determined from Eq. 6. It shows that as
stimulation frequency is increased, so is spatial selectiv-
ity. If an array of fibers is located at a variety of distances
from a source, a high frequency stimulus will better
select for the near fibers than will one at a low fre-
quency. This property of stimulus frequency is the same
as that previously described for unmyelinated fibers
using a spatial frequency analysis (41). Although the

linear theory is sufficient to describe the existence of this
phenomenon, a quantitative analysis requires a nonlin-
ear model because sodium channel activation is a

frequency-dependent process.

Electrical tuning curves

The same calculations used in Fig. 8 can be used to plot
the relative response of the nearest node as a function of
frequency. This is shown in Fig. 9 which plots the
electrical tuning curve of the nearest node for a variety
of source distances. It is clear that the shape of the
tuning curve, described by its time constant, is a function
of distance from the stimulating electrode. The time
constant increases with increasing distance of the source,
up to -z = 3 mm, and remains constant with further
distance increases. This maximal time constant is a
fundamental property of the membrane and as will be
demonstrated below, approximates a weighted average
of the nodal and internodal time constants.

Closer look at Q and dimensional
analysis
It has previously been stated, without proof, that Q as
determined by Eq. 11 is a weighted average of Q, and Q2.
The subscript 1 refers to the node and 2 to the
internode. Given

1

Qi= + ijTj,
xi
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FIGURE 8 Relative magnitude of the membrane potential (fiber response) at nearest node as a function of electrode distance for DC step and 10
kHz stimuli. Responses are normalized to those at 0.75 mm.

where Xi and Tr are the length and time constants of the
section under consideration, consider a node-internode
unit for the DC case when X = 0. Under these
circumstances Qi = 1/1X. Assume that Q can be similarly
represented by

1

Q = + jwir.
x

m

0)

0O
0.

.0_

For the DC case then Q = 1/X. Because X = l/, it is
straightforward to apply the usual rules for lumping the
parallel membrane resistances of the node and inter-
node to show that

(15) (16)
1 1 211 12
A2 21, + 12 A2 A2 .

1o0 102 1o3

frequency (Hz)

15.0

10.0

5.0

I 0.0
1o4
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FIGURE 9 Relative tuning curves for sources positioned at z = 0.75 mm, z = 1.25 mm, z = 3 mm, and "far." Fiber responses are normalized to the
10 kHz response. The "far" curve is calculated from Eq. 14.
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Thus X, the length constant of the lumped node-
internode, is the weighted average of A for the node and
for the internode. The lengths of the segments form the
weights. A similar approach can be taken with the
membrane capacitance and time constant to yield an

equation for the overall time constant of the node-
internode unit

21 X2rT + 12X1'T2
21X\ + 12X2 (17)

The time constant T is then also a weighted average of
the nodal and internodal time constants. It is the
maximal time constant shown in Fig. 9.

Fig. 10 shows Q as a function of frequency calculated
both from Eq. 11 and from Eq. 15, where X and T are
obtained from Eqs. 16 and 17, respectively. The closely
overlapped curves indicate that at least for this range of
frequencies, Q can be represented by Eq. 15. Under
these conditions, the membrane potential of the nearest
node, Eq. 14, becomes

-pI,2
(Z (a.) = )(18)47,, (1 + jwT) (8

Eq. 18, the frequency response of a simple R-C lowpass
filter, can be simply transformed into the time domain
and the resulting impulse response integrated to yield
the step response

V.(Z t) = 43 (1 - e-t/) (19)

