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ABSTRACT Scaling properties of the surfaces of 53 proteins are studied on the basis of experimentally determined 3-D structures of
these biological macromolecules. It is found that the surfaces show self similarity within a yardstick range of 1.5 A < e < 15 A. The
self similarity is measured by the fractal dimension D of the surface. Two different algorithms for the determination of the fractal
dimension are applied, both based on cubic yardstick particles. One is related to the contact surface (CS), which was first
introduced by Connolly (17), while the other corresponds to the solvent accessible surface (SAS) of Richards (9). The fractal
dimensions of both are different. While the CS type approach leads to relatively high values of D in the range 2.5 to 2.6, the SAS
approach gives fractal dimensions of D z 2.

1. INTRODUCTION

Chemistry in heterogeneous systems is even more com-

plex than chemistry in a homogeneous environment.
There have been numerous attempts to model heteroge-
neous reactions taking the microscopial environment
into account (1). Geometrical models for the description
of surface structure, or, more generally, of the local
anisotropy of a molecular environment, are generally
not sufficient to describe all properties relevant to the
molecule's motion in this environment. A more general
approach to take local anisotropy into account can be
applied when the molecular environment shows self
similarity within a certain scaling range (1-14). It has
been found that a variety of structures in nature are self
similar, ranging from astrophysical systems down to the
molecular level of proteins (2-8, 10-14). On one hand
proteins are definitely molecules, i.e., one can uniquely
analyze sequences of aminoacids building up the mole-
cule, and in many cases the three-dimensional (3-D)
structures are also known from x-ray analysis and 2-D
NMR investigations. On the other hand, proteins have
many properties in common with macroscopic micropar-
ticdes. This is particularly true for the interaction of
proteins with other (small) molecules. Only a limited
number of atoms and chemical groups building up the
complete protein are located at the surface, i.e., in the
region which is accessible to the reaction partner.
The role of self similarity in absorption phenomena

and heterogeneous catalysis has been investigated by a

variety of authors (2-4). There have also been some

attempts to transfer this concept to the study of proteins
(3-7, 11-14). Pfeifer and co-workers (7) as well as Avnir
and co-workers (5, 11) have analyzed the van der Waals

surface of the lysozyme molecule. They demonstrated
that this molecule seems to show self similarity, and they
measured this self similarity from fractal analysis of
planar cuts through the surface. Lewis and Rees (4) as
well as Aquist and Tapia (6) studied the fractal dimen-
sion of protein surfaces on the basis of the Connolly
algorithm (17). The latter generates a contact surface
(CS) of the biomolecule with a spherical particle. The
authors defined a surface dimension D (the fractal
dimension [15,16]) as a local surface property and tried
to assign areas of high fractal dimension to places of high
receptor selectivity. The use of a local surface dimension
may be useful for the discussion of molecular recogni-
tion problems but self similarity alone does not explain
the high selectivity of protein substrate interactions.
However, the principle of surface self similarity may be
one of the generic ones in biomolecular evolution.
Pfeifer and co-workers argued (3, 7, 10, 13) that a fractal
dimension of protein surfaces slightly larger than D = 2
seems to represent a compromise between two different
transport processes for a molecule to the receptor site
on the surface. While the transport from the bulk phase
to the surface is enhanced by a surface dimensionD > 2,
the transport along the surface from the place of first
contact to the place of the receptor is hindered by a high
surface dimension.

It is the aim of this paper to find out whether self
similarity of the surfaces is a generic property of all
proteins and, if this is true, whether there are systematic
trends in the fractal dimension when the size of the
protein is changed. For this reason we analyze as many
proteins as possible with respect to their surface proper-
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ties. In section 2 some facts from fractal analysis of
surfaces are reviewed. A systematic study of proteins
with well known 3-D structure is only possible within
acceptable numerical effort if there are effective numer-
ical strategies available. Section 3 thus deals with a new

model approach and the algorithm for the determina-
tion of the surface dimension used in this analysis. The
results of the analysis of 53 proteins (the 3-D structures
are from the Protein Data Bank [Brookhaven] and the
coordinates of the H-Atoms are added according to
standard distances and angles) are presented in section
4 while the final section contains some conclusions.

