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ABSTRACT A theoretical analysis of several protein denaturation models (Lumry-Eyring models) that include a rate-limited step
leading to an irreversibly denatured state of the protein (the final state) has been carried out. The differential scanning calorimetry
transitions predicted for these models can be broadly classified into four groups: situations A, B, C, and C'. (A) The transition is
calorimetrically irreversible but the rate-limited, irreversible step takes place with significant rate only at temperatures slightly above
those corresponding to the transition. Equilibrium thermodynamics analysis is permissible. (B) The transition is distorted by the
occurrence of the rate-limited step; nevertheless, it contains thermodynamic information about the reversible unfolding of the
protein, which could be obtained upon the appropriate data treatment. (C) The heat absorption is entirely determined by the
kinetics of formation of the final state and no thermodynamic information can be extracted from the calorimetric transition; the
rate-determining step is the irreversible process itself. (C') same as C, but, in this case, the rate-determining step is a previous step
in the unfolding pathway. It is shown that ligand and protein concentration effects on transitions corresponding to situation C
(strongly rate-limited transitions) are similar to those predicted by equilibrium thermodynamics for simple reversible unfolding
models. It has been widely held in recent literature that experimentally observed ligand and protein concentration effects support
the applicability of equilibrium thermodynamics to irreversible protein denaturation. The theoretical analysis reported here disfavors
this claim.

INTRODUCTION

Equilibrium thermodynamics analysis of differential scan-
ning calorimetry (DSC)1 thermograms corresponding to
reversible denaturation of proteins, provides detailed
information about the energetics and mechanism of the
reversible unfolding (Privalov, 1979, 1982, and 1989).
Thus, it is possible to check the two-state character of
the process and, in the case of non-two-state unfolding,
to determine the number and to develop a thermody-
namic characterization of the intermediate states signif-
icantly populated during unfolding (Freire and Bil-
tonen, 1978). In addition, complex DSC thermograms
can also be interpreted in terms of the more or less
independent unfolding of protein domains (Privalov,
1982 and 1989); it has been recently shown (Brandts et
al., 1989; Ramsay and Freire, 1990) that thermodynamic
information on domain-domain interactions can be
obtained from the thermograms.
The above types of analysis are based on equilibrium

thermodynamics and require that the experimental heat
capacity data accurately reflect the equilibrium protein
unfolding (Freire and Biltonen, 1978). In principle,
several factors may distort the DSC transitions and
make unreliable the equilibrium thermodynamics analy-

'Abbreviations: DSC, differential scanning calorimetry; IPTG, isopro-
pyl ,B-D-thiogalactoside; ONPF, o-nitrophenyl ,-D-fucoside; Tris, tr-
is(hydroxymethyl)aminomethane.

sis. The distortions caused by the calorimeter response

time and the folding-unfolding kinetics appear to be
relatively minor (at least, at moderate scanning rates),
and, in any case, Lopez-Mayorga and Freire (1987) have
shown how they can be corrected for. It must be
recognized, nevertheless, that, in many cases, the overall
process that takes place during the DSC scan is the
irreversible denaturation of the protein (as shown by the
lack of thermal effect in the thermogram corresponding
to the second heating); in this work we will consider the
distortion of the DSC transitions caused by the existence
of irreversibility.

Irreversible protein denaturation is thought to in-
volve, at least, two steps: (a) reversible unfolding of the
native protein (N); (b) irreversible alteration of the
unfolded protein (U) to yield a final state (F) that is
unable to fold back to the native one. For a recent review
on the several processes responsible for the irreversible
step (aggregation, autolysis, chemical alteration of resi-
dues etc.), see Klibanov and Ahern (1987).
The two-step nature of irreversible denaturation is

depicted in the following simplified scheme:

N =U F,

which is usually known as the Lumry and Eyring model
(Lumry and Eyring, 1954). According to a point of view
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widely held in the last 10 yr, the irreversible step (U -*