5.0

4.0

E
1-1

t 3.0
a

° 2.0
cr
a

1.0

0.0O
0.0

Thus, in addition to the effects of distance and resistivity
noted above, the electrical threshold for initiation of
action potentials to sinusoidal or pulsatile stimuli is
inversely proportional to the square of the fiber's length
constant. This permits a simple dimensional analysis of
fiber threshold.
For an unmyelinated fiber, or for the nodal segment of

a myelinated fiber, the length constant is given by

4Ra

For the myelinated internodal segment

X2 = a 2a
=

Therefore X, the overall length constant of the node-
internode unit will have a dependence on axon diameter
d, somewhere intermediate between the half and first
power. This intermediacy will be determined by Eq. 16
which shows that the weights for the weighted average
are decided by the relative lengths of the node and
internode segments. Because the internode is far longer
than the node, the linear term must predominate if
internodal length is proportional to fiber diameter. This
is shown in Fig. 11, demonstrating the linear relation
between A and fiber diameter. From the definition of Q,
Eq. 15, it should be clear that the imaginary part of Q,
the internodal delay, is inversely proportional to fiber
diameter. Therefore the length constant is approxi-

2000.0 4000.0 6000.0 8000.0

frequency (Hz)

10000.0
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FIGURE 10 Real and imaginary parts of Q as a function of frequency. Q computed by the exact technique of Eq. 11. Qa by the weighted average
technique of Eq. 15.
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FIGURE 11 Length constant, X, as a function of fiber diameterD as given by Eq. 16. The solid line is for intemodal length proportional to fiber
diameter. The interrupted line is for constant internodal length.

mately proportional to the fiber diameter for the same

reasons conduction velocity is approximately propor-
tional to fiber diameter in myelinated fibers (20, 22).

Thus, for far-field stimulation under the given assump-
tions, the electrical threshold for initiation of action
potentials at the nearest node is inversely proportional
to the square of the fiber diameter. It should therefore
be possible to account for the range of far-field electrical
thresholds encountered in a fiber bundle by the range of
fiber diameters present in the nerve if the active fiber
properties are uniform throughout this range.

Fig. 11 also shows that a nonlinear relation between
length constant and fiber diameter is possible if inter-
nodal length is not linearly related to fiber diameter.
While much anatomic and indirect electrophysiological
data attests to the linearity of this relation (32), rigor
demands direct histologic verification without possible
corruption by fixation artifact.

Effects of the myelin sheath
The simplifications derived in the previous section
permit a straightforward analysis of the effects of the
myelin sheath on the strength-duration curve. Since the
McNeal model was first developed (27), numerous

nonlinear models have been described which assume the
myelin to be a perfect insulator (14, 40). Following
McNeal, these models assume that the myelin sheath
does not significantly affect the strength-duration curve.

Eq. 17 illustrates the fallacy of this assumption.
If the myelin resistance approaches an infinite value,

then the internodal length constant X2 also approaches
infinity. Under these circumstances Eq. 17 becomes

Ir = TV

The overall membrane time constant equals the specific
time constant of node. Using the data set in Table 2, one
can see that the nodal time constant, T, = 34.1 p,s, is
significantly less than the time constant computed using
both nodal and internodal data, r = 84 ps. Bostock has
shown that the nonlinear strength-duration time con-
stant is larger than, and is a linear function of the
membrane time constant (11). Therefore, a nonlinear
model assuming that myelin is a perfect insulator will
also underestimate the strength-duration time constant.

Models of the node-paranode region
It should be clear from the discussion of the attenuation
constant Q, that changes in extracellular "polarizability"
secondary to changes in passive membrane properties
are entirely reflected by changes in Q. In short, the
induced membrane potential at a given distance scales
with Q. It is therefore possible to study different models
of myelinated cables by examining the effects of changes
in model parameters on Q. An important example of this
was shown above in the discussion of the myelin sheath.
A related question is the effect of different parameters
defining the paranodal region.
The passive electrical properties of the paranodal