2. THE FRACTAL DIMENSION OF A SELF
SIMILAR SURFACE
Pfeifer (3) called the fractal dimension the hidden symmetry of
irregular (self similar) surfaces. The self similarity of a line, a surface
or any other object can be determined by measuring its fractal
dimension (15). This can be done, at least in principle, by covering the
object with spheres of radius e and counting the number N(e) of
spheres. The object has the fractal dimension D if N(e) scales
according to

where As and R are the molecular surface area and probe radius,
respectively, for lysozyme, ribonuclease A, and superoxide dismutase
within a yardstick range 1 A < e < 3.5 A. Aquist and Tapia (6) found
D = 2.15-2.21 for holo-RBP, the PAB monomer, the satellite tobacco
necrosis virus monomer, and lysozyme within 1.5 A < e < 3.0 A from a

similar type of analysis. Avnir and Farin (5) used a similar method and
found a relatively high value of D = 2.62 + 0.01 for trypsine and an

even higher one for the trypsine active site of D = 2.80 + 0.04. The
determination of D on the basis of the Connolly surfaces takes into
account that there is no uniquely defined molecular surface but that
the yardstick molecule defines the surface via its interaction with the
biomolecule. Unfortunately, this algorithm leads to drastically increas-
ing computation time when the radius of the probe is increased. In the
next section we describe two algorithms, which are more crude than
that of Connolly, but still take the size of the test particle into account
while defining the surface. The advantage of these new algorithms is
that they are extremely fast and so enable us to study the surfaces of a

large number of proteins for which the 3-D structures are known. It is
not the aim of this paper to establish a certain value for the fractal
dimension of a protein surface because this value definitely depends
on the way the surface is generated. The questions we raise here are:

(a) is there generally self similarity in the surface of proteins?, and if
the answer is yes, (b) do all proteins have the same fractal dimension,
or is there any relation between D and other quantities characterizing
the biomolecule?

N(E) -D (1)

for all e > 0.
For mathematical objects which are defined via a unique generating

algorithm, the determination of D may be complicated and numeri-
cally time consuming although it can be done to any desired degree of
accuracy. For real microscopic objects like proteins and other micro-
scopic surfaces, additional problems occur that are not related to
numerical efforts. Molecular surfaces are not existent per se. A
molecular surface is a way to rationalize and visualize the interaction
of test particles with the system and there is no way to cover the surface
with a set of spheres or other yardstick objects unambiguously. Pfeifer
and co-workers (7) analyzed two-dimensional cuts through the surface
of the lysozyme molecule, as defined by the interactions with a water
molecule in its energetically most favorable orientation, by measuring
the lengths with different yardsticks, and found a line dimension of
DL = 1.2. Using the fact that a cut through a fractal surface with
dimension D has a dimension DL = D - 1 with a probability
approaching one (18), the authors established an average surface
dimension of D = 2.2 for lysozyme within a lower cutoff for the
yardstick of e = 1 A and a higher cutoff of e = 20 A. The surface (i.e.,
the planar cuts) was generated using a water probe and hence the
results of Pfeifer et al. are evident only for this test molecule.
Considering molecules with a size different to that of water definitely
leads to different surfaces and different surface dimensions (20). The
situation here is similar to all cases where microscopic (i.e., molecular
real) yardsticks are used: the yardstick itself defines the surface. An
analysis which takes this into account was presented by Lewis and
Rees (4) as well as Aquist and Tapia (6). These authors used Connolly
surfaces (17), which are defined as the surface that contains all contact
points of the molecule (represented as a set of spheres with well
defined radii around the positions of the atoms) and a test particle
(represented by a sphere of radius R [see Fig. 1]). Lewis and Rees (4)
found an average ofD = 2.4 for the fractal dimension from the relation

2-D =d log (A) (2)
dlog(R)~2

3. MODEL SURFACES
As was mentioned before, contact surfaces (CS) of the Connolly type
(17) can only be determined with finite numerical effort if the radius of
the probe particle does not exceed a value of e = 3.5 A. Because, on
the other hand, the lower bound of the radius is determined on
physical grounds as e = 1.5 A (roughly the probe of a water molecule)
one has only a very limited scaling range for the analysis of self
similarity, i.e., the determination ofD is obtained from the slope of a
small range in a log/log plot. In this work we use models that are based
on the hard sphere model of proteins (see Fig. 1). The numerical data
for the atomic radii used in this work are listed in Table 1. Our
approach is similar to that of the contact surface generation, but
instead of rolling a test particle over this hardsphere surface, we simply
use cubic grids with different cube sizes to define the bulk and the
surface of the biomolecule. The procedures are schematically de-
scribed in Figs. 2 and 3.
ModelA. The molecule is embedded in a 3-D grid of cubes with edge