F) does not take place significantly during the short time
the protein spends in the temperature range of the DSC
transition, but occurs (with little thermal effect) at
somewhat higher temperatures; it is usually assumed
(see, for instance, Privalov, 1982; Privalov and Medved,
1982; Manly et al., 1985; Edge et al., 1985; Hu and
Sturtevant, 1987 and 1989; Brandts et al., 1989; Bertaz-
zon et al., 1990), therefore, that irreversible DSC transi-
tions are due, in fact, to the reversible unfolding and are

amenable to equilibrium thermodynamics analysis. Al-
though this may be the case in some instances (see, for
example, Goins and Freire, 1988), recent work has
shown that, often, the irreversible step takes place, in
fact, during the time the protein spends in the transition
region and, therefore, the DSC transition is strongly rate
limited (Sanchez-Ruiz et al., 1988a and 1988b; Guzman-
Casado et al., 1990; Lepock et al., 1990; Morin et al.,
1990; Freire et al., 1990; Galisteo et al., 1991; Conejero-
Lara et al., 1991).
The theoretical basis of the equilibrium thermodynam-

ics analysis of reversible DSC transitions is well estab-
lished. However, theoretical studies on irreversible dena-
turation models (models that include rate-limited steps
leading to a final state) are not available in the litera-
ture. This work is intended to fill (in part) this gap.

It must be noted that the fact that many irreversible
DSC transitions are strongly rate limited has become
known very recently (see the above references) and,
therefore, it does not appear feasible at this time to give
general recipes for the analysis of this kind of DSC
transitions. The purpose of this theoretical analysis is to
demonstrate (in the simplest possible manner) two
important points:

(a) Irreversible denaturation models lead to different
situations depending on the rate of the irreversible step;
if this step is fast enough, the DSC transition is entirely
determined by the kinetics of formation of the final state
and equilibrium thermodynamics analysis is not permis-
sible.

(b) Even in the case of strongly rate-limited denatur-
ation, ligand and protein concentration effects on the
DSC transitions may be observed if ligand release and
protein dissociation into monomers take place before
the rate-determining step; these will be shown to be
nonsaturating effects, similar to those predicted by
equilibrium thermodynamics for reversible unfolding
transitions.
The above ideas will be demonstrated by the theoreti-

cal analysis of simple Lumry-Eyring models (see Fig. 1).
Thus, point 1 will be illustrated with model II and point
2 with models IV and VI. In all cases, for the sake of
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FIGURE 1 Thermal denaturation models considered in this work.

simplicity, a first-order kinetics for the irreversible step
(U -- F) will be assumed.

Although the models considered in this work (Fig. 1)
are, in fact, very simple, we believe that the general
approach employed here may enable researchers to
tackle a wide variety of kinetic models. In addition, a

more general scheme (which assumes that several states
of the protein coexist in chemical equilibrium during
denaturation and takes into account the possibility of
non-first-order kinetics for the irreversible step) is briefly
described in appendix 1.

THEORY AND RESULTS

The Lumry and Eyring model. The simplest form of the
Lumry and Eyring model (Lumry and Eyring, 1954) can
be represented by the following scheme (model II in Fig.
1):

K k
N U F.

where N, U, and F are the native, unfolded, and final
(irreversibly denatured) states of the protein, respec-
tively. We will assume that chemical equilibrium be-
tween N and U is always established and that the
unfolding enthalpy, AHu, is constant. Then, the temper-
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ature dependence ofK can be expressed as,

K= [U] X = exp - RHu [11T- 1/T11211,[N] XNR
(1)

wherexu andxN stand for the molar fractions of unfolded
and native states and T1,2 is the temperature at which
K= 1.
We will also assume that the irreversible step (U -* F)

is first-order and that the rate constant, k, changes with
temperature according to the Arrhenius equation, which
will be used in the form:

k(min-') = exp l- [lT - 1IT*4, (2)

where E is the activation energy and T* is the tempera-
ture at which k = 1 min-' [the frequency factor is equal
to exp (EIRT*)].
The rate equation for the irreversible formation ofF

is:

d[F]
dt

or

dJxF
dtF = k * xu, (4)

where XF is the molar fraction of final state. From K =
XUIXN andXN + xU + XF = 1, it can be easily deduced that
XU = (1 - XF)K/(l + K). Eq. 4 can, then, be rewritten as,

dXF kK
dt K+1 (l-XF), (5)

which shows that, at constant temperature, XF changes
with time after a first-order kinetics with an apparent
rate constant equal to kK/(K + 1). In a DSC experiment,
however, temperature changes with time according to a
constant scanning rate (v = dT/dt) and the relevant
differential equation is:

dXF 1 kK
dT - (1-XF).dTvK+l

K 1 T kKx K expvJ K + 1

1 1 T kKx K +expJv K + 1

The apparent excess enthalpy, (AH), is given by,

(AH) = xUAHU + XFAH,

(8)