region are uncertain at this time (12). Given this
uncertainty, it is useful to examine a range of possible
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models for their effects on extracellular excitability. In
order of increasing complexity, it seems reasonable to
consider six different node-paranode descriptions: (a)
Classical Model: Nodal and internodal axon are the
same diameter. Paranodal membrane properties are
identical to internode. (b) Constricted Node Model:
Nodal diameter is smaller than internodal diameter.
Paranodal membrane properties are identical to inter-
node. (c) Constricted Paranode Model: Nodal and
paranodal diameters are smaller than internodal diame-
ter. Myelin attachment segment has membrane proper-
ties identical to compact myelin. (d) Leaky Paranode
Model: Nodal and paranodal diameters are smaller than
internodal diameter. Myelin attachment segment has
membrane capacitance of internode and membrane
resistance of node. (e) Leaky Capacitive Paranode
Model: Nodal and paranodal diameters are smaller than
internodal diameter. Myelin attachment segment has
passive membrane properties identical to node. (f)
Tight Capacitive Paranode Model: Nodal and paranodal
diameters are smaller than internodal diameter. Myelin
attachment segment has membrane resistance of inter-
node and membrane capacitance of node.
For each of these models, the overall length and time

constants of the node-paranode-internode unit are
summarized in Table 3. These calculations were per-
formed assuming the node and constricted axon segment
to have a diameter of 0.41d and a myelin attachment
segment 3 ,um long (9). The first three representations of
the paranodal region have similar length constants and
virtually identical time constants. The last three have
somewhat different values although none vary by > 24%.
These three models are unlikely as they are inconsistent
with the time constant changes that have been docu-
mented with demyelination of the paranode (12). They
are included here as they represent electrically extreme
cases. This illustrates that even with the most implausi-
ble paranodal models, the length and time constants are
only changed by 24%.

It is noteworthy that the length constant for the first
three models is approximately equal to the internodal
length. While these models will conduct action poten-

TABLE 3 Length and time constants for the six
paranode models

Model X(mm) T (Ps)

a 0.24 84
b 0.24 84
c 0.23 85
d 0.20 64
e 0.20 71
f 0.23 95

TABLE 4 SensitIvy to changes In model parameters

Parameter X T

Ra 0.72-1.4 1.0140.99
RI 1.29-0.76 1.7-0.56
Cl 1-1 1.32-0.85
r2 1.05-0.92 1.1-0.86
C2 1-1 1.68-0.65

Figures are given as a-b where a represents the relative effects of
doubling the parameter and b of halving it.

tials given sufficient peak sodium current (Rubinstein, J.
T., unpublished results) they do not provide a "safety
factor" for saltatory conduction. It seems reasonable to
question the validity of the model parameters on this
basis.

Sensitivity to parameter changes
In addition to varying the anatomical parameters of the
model, it is of interest to vary the electrical parameters.
Table 4 illustrates the effects of doubling and halving the
nodal and internodal membrane parameters on the
overall length and time constants. Because of the inter-
action between node and internode, the model is fairly
robust to changes in either segment alone. It is notable
that the exact myelin resistance does not appear to be of
great importance despite the great relative length of the
internode. This relative insensitivity to internodal param-
eters permits modeling electrical stimulation ofmamma-
lian nerve despite the need to use measurements of
myelin resistance and capacitance from amphibian fi-
bers.

Electrode distance: cat dorsal
column
It is the author's intent to combine the myelinated fiber
model described here with a volume-conduction model
of the cat temporal bone (19). This combination should
provide a quantitative model for electrical stimulation of
the cat auditory nerve within the constraints of the
experimentally measured parameters. As an indepen-
dent test of the reliability of the fiber model, it is
informative to compare its predictions with quantitative
physiologic data from the literature. The ideal experimen-
tal preparation would consist of an isolated myelinated
fiber of great length, with well-characterized membrane
properties, placed in a homogeneous, isotropic medium
of known resistivity, in the vicinity of a small monopolar
electrode. While this ideal quantitative experiment has
not been performed, a useful approximation is given by
the work of BeMent and Ranck in the dorsal columns of
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the cat spinal cord (38, 7, 8). Dorsal column fibers were
electrically stimulated with 50 p,s cathodal current pulses
from macroelectrodes placed on the pial surface. The
resistivity of the medium was characterized by potential
measurements at varying distances from the stimulus
(38). Microelectrode penetrations of known depth iso-
lated single-unit activity. The conduction velocity, elec-
trical threshold, strength-duration time constant, and
ratio of cathodal to anodal threshold were obtained. The
assumption that dorsal column fibers maintain a fairly
constant position relative to the pial surface permitted
the construction of threshold-distance curves for units of
known conduction velocity (7).