lengths e. A cube belongs to the molecule if its center is an inner point
of at least one sphere defining the hard sphere model of the protein
(see Fig. 2). This model has some similarity with the contact (CS)
surface generated by spherical particle. For the Connolly surface the
curvature of concave areas is exactly that of the test sphere, and
canyons and cavities in the surface have an extension which is larger
than or equal to the diameter of the test sphere. The latter statement is
also true for the present model, i.e., the model should give the right
scaling behavior when the surface topology is studied. The curvature of
the surface cannot be extracted from our treatment. However, the
surface area has a meaning similar to the one in the Connolly
approach: it represents the common surface of a cubic test particle
with the protein.
Model B. Contact surfaces obtained with the Connolly scheme or the

algorithms of Model A are not well suited for the determination of the
distance a particle of given size has to travel in order to get from one
surface point to another. For this reason one needs the solvent
accessible surface (SAS), first introduced by Richards (9), i.e., a
surface that is generated by the centers of the test particles rolling
along the protein. With increasing radius of the test sphere the volume
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(a)

(b)

(c)

FIGURE 1 Hard sphere models. (a) For a molecule. (b) Connolly type
surfaces. (c) Connolly type surfaces with test sphere of different
radius.

of such an object increases systematically. To generate a model which
uses cubes of a given size (vertex length e) as test particles, and which
takes the systematic increase of the volume into account, we used the
same procedure as in model A, but changed the hard sphere model by
replacing the individual radii ri for the protein atoms by r, + E/2 (see
Fig. 3, dotted surfaces).
These two models are particularly suited for the numerical analysis.

Both the coordinates and the bookkeeping about the status of a cube
can be treated within a simple but very effective integer algorithm. The
details are published elsewhere (19). For both models three quantities
are counted as functions of the cube size:

N5(e), the number of cubes belonging to the molecule;
Ns(e), the number of cubes with at least one outer square
(surface cube);
NA(e), the number of surface square.

For regular objects, i.e., those with volume dimension DB = 3 and
surface dimension DS = 2, one expects for both models A and B

lim (N5(e) * = V (3)

TABLE i van der Waals radii umd In this work

Atom H C N 0 Mg P S Mn Fe Co

r/A 1.30 1.80 1.65 1.60 1.70 2.18 2.11 1.70 1.70 1.70

FIGURE 2 Hard sphere models. (a) For a molecule. (b) and (c) Model
surfaces generated with cubic yardsticks of different sizes according to
model A (see text).

and

lim (Ns(e) - E2) < S, (4)

where V is the volume and S the surface area of the object,
respectively. The validity of Eq. 4 is schematically demonstrated in Fig.
4 in a two-dimensional representation. The number of squares

counted as surface squares in the algorithm described above (Fig. 4 a)
is less than or equal to those necessary to cover the curve (Fig. 4 b). As
a consequence of Eq. 4, Ns(e) is not well suited to study scaling
properties of the surface. Instead, we define a quantity NA(e) which is
more appropriate for this investigation. The limit

lim (NA(e) - {E)= A (5)

is generally not identical to the surface area S for regular objects. A is
the sum of areas A,X,, A%2,. ... Ay1,... AzI, Az2 ... which occur as single
valued projections of surface regions Ai onto the planes x = 0, y = 0
and z = 0, respectively, where (x, y, z) are the axes of the orthogonal
coordinate system of the cubic grid. Note that a sphere with radius d
has a surface area of S = 4 *.r * d2 which is definitely smaller than the
sum of projections:

A = 6 *,T*d2= 3/2-S. (6)

Following the argumentation of Kappraff (21) such a proportional-
ity relation can be established for all objects that can be defined by a

generating algorithm (dependent on a scaling parameter A = (2,
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(c)

FIGURE 3 Hard sphere models. (a) For a molecule. (b) and (c) Model
surfaces generated with cubic yardsticks of different sizes according to
model B (see text).