(9)

(10)

where AHu and AH are, respectively, the enthalpies of
the states U and F (taking N as the reference state).
Note that the enthalpy of the final state (AH) is equal to
the calorimetric enthalpy of the DSC transition, because
eventually all protein molecules will be found in the final
state.
Authors who have previously supported the applicabil-

ity of the equilibrium thermodynamics analysis to irre-
versible DSC transitions (see, for instance, Privalov,
1982; Privalov and Medved', 1982; Manly et al., 1985)
have made the (reasonable) assumption that the pro-
cesses responsible for the irreversible step have much
lower enthalpy than the cooperative unfolding. Clearly,
if the enthalpy change for the irreversible step was large,
there is no doubt that the DSC thermograms would be
highly distorted. The following analysis of model II is
intended to show that the DSC transitions may be
distorted, even if the irreversible step has a negligible
thermal effect. Accordingly, we will assume that the
enthalpy of the U -* F transition is zero and that,
therefore, AHu = AH. It must be noted, nevertheless,
that other treatments reported in this work (ligand and
protein concentration effects on irreversible DSC transi-
tions, as well as the general scheme of Appendix 1) do
not depend on this assumption.

If AHu = AH, Eq. 10 can be written as,

(AM) AH (XU + XF) = AH(1 XN), (11)

and the apparent, excess heat capacity, Cex is given by,

CCpx = _AH dXNcx= dT'
(6)

Separation of variables in Eq. 6, followed by integra-
tion from a low temperature, To (at which the reaction
rate is negligible and XF = 0), to a temperature T, yields
the temperature dependence of XF for a DSC experi-
ment. Then, taking into account that K = XU/XN and XN +
XU + XF = 1, the temperature dependencies of XN and xu
can also be obtained:

(12)

as AH has been assumed to be constant. Finally, dx,N/dT
is obtained from Eq. 9 and substituted in Eq. 12 to yield:

KAH k AH 1 T kK
ccx= J- IVJToK+ljT (13)(K + 1) v RT2 x v JTK + 1 .(3

It is interesting that the equation corresponding to a
two-state reversible unfolding (model I in Fig. 1):

X1 T kK~~~~XF=1-exp -- J dT
AH2 K

cex =R +1
RT2(K+ 1)2(7)
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FIGURE 2 DSC transitions predicted by Eq. 13 (model II) and the
following parameters: AH = 400 kJ/mol; T1,2 = 55°C; E = 100 kJ/mol;
v = 2 K/min. (A) T* = 75°C; (B) T* = 55°C; (C) T* = 25°C. In all
cases, the dashed transition corresponds to the reversible unfolding
(Eq. 14).

can be derived from Eq. 13 either by setting k = 0 at any
temperature (the irreversible process does not take
place) or by setting 1/v = 0 (infinite scanning rate).
The DSC transitions predicted by Eq. 13 can be

broadly classified into three groups, that will be referred
to as situations A, B, and C. These are illustrated by the
traces shown in Fig. 2, which correspond to the same
values of AH (400 kJ/mol), T,12 (55°C), E (100 kJ/mol),
and v (2 K/min), and different values of T* (the
corresponding population of states versus temperature
profiles are given in Fig. 3). The values chosen for AH
and T112 are within the ranges found for small globular
proteins (Privalov, 1979), while the one for the energy of
activation, E, is close to that determined by Goins and
Freire (1988) for the irreversible step in the thermal
denaturation of the B subunit of cholera toxin.2