Fig. 12 illustrates the experimental threshold-distance
curves for the slowest and fastest fibers for which data
are presented in reference 7. These points are plotted
with the model results. Threshold is assumed to be 15
mV (8) and the scale factors relating conduction velocity
and fiber diameter are 6 and 5 for the faster and slower
fibers, respectively (32). Stimulation frequency is chosen
to be 3.775 kHz. For an RC circuit with a time constant
of 84 ps, this frequency gives a steady-state response
equal to the transient response to the above experimen-
tal stimulus.
While it is not difficult to incorporate the anisotropic

resistivity of the dorsal columns into the model, this was
not done. There is sufficient uncertainty in the resistivity
measurements (3, 37) that a homogeneous medium was

assumed. The resistivity of the medium, 380 Qlcm, was

chosen to provide a best fit between model and data.

500.0

400.0

.2_

E

-0

Note that this resistivity is well within the limits of the
measured anisotropic resistivities, 138 and 1,211 flcm
(38).

Anodal/cathodal threshold ratio
Examination of Figs. 6 and 7 should indicate that at
some distance from the closest node, the membrane is
polarized with opposite polarity from the closest node.
Thus, if the closest node is depolarized, this "secondary
site" is hyperpolarized. Anodal stimuli should depolar-
ize this site. Due to the relative amplitude of polariza-
tion at the two sites, the model suggests that the closest
node is 4.94 times more excitable than the "second site"
for far-field stimuli. This far-field ratio may also be
obtained from the "activating function" (39). The near-

field ratio has a complex dependence on electrode-fiber
distance that has not yet been completely analyzed. A
sampling of 33 dorsal column fibers by BeMent and
Ranck yielded an anodal/cathodal threshold ratio of
4.57 1.0 (7). The conduction velocity and distance of
these fibers were not specified.

DISCUSSION

A mathematical model for electrotonus in myelinated
fibers has been developed and applied to the problem of
extracellular electrical stimulation of nerve. It permits

a 25-35 m/s
a 55-65 m/s
D=6 micron

D=10 micron

300.0

200.0 _

100.0 _

0.0
0.2 0.4 0.6 0.8 1.0 1.2

distance (mm)
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FIGURE 12 Model and experimental threshold-distance curves. Solid and dotted lines give model results for a homogeneous, isotropic medium
with a resistivity of 3,800 flmm. Separate points are experimental results from Table 1 of reference 7. Model and experiment have correlation
coefficient of 0.985.
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simple calculation of the length and time constants for a

fiber using weighted averages of these constants for each
of the axon segments incorporated in the model. There
are no theoretical restrictions on the number of axon

segments in the model, so any degree of paranodal
complexity may be incorporated as more data on the
structure and electrical properties of the paranodal
region become available. In its present form the model
cannot account for possible current paths underneath
the myelin sheath (6). Modeling such current paths
results in a fourth order differential equation which may
prove analytically tractable despite its complexity.
The linear model of myelinated fiber described here is

not an attempt to replace numerical simulations of the
Frankenhauser-Huxley type (20). Instead it provides a

distinct complement to the nonlinear models by permit-
ting simple calculation of the effects of model parame-
ters on the length and time constants of the fiber. This
permits the rejection of clearly implausible models
before the development of a complex numerical simula-
tion. By providing a benchmark against which linearized
computer simulations may be tested, and permitting a