which, for simplicity, may be a surface element of given area), i.e.,

A(A) = G * S(A)

and that S(A) follows a scaling law

2-D
S(A) = C *-A 2

with an arbitrary C. ThenA (A) also scales according to

2-D
A(A) = C.G.A 2

FIGURE 4 Two dimensional representation of the algorithm. (a) To
calculate the number of surface cubes NS in a grid representation as
was used in the model approach. (b) Representation of those cubes
which are necessary for a complete cover of the surface (schemati-
cally).

with the projections A, A4,,, Ai of the triangle i onto the x-, y-, and
(7) z-plane, respectively. These projections are simply given as

Awi = Icos a~I, * A

(8) w = x,y, z (12)

(9)

if and only if the factor G does not depend on the scaling parameters
A. For practical applications, i.e., the determination of the fractal
dimension D fromA (A), it is sufficient that G does not systematically
depend on A, but only fluctuates around a mean value G with varying
A. To decide whether such a situation is found for protein surfaces or,
if not, how such a situation can be generated, one has to know the
geometrical meaning of the factor G.

Let B be an object and F(A) be a triangle representation of the
surface ofB with resolution A. F(A) may be a set of Ns(A) triangles of
equal surface area A. The total surface area is then given by

S(A) = Ns(A) * A (10)

while

Ns(,)

A(A) = , (A,, +A, +Az,)
i=l

(11)

with the direction cosine cos a=,, cos a,W, cos a; of the normal vector on
triangle i with respect to the coordinate axes. From Eqs. 7 and 10-12
one directly obtains

1 Ns(A)

G(A) =N 2~- (Icosa + Icosao1I +Icosa,I). (13)

For isotropically oriented triangles G(A) approaches the value
Go>(A) = 3/2 for A -O 0 and NA(A) -+ oo, as in the case of the sphere Eq. 6.

A triangle representation of a protein surface with given resolution
does not, in general, show isotropically distributed normal direction of
the triangles even if one could say that the distribution should not be
far away from this average for globular proteins. However, for the
determination of D from the scaling property of A (A) it is not
necessary that the directions of the surface elements are isotropically
distributed. It is only important that G(A) does not systematically
depend on A and that fluctuations are small as A is varying.

In this study we determineA (e) for a given protein as an average ofn
independent calculations

1 n

A(e) = - 2 A(E),
n a-i

(14)
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wherein the grid coordinate systems of a pair of calculationsA *(e) and
A O(e) differ by a random displacement of the origin and a random
rotation. The procedure is schematically shown in Fig. 5. This
procedure has two main advantages.
(a) The replacement of the protein bulk by a set of cubes is a relatively

crude approximation when the cube size is increased up to a value
of 5-15 A. In this range, the shape and the volume is affected by
the relative position of the molecule with respect to the grid. This
effect can be drastically reduced if the number of averages n is
chosen sufficiently large. In the numerical tests we found that
there are no changes of A(e) larger than 1% if n = 35 is chosen.

(b) If there are small cavities and canyons in the molecular surface,
individual calculations may give misleading results (see for exam-
ple Fig. 2). A gap in the surface of volume E' is indicated when the
center of the cube incidently is located in this narrow channel,
while a Connolly type algorithm would automatically exclude most
of the channel area. Only a few of the members in the sample
which have the "wrong" shape will contribute to the average, and
the effect will be smoothed out.

4. RESULTS

We have analyzed the surfaces of 53 proteins within the
contact surface (CS) approach of model A as well as

within the solvent accessible surface (SAS) approach of
model B.

In a first series of test calculations the cube edge was

varied in the interval 0.1 A < e < 10 A. The results from
modelA for the lfxl molecule are shown in Fig. 6, a-c. It
is seen that there are two ranges with different slope in
the log NA(e)/log E plots. For e < 1.5 A the numerical
data can be well fitted with D = 2.089 (Fig. 6 b). Here
NA(e) was averaged over 35 independent runs. For E >
1.54 A a value of D = 2.581 was obtained from the

(b)

scaling property of the cube surfaces (Fig. 6 c). The low
dimension in the range of small E values is not of any
importance for any protein molecule interaction be-
cause there are no real molecules, or molecular parts in
this scaling range. We concentrated the analysis for the
set of molecules studied here to the range of high values.
The lowest value in all studies was taken as e = 1.5 A
while the upper limit was determined from the condition

< 1
NB(e)