2Recent DSC studies on the irreversible thermal denaturation of
several proteins (Sanchez-Ruiz et al., 1988a and 1988b; Guzman-
Casado et al., 1990, Lepock et al., 1990; Morin et al., 1990; Conejero-
Lara et al., 1991) report energies of activation within the range
- 150- 600 kJ/mol. In these studies, however, the DSC transitions
were found to conform to two-state irreversible models and, therefore,
they correspond to what we call situations C/C'; the theoretical
analysis reported in this work shows that, in these situations, the
energy of activation is an apparent value (Eapp), which is not equal to
the energy of activation for the irreversible step (E). On the other
hand, Goins and Freire (1988) have shown that the irreversible step in

c
0

0
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FIGURE 3 (A, B, and C) Fraction of states versus temperature profiles
corresponding to the DSC transitions of Fig. 2 (model II). The profiles
were calculated by using Eqs. 7, 8, and 9 and the parameters given in
the legend of Fig. 2. (EQ) Fraction of states versus temperature profile
corresponding to the reversible equilibrium unfolding.

SituationA (Figs. 2A and 3A). In this case T* = 75°C,
the irreversible step proceeds at significant rate only at
temperatures above T112 (55°C) and, in fact, the calorimet-
ric trace differs little from that corresponding to the
reversible unfolding (model I in Fig. 1). At T = Tl,2, XF is
very low; however, at T = 70°C (a few degrees above the
end of the transition), most of the protein is in the final
state, F (Fig. 3 A). Therefore, if the DSC scan is
terminated at 70°C, no significant heat effect will be

the thermal denaturation of the B subunit of cholera toxin takes place
(with negligible thermal effect) at temperatures somewhat above than
those corresponding to the DSC transition (this case is referred to in
this work as situation A); therefore, they were able to study the
irreversible step separately and the energy of activation reported by
these authors (- 100 kJ/mol) does correspond to the irreversible step
itself. In this work, E = 100 kJ/mol is employed as demonstration
value for the simulations of model II; it must be noted, nevertheless,
that situations A, B, and C are also obtained with values for E much
lower (and much higher) than 100 kJ/mol. In fact, the specific values of
the parameters (AH, T,,2, and E, for model II) are not critical for the
general result of the simulation. This remark also applies to all other
simulations described in this work.
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observed in the reheating run and the transition will be
considered as calorimetrically irreversible. In spite of
that, it is clear that direct application of equilibrium
thermodynamics to the irreversible transition in Fig. 2A
would not lead to large errors.

Situation B (Figs. 2B and 3B). Here, T* = 55°C and
the irreversible step is fast in the temperature range of
the reversible unfolding. The DSC transition deviates
clearly from that corresponding to the equilibrium
unfolding (Fig. 2 B) and direct application of equilib-
rium thermodynamics would lead to significant errors.

There exist, however, a significant amount of unfolded
state in equilibrium with the native one during the
temperature-induced denaturation (Fig. 3 B); that is,
the calorimetric transition contains thermodynamic in-
formation about the reversible unfolding, which could
be obtained upon the appropriate data treatment (see
Appendix 1).

Situation C (Figs. 2 C and 3 C). In this case, T* =

25°C, the irreversible step being fast at temperatures
well below T1,2 (55°C). The Tm value (temperature
corresponding to the maximum heat capacity) is several
degrees lower than the one for the reversible unfolding
(Fig. 2 C) and only the states N and F are significantly
populated (Fig. 3 C). Thus, the irreversible transition in
Fig. 2 C can be described by the so-called two-state
irreversible model (Sanchez-Ruiz et al., 1988a):

kK

N 3 F,

where the apparent first-order rate constant for the
process is equal to kK, given that, within the tempera-
ture range of this transition, K << 1 and K + 1 = 1 (see
Eq. 5). Equilibrium thermodynamic analysis of this
transition would lead to gross errors. In addition, the
small amount of U, together with the experimental
uncertainties (noise, baseline tracing, etc.) found in a

real DSC experiment, would preclude the determination
of any thermodynamic information about the reversible
unfolding step.
The three situations (A, B, and C) have been simu-

lated in Figs. 2 and 3 by using different values of the
parameter T*. These situations, however, can also be
achieved (Fig. 4) by changing the scanning rate while
keeping constant AH, T1,2, and T*. For the transitions of
Fig. 4, AH = 400 kJ/mol, T1,2 = 55°C, T* = 55°C, and
the scanning rate has been changed from 102 K/min to
10-4 K/min. The transition corresponding to the highest
scanning rate does not differ significantly from that for
the reversible unfolding, while those obtained within the
scanning rate range 102-10-4 K/min correspond to
situation C and are described by the two-state irrevers-
ible model. (The transitions of Fig. 4 are shown for
illustration purposes: it must be noted that the total