"preview" of the small-signal membrane response, an

appropriate fiber length and number of nodes may be
chosen. Thus, this analytical model constitutes an impor-
tant adjunct to nonlinear numerical efforts.
When the model is applied to extracellular stimula-

tion, it permits quantitative insight into problems of both
clinical and basic significance. By dimensional argu-
ments, the model makes the following predictions for
threshold to far-field, monopolar electrical stimuli: (a)
threshold is inversely proportional to the resistivity of
the medium separating electrode and fiber. (b) Thresh-
old is proportional to the cube of the distance from fiber
to electrode. (c) Threshold is inversely proportional to
the square of the fiber diameter. (d) Threshold for
monophasic anodal stimuli is 4.94 times threshold for
monophasic cathodal stimuli.

For closer monopolar stimuli, the membrane time
constant and the nonlinear strength-duration time con-

stant are predicted to be a function of the electrode
distance. For near sources, the time constant is less than
for those more distant. Near-field stimuli are also
affected by the stopbands in the spatial frequency
domain that are described in the appendix. If two
adjacent nodes are subjected to a similar applied field,
the membrane response is poor, even if a substantial
gradient is imposed along the internode. At higher
temporal frequencies this effect probably becomes less
important. All of these predictions require direct experi-
mental verification.
The main limitations of any model are imposed by its

assumptions. The limitation of the linearity assumption

is less significant than it may seem, as the quantitative
consequences of membrane nonlinearities have been
well documented (11, 29). Furthermore, dimensional
analysis and calculation of relative thresholds is accurate
as long as stimulation frequency and sodium channel
density are unchanged. Although there is evidence that
small fibers are not "dimensionally similar" to large
fibers (31), it seems likely that dimensional similarity is a
reasonable assumption for a small range of fiber diame-
ters.
A linear relationship between fiber diameter and

internodal length is supported by numerous anatomical
and indirect physiological studies (32). Because this
relationship is a critical parameter for extracellular
stimulation, it should be histologically verified in unfixed
material.
The passive electrical properties of mammalian inter-

nodes have not been determined experimentally and
represent major unknowns in any model of mammalian
myelinated fibers. It should be noted however, that the
model length and time constants are relatively insensi-
tive to the internodal capacitance and remarkably unaf-
fected by changes in the internodal resistance. Thus,
activation of internodal potassium channels (10) must
cause very large changes in conductance to alter substan-
tially the results reported here.
The effects of fiber bundling are difficult to assess.

Longitudinal current flow through nerve may occur in
both intracellular and interstitial compartments (37).
While bidomain models have been developed to analyze
this complication (2, 36), they currently apply only to the
steady-state stimulation of uniformly sized fiber bundles.
Their application requires detailed histologic analysis of
fiber packing and appropriate anisotropic nerve resistiv-
ities (3, 37). These are formidable experimental and
theoretical challenges which need solution.

Threshold to extracellular stimulation, as recorded by
a microelectrode at some distance from the site of
activation, is a complex process. Multiple nodes can be
near threshold at the same time resulting in a high
degree of interaction between the spike initiation and
conduction processes. Anodal block, a suprathreshold
phenomenon (40), is but one example of possible field-
neuron interactions that can preclude conduction of an

initiated action potential. In nonlinear models, small
changes in parameters, such as the maximal sodium
current, can determine whether a spike initiated is
conducted to the recording site (Rubinstein, J. T.,
unpublished results). Sophisticated nonlinear models
from mammalian voltage-clamp data and significant
experimental effort are needed if this process is to be
understood quantitatively. The linear model provides a

small, if fundamental, part of this endeavor.
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EXACT SOLUTION FOR PERIODIC CABLE

Greens function
Let the pointx = 0 be located at the center of a node. Let V0 and I0be
the internal voltage and longitudinal current at that site. Z is the
complex impedance there. Let V1, I, and V2, I2 be the voltage and
current at the beginning of the internode and subsequent node,
respectively. The regions are labeled as in Fig. 2. Letx' be the position
of the extracellular voltage impulse and for the moment assumex < x'.