(15)

i.e., the cube size was increased as long as there were

cubes left without any surface element.
The fractal dimension and its interpretation in terms

of self similarity are basically statistical concepts (11). It
has been demonstrated by Avnir et al. (11) that one

should be careful in analyzing single objects. In our

approach we analyzed a sample of similar objects which
are generated by the same algorithm from experimental
data for the structure. The number of individual calcula-
tions for the sampling was increased up to an average
value of n = 35. A higher number was not necessary

because all the scaling exponents become stable within
three digits with this sampling.
For numerical control the dimension DB of the bulk of

all the molecules under consideration was calculated
from the scaling of NB(e). For all molecules DB = 3.00 +
0.01 resulted, i.e., the volumes of the objects generated
according to model A scale like regular bulky objects.

Following Avnir et al. (11) we also analyzed the local
slope of the log/log plots. These authors have demon-
strated that this type of analysis is very helpful to identify
systematic deviations from linearity in log N/log E plots.
It is seen from Fig. 6 d that there are no such systematic
deviations for the surface nor for the bulk. However, the
curves show increasing fluctuations with increasing value
of the yardstick as a consequence of the breakdown of
the statistical self similarity concept for large e values.
The results for DA and DB, as obtained with the aid of

the model A approach, are listed in Table 2.
The data obtained from model B differ from those

from model A both qualitatively and quantitatively.
Exponents DA and DE result from linear fits of the
log N/log e plots, which are substantially smaller than
the corresponding values from model A. One obtains
DA = 1.899 + 0.022 and DB = 2.496 + 0.012 for lfxl (see
Fig. 7 a).
From Fig. 7 b it seems that both NB(e) and N,(e) show

the same systematic trends which we assume may be
adequately described by the equations

NB(e)= NBO F(e) e

NA(e) =NAO F(e) e (16)

Self Similarity of Protein Surfaces 113

FIGURE 5 Surfaces a and b generated with cubic yardsticks of
identical resolution but with relative displacement and rotation.
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FIGURE 6 Average numbers of cubes (from 26 independent runs) N = N,, building the molecular bulk in an orthogonal grid representation of
resolution as well as the average number of surface squaresN = KAas function of the yardstick e for lfxl calculated with respect to model A. In a,
the linear regression was taken over the complete yardstick range 0.2 < e < 15 A, while for b and c independent regressions for the ranges
0.2 < e < 1.5 A and 1.5 < e < 15 A, respectively, were performed. The bulk dimension is very close to D, = 3 in the complete range as is expected,
while the surface dimension converges towards DA = 2 in the range of low E values e < 1.5 A and DA = 2.581 is obtained from the slope of the linear
regression in the range of high e values. d Shows the local slope of the log (N)/log e plots (c) and the ratio from equation 17 as obtained from a
linear regression over three adjacent points.

with constant values of NAO and NBO and a function F(E)
which smoothly depends on the yardstick e. This assump-
tion is indeed justified.

Considering the scaling of the number of surface
elements per volume element, one obtains

NA(E)
NI()BN(E) E

NA

- E(3DA+DB) (17)

i.e., for lfxl NAB(e) scales with an exponent DS =

2.401 + 0.002. The same value (within three digits) is
obtained from a log N-(e)/log e plot when the surface
fraction NAB(e) is determined independently for each
individual run and then averaged over 35 runs (Fig. 7 c).
The numerical results for DB, DA, and D,4 as obtained
from model B are also listed in Table 2.

There are large differences in the numerical values
obtained for the surface dimension from model A and
model B, but this fact is not surprising. Model A is
related to the contact surface, the fractality ofwhich may
be relevant for adsorption phenomena, e.g., for the
calculation of the number of molecules of given size
which can be adsorbed in contact. Obviously this surface
shows a larger amount of complexity than that calcu-
lated with Model B. The latter is more relevant for
transport processes along the surface, for which the
distance of the molecule's center between two positions,
measured along the surface, is important. It is remark-
able that the surface/volume ratio scales with a very
similar exponent for both models.
We do not think that the actual value of the exponent

D (the fractal dimension), which is obtained with one

particular algorithm for the generation of the surface of
a protein, has any universal importance. This value
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TABLE 2 Fractal surface dimensions from dHierent models