I

*.1
I

x0

-u

T/°C

FIGURE 4 Scanning rate effect on DSC transitions corresponding to
model II. These transitions have been calculated by using Eq. 13 and
the following parameters: AH = 400 kJ/mol; T1,2 = 55°C; E = 100
kJ/mol; T* = 55°C. The numbers alongside the transitions stand for
the scanning rate in K/min.

scanning rate range employed is much wider than the
one usually available to the experimenter; in addition, it
does not appear likely that chemical equilibrium be-
tween the native and unfolded states of the protein be
established at the higher scanning rates.)
The DSC transitions in Figs. 2 and 4 have been

calculated assuming that the rate-limiting step is the
irreversible process (U -- F) itself, and that chemical

equilibrium between the states N and U is always
established. A more general treatment of model II (Fig.
1) would require that the kinetics of the unfolding-
refolding processes be taken into account, according to
the following scheme:

k, k
= U F,
k2

where we will assume that all the kinetic processes are
first-order and the unfolding equilibrium constant is
given byK = k,/k2. In this scheme the rate-limiting step
is determined by the relative values of the rate constants
k and k2 (Jencks, 1987; Lowry and Richardson, 1976).

If k2 >» k, most of the U molecules will be able to
refold to the native state, as a result the equilibrium
between N and U will be established and the calorimet-
ric transitions will be described by Eq. 13. If, in addition,
K << 1, the amount of U will be very low and the rate of
formation of F will be determined by an apparent
first-order rate constant equal to kK (Jencks, 1987); this
is, in fact, the situation C described above.

If k >> k2, most of the U molecules will be converted
to the final state, F, instead of refolding to the native
state through the process U -- N, the concentration ofU

will be very low and chemical equilibrium between U
and N will not be established. In this case, the rate-
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limiting step is the unfolding (N -- U) and the formation
of F is determined by a first-order rate constant equal to
k, (Jencks, 1987; see, also, Sanchez-Ruiz et al., 1988a):

k,
N > F.

This case will be referred to as Situation C'. At least for
model II with first order kinetics, both situations, C and
C', are described by the two-state irreversible model and
cannot be distinguished on the basis of the DSC transitions,
the only difference being the rate-determining step.

Concentration effects on DSC transitions corresponding
to irreversible protein denaturation. Equilibrium thermody-
namics predicts that, for the simple equilibrium model
(model III in Fig. 1):

K

in which a multimeric protein undergoes two-state
reversible unfolding with simultaneous dissociation into
monomers, the temperature of the maximum of the DSC
transitions, Tm, increases with the total protein concen-
tration according to (Takahashi and Sturtevant, 1981):

AHIH/RTm + (,. - 1) ln Ct = constant, (15)

where AHVH is the so-called van't Hoff enthalpy3 and C, is
the total protein concentration. It must be noted that the
AHvH value can be independently calculated from the
shape of the transitions according to the well known
equation:

AfH = ART,Cpm/AH, (16)

where Cem and AH are the excess heat capacity at the
maximum and the denaturation enthalpy (values of the
constantA for several values of pu are given by Manly et
al., 1985; see also Table 1).
The Lumry and Eyring model corresponding to model

III is:

K
N U

F

which is model IV in Fig. 1. Depending on the rate of the
irreversible step, this model will lead to different situa-
tions; here, however, we will be interested in situation C.
Therefore, we will assume that the equilibrium between

TABLE 1 Apparent van't Hoff enthalpies that would be
obtained by applying equilibrium thermodynamics to rate-
limited DSC transitions corresponding to models IV and VI in
situation C