In region 1, 0 < x . 11, the potential is given by

_(l)(x;x')= V0coshQ sinlra
G(1)(x; x') = V, cosh Q1x I,,-sn Q,x.

where V0 = IOZ. If x' is in region 3, l + 12 < x' 1, then a similar
procedure gives

Q2 1

2 (D12 - B 21Z)Q1 sinh Qlx' (25)
+ r3(C12 - A12IZ) cosh Q,x2

11
(11

are defined in the Nonuniform Axon section, and

12 B][12 B1][A2 B2]
L12 D12 C1 D1C2 D2

(20)

In region 2,1, < x < 4, + 12, by

GU2'(x; x') = V1 cosh Q2(x - 11) - II Q-sinh Q2(x - 11) (21)

and in region 3,11 + 12 X < 1,

GU3)(x; x') = V2cosh Q,[x - (11 + 12)]

r

- I2 Q sinh QL[x - (1, + 12)]. (22)

To determine V0 for a given x' note that the differential equation
describing the Green's function is

GQ(x; x') - Q2(x)G(x;x') = -Q2(x)b(x - x')

and integrate fromx '- tox ' + leaving

GX|X + = -Q2(x').
Since the current on the two sides of the source must have opposite
directions and it is assumedx < x',

GX(x = x ') =Q2(X')
2

Ifx' isinregion 1,0 < x' < 11, then

Q12
V(1)(x') = G(0;x') =- . (23)

Q1 sinh Q,x' - cosh Q,x'

Ifx' is in region 2, 11 < x' < 1 + 12,

V1Q2 sinh Q2(X' - 11) - Ilr. cosh Q2(x' - 11) = 2

By applying the appropriate matrix transformation on VI and I1 to give
functions of V0 and I(, it can be shown that

2~~~~~

V0x') = 2 (A1 - B1/Z)Q2 sinh Q2x (24)

+ ra(Ci - A1IZ) cosh Q2x

Hartree harmonic representation
To determine the frequency response of the cable to an applied field, it
is necessary to integrate the exact Green's function over the applied
field. The exact Green's function for a periodic cable, x < x', is given
by Eqs. 20, 21, or 22, depending on the value ofx, with V0 given by Eqs.
23, 24, or 25 depending on the value ofx'. Thus the Green's function is
segmentally defined. It is desirable to represent the Green's function
by a continuously defined function to facilitate the needed integration.
Floquet's theorem permits this representation. It also eases the
determination of the spatial frequency response of the fiber because
that requires taking a Fourier transform in x' of the Green's function.
It should be noted that this Green's function is not shift-invariant due
to its asymmetry. Changes inx have different effects than changes inx',
therefore much of the symmetry of the Fourier transform is lost.
Because Floquet's theorem states that all waves in a periodic

structure vary identically from one period to the next except by a

complex constant, it is possible to expand the Green's function in a

special Fourier series. Noting that G(x + 1) = G(x)e Q', a periodic
function P(x) can be created with P(x) = G(x)e1. P(x) can be
expanded in a Fourier series

+<x

P(x) = Anei(2`|
n= -o

where the coefficients are given by

An =I f; p(X)e-j(2srll)nx .A n bPx)e epnddx.

Thus, the original function G(x ')can be expanded in a Fourier series

(26)
+x0

G(x') = I A.ei0n",

where the coefficients are given by

An = G(X ')e "n'da (27)

and

2'rr
On= Tn + jQ

Each coefficient in the series is known as the space or Hartree
harmonic (48).