Model A Model B
Mol No. of
name atoms DB DA DAB DB DA DAB

1ABP
1BP2
lCAC
1CC5
1CCR
lCHO
1CN1
lCPv
1CRN
1CSE
icrs
lCTX
1CY3
1ETU
1FBJ
1FDH
1FDX
1FX1
1HCO
1HDS
lLH1
lMCP
1MLT
iTIM
2ABX
2APP
2APR
2AZA
2CAB
2CGA
2CI2
2CNA
2CPV
2CTS
2TAA
3ADK
3CLN
3CNA
3CPA
3CPV
3ICB
3PGK
3WGA
4ATC
4CPA
4CTS
5API
6ADH
6PAD
6PCY
7ADH
7CAT
7LYZ

4678
1844
4023
1129
1710
4256
7133
1606
642

4833
6893
1066
1754
2711
6510
4402
724

2144
4384
8841
2388
6674
868

5353
2171
4552
4714
3864
3957
7154
1076
3554
1621
6888
7175
3105
2184
3558
4825
1621
1203
6381
4220
14548
4793
13787
5969
11277
3271
1445
5136
7859
1958

3.011
2.998
3.004
3.020
3.000
3.006
3.005
3.015
3.015
3.010
3.000
3.031
3.005
3.000
2.997
3.000
3.036
2.991
2.023
3.005
2.989
3.000
3.017
3.003
2.991
2.992
3.008
2.993
2.991
3.007
3.003
3.011
3.000
3.004
3.000
2.991
3.000
3.001
3.000
3.026
3.008
3.000
3.007
2.998
2.995
3.004
2.996
3.005
3.006
3.005
3.007
3.000
3.017

2.616
2.524
2.603
2.522
2.541
2.606
2.606
2.564
2.470
2.602
2.610
2.522
2.462
2.571
2.602
2.592
2.515
2.582
2.619
2.624
2.549
2.605
2.440
2.612
2.543
2.591
2.625
2.574
2.591
2.628
2.534
2.624
2.559
2.606
2.629
2.566
2.517
2.603
2.598
2.571
2.552
2.582
2.498
2.616
2.618
2.653
2.626
2.632
2.597
2.547
2.607
2.607
2.556

2.598
2.519
2.594
2.495
2.534
2.594
2.598
2.543
2.447
2.587
2.607
2.482
2.454
2.565
2.600
2.584
2.472
2.578
2.589
2.614
2.556
2.601
2.421
2.603
2.548
2.595
2.613
2.588
2.593
2.616
2.523
2.607
2.551
2.599
2.625
2.569
2.511
2.594
2.594
2.540
2.535
2.579
2.490
2.616
2.616
2.644
2.625
2.622
2.585
2.536
2.593
2.602
2.542

2.512
2.470
2.515
2.481
2.491
2.514
2.521
2.495
2.419
2.536
2.492
2.399
2.391
2.479
2.504
2.498
2.477
2.496
2.508
2.550
2.495
2.500
2.378
2.511
2.426
2.529
2.525
2.492
2.531
2.494
2.436
2.504
2.493
2.491
2.553
2.481
2.395
2.497
2.537
2.496
2.480
2.478
2.402
2.458
2.537
2.565
2.523
2.527
2.522
2.487
2.518
2.452
2.503

1.958
1.914
1.996
1.907
1.921
1.937
1.965
1.923
1.825
1.922
1.971
1.876
1.948
1.905
1.984
1.984
1.862
1.899
1.980
2.045
1.918
1.968
1.862
1.967
1.952
1.939
1.946
1.908
1.936
1.947
1.864
1.923
1.925
1.968
1.981
1.966
1.894
1.931
1.907
1.926
1.898
1.993
1.970
1.981
1.905
2.008
1.942
1.971
1.925
1.870
1.976
1.973
1.915
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2.445
2.443
2.450
2.426
2.428
2.423
2.442
2.426
2.404
2.386
2.478
2.476
2.555
2.425
2.480
2.485
2.384
2.401
2.471
2.495
2.422
2.466
2.483
2.455
2.525
2.409
2.419
2.416
2.404
2.453
2.426
2.418
2.430
2.476
2.426
2.483
2.498
2.432
2.368
2.482
2.417
2.541
2.569
2.523
2.368
2.441
2.417
2.442
2.402
2.381
2.458
2.521
2.410