Let the solution be restricted to the center of the nearest node, x =
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0, fulfilling the requirement that x < x'. Therefore G(O;x') =

Vo(x') as given in Eqs. 23-25.
To determine the Hartree harmonics for the Green's function it is

necessary to reformulate the reciprocals found in the above equations.
Using the power series

1 r ; r Irl <1
1r

it is straightforward to show that in region 1, 0 x' 11,

Q2____ Q + r/1Z m

V0('))= -1 e-(2m+1)Qlx'

In region 2,1, < x' < 11 +12,

V121~~~~~~~~~~V(2)(X )= Q2 Q
Q~~~~2

(Q2 raIZ)A - jB, +raC,z
Q

(Q2 + rjIZ)A1 2B1 r.Cl

(Q2 ra/Z)IA1 Z B1 + r C, -2+)2
In region 3,11 + 12 x' < 1,

V(3)(X - QI
° r,(C,2- A12/Z) + Q1(D12 B121Z)

[QJ(D12 B/Z) -r(C12 A121Z)l
m=O Tra(C12 -AJ1Z) + Q1(D12- B121Z )

1.0

0.1

20.6

E

~0.4

0.2

0.0

0.0 20.0 40.0

To calculate the coefficients of the Hartree harmonics note that

A = Vo(xI)e pxdx' = Z f; lnx I

11f12 V02)e-"' dr' + Vo3e drxx

ThereforeAn = [A(') +A(2) +A(3)]/lwhere

A (1) Q 2 I(Q1 + r.IZ m 1 e-I(2-+I)Ql+"gIIQ -raIZ Y Q1 -ra/ZZ (2M + 1)Q1 +jjn

A(2)- Q e2
0nQ2
(Q2- r,IZ)A1 - Bl + raCi

02

X (Q2 + r./Z)A1 -Bi raC1 1 -(2f+1)Q2+jin12

02 (2m + 1)Q2+i P.
(Q2 r.IZ)A, -7B, + riC,

A (3) Q 2 -An(11+12)

ra(C12-
1

+ Q1(DI2
12

B12 A12

Q.(DI2- Z - -ZrC 1 j-e[(2m+1)Qj+j61l

(2mn + 1)Q) + j( .'
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FIGURE 13 Stopbands in the spatial frequency domain. Temporal frequencies are DC, I kHz, and 2 kHz. Units of spatial frequency are radians
per millimeter.
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FIGURE 14 Comparison of exact DC solution and far-field approximate DC solution to spatial frequency response of nearest node. Figure also
shows exact solution at 2 kHz. Units of spatial frequency are radians per millimeter.

Spatial frequency response
Consider an applied field which is symmetric aboutx' = 0. The Fourier
transform of G(O; x ')reduces to a cosine transform. Using Eq. 26 and
reversing the order of summation and integration gives

G(O; k) = 2 z An IeiNx cos kJx' dx'
n= -xo

which reduces to

G(Ok) = X2 An 2 2- (28)
n--xo n 2-k2

The double transform of the extracellular field b(x)b(t) is unity and
is subtracted from Eq. 28 with the results plotted in Fig. 13. This is the
exact solution for the spatial frequency response of the nearest node at
the three temporal frequencies shown. The figure shows stopbands in
the spatial frequency domain occurring at integer multiples of 2 r/l.
This occurs because when the period of a spatial frequency component
is equal to 1, the extracellular potential at adjacent nodes is identical.
Thus, current cannot avail itself of the low-resistance pathway in and
out of adjacent nodes. The inclusion of myelin conductance in the
model is responsible for the stopbands being greater than zero.
Indeed, at high temporal frequencies Fig. 13 demonstrates that the
relative contribution of the myelin sheath to the current pathway
increases significantly and reduces the depth of the stopbands.
A plot of Eq. 4, the far-field approximation for the spatial frequency

response, is shown in Fig. 14 along with the exact solution. The figure
illustrates that the Nyquist criterion for the far-field approximation is
quite reliable as the two curves are similar up to a spatial frequency of
k = 6.8, or one-fourth the sampling frequency. This provides a more
formal proof that for far-field stimulation, the simple equations
describing excitation of a continuous cable are a valid model of the
electrotonic response at the midpoints of the nodes of a myelinated
fiber.
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