Mol name: Name of dataset from Brookhaven database. No. of atoms: Number of atoms in dataset. DB: DbUIk. DA: Darea DAB: Darea/bulk.
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FIGURE 7 (a) Average number of cubes (from 34 independent runs)
N = NB, as well as average number of surface elements N = NA as
functions of the yardstick for lfxl calculated with respect to model B.
(b) Local slope calculated from a linear regression over three points
from the log N/log E diagram (a) or the ratio from Eq. 17. (c)
Averaged value for NAB as a function of the yardstick (see Eq. 17).

changes when the algorithm is changed, as can be easily
demonstrated by applying the procedures described
above to a protein model for which the atomic radii are

slightly modified. This is shown in Fig. 8. The surface
dimension of the lfxl molecule is systematically de-

0

Q9 1 1.1 1.2 1.3 1A 1.5 1.6

hard sphere scaling factor

FIGURE 8 Surface dimension DA of lfxl as obtained from log N/log E
plots using model A as a function of a scaling factor for the sphere radii
of the molecular hard sphere model.

creased as the radii are increased. A similar result was
found by Zachmann et al. (20), who analyzed the
Hausdorff dimensions of contact surfaces of one protein,
but generated with different test particle sizes.
The important result of this investigation is the fact

that all protein surfaces studied here showed a clear
exponential scaling law with respect to the size of the
yardstick particles. This may be interpreted as a manifes-
tation of self similarity of the protein surfaces within a

yardstick range of 1.5 A < e < 15 A. The surface
dimensions as obtained from model A are depicted in
Figs. 9 and 10 as functions of the number of atoms of the
protein. A correlation is found, namely that the average

fractal dimension increases with increasing size of the
biomolecule. Large molecules seem to appear less smooth
than smaller ones to a potential substrate molecule of
given size.
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FIGURE 9 Surface dimensions DA of proteins as functions of the
molecular size (measured by the number of atoms in the molecule) for
data from model A.
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FIGURE 10 Scaling exponents D,4B (see Eq. 17) as functions of the
molecular size as in Fig. 9 for data from model A.

5. SUMMARY AND CONCLUSIONS

Two algorithms are presented for the definition of a
protein surface. Both use a rectangular grid of varying
grid size. The first one (model A) defines the contact
surface as it would be seen from a cubic yardstick
particle, while the second one (model B) counts the
surface elements which are defined as the set of points
that can be reached by the center of the yardstick cube.
The latter weakly corresponds to the solvent accessible
surface (SAS). Both algorithms are applyed to 53
proteins for which the structures are taken from the
Brookhaven Protein Data Bank. Hydrogen atoms are
added according to standard binding data. For any
protein up to 35 independent runs have been performed
in order to minimize errors related to the position and
orientation of the orthogonal grid. The results can be
summarized as follows.
(a) Both the surface areas and the volume, as calculated

by model A, show an exponential scaling law of the
form

X = XO eD (18)

within a range of 1.5 A < E < 15 A, whereX is one
of the properties mentioned above. D is interpreted
as the fractal dimension. The volume dimension of
model A is very close toD = 3 (within at least three
digits for all molecules), while D becomes signifi-
cantly less than 3 when model B is applied. A similar
trend is observed for the surface dimension. The
data resulting from model B are significantly smaller
than those from model A. Moreover, the data from
model B show systematic (but identical for NA and
NB) deviations from linearity in log N/log e plots.
For both models, however, the surface/volume ra-

tios scale with an exponent which is approximately
equal.

(b) The fractal dimension of a protein surface generi-
cally increases when the size of the biomolecules is
increased. This seems to show that small proteins
appear less rough to molecular partners than large
ones.

(c) In contrast to the fractal dimension of the backbone
(9) the actual value D for the surface dimension of a
protein is not a generic property of the biomolecule.
The latter depends on the model approach. How-
ever, the fact that 2 < D < 3 always results from
different investigations manifests that the concept of
fractal surfaces can be well applied for the investiga-
tion of surface related properties. In this work we
did not extend the concept of fractal surfaces to the
investigation of local properties like the surface
complexity of receptor sites because, for this type of
study additional information would be necessary.
Because different model approaches result in dif-
ferent fractal dimensions (as global statistical prop-
erties) of the surface, one definitely has to prove
which model is the relevant one for a particular
question before one tries to use the statistical
concept for the study of local properties.
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