SL A* p,I(p 1) AHvHt AHRvH§ MHuHII

1 4.00 2.72' 1.47 Eapp Eapp
32%

2 5.83 2.00 2.92 Eapp 2 Eapp 2 Eapp
31.5% 31.5%

3 7.43 1.73 4.29 Eapp 3 Eapp 3 Eapp
30% 30%

4 9.01 1.59 5.67 Eapp 4 Eapp 4 Eapp
29.5% 29.5%

*Coefficient A in Eq. 16; taken from Manly et al. (1985).
tCalculated from the shape of the transitions according to Eq. 16.
'Calculated from the protein concentration effect on the Tm values,
according to Eq. 15; the percentages refer to the deviations from the
values obtained by using Eq. 16.
I1Calculated from the ligand effect on the Tm values, according to Eq.
29; the percentages refer to the deviations from the values obtained by
using Eq. 16.
'lim,,>L-(>L e = 2.718 .. .

the native and the unfolded states is always established
(the temperature dependence of the unfolding equilib-
rium constant being described by Eq. 1) and that the
amount of unfolded state is always very low. It will also
be assumed that the irreversible step is determined by a
first-order rate constant that changes with temperature
according to the Arrhenius equation (Eq. 2).
The rate of formation of the final state is given by Eq.

3 (d[F]/dt = k [U]), which can also be written as:

dCF - kCu,
dt (17)

where CF and Cu stand for the concentrations in mg/ml,
and the unfolding equilibrium constant is defined as:

[Nl] = (18)

where [U] and [N,j] are the concentrations in mol/liter,
Cu and CN are the concentrations in mg/ml, and M
stands for the monomer molecular weight. Eq. 17 and 18
can be combined to yield:

dCF
dtj7 app N

(

3Eqs. 15 and 29 are valid for two-state reversible unfolding models
(models III and V in Fig. 1); therefore, the van't Hoff enthalpy, AHUH,
should equal the true or calorimetric enthalpy, AH. These equations,
however, have often been used for non-two-state reversible unfolding
cases (AHvUH . AM).

where kapp is an apparent rate constant given by:

kapp = k M(P- )/P.

Given that kapp is proportional to kKW'I, and that both, k

92B-pyialJunlVoue6-Arl19
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(19)
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and K, are assumed to show exponential dependence
with 1IT, it is clear that the temperature dependence of
kapp can be expressed by an Arrhenius equation:

kapp exp(E + AH /uIi± 1 1
kapp =ep R T T*

= exp (EappIRT*) exp (-EappIRT)
Eapp = E + (AHu/I),

E

-i

,MN
(21)

where T* is the temperature at which kapp = 1 (in units of
min-' (mg/ml)(1`)''L), E is the energy of activation of the
irreversible step (U -* F), and AHu is the unfolding
enthalpy. Note, however, that the temperature depen-
dence of kapp is determined by the value ofE + AHu/p.;
that is, E + AlHu/p plays the role of an apparent energy
of activation: Eapp*
For situation C, the total protein concentration can be

expressed as Ct = CN + CF. Accordingly, dCN/dt =

- dCF/dt and Eq. 19 becomes:

dt - kappCN/IL (22)

and for a DSC experiment the relevant differential
equation is:

dCN
=T _(1Iv) kapp(T)C?/P, (23)

where v is the scanning rate (dTldt) and kapp(T) is the
temperature-dependent value of kapp given by Eq. 21.
DSC traces corresponding to model IV in situation C

were calculated by using the following procedure: Eq. 23
was integrated numerically (using the fourth-order
Runge-Kutta algorithm with an integration interval of
0.02°C) from a low temperature To (at which the rate is
negligible and CN = Ct) to a temperature T. This integra-
tion leads to the temperature dependence of CN and
dCN/dT (Eq. 23). Finally, the excess heat capacity was
obtained according to,

d(CN/C_) dCN
CP = -AHI =(AHI Ct)- (24)

as the denaturation enthalpy, AH, is assumed to be
constant. These CeX/T profiles depend on the values
chosen for the following parameters: p., v, Ct, AH, T*,
and Eapp. In the simulations described below Eapp = 300
kJ/mol is always employed (see footnote 2); of course,
this value may be obtained from different sets of AHu
and E values (for instance, for p. = 2, it is obtained from
AHu = 400 kJ/mol and E = 100 kJ/mol, or from AHu =

500 kJ/mol and E = 50 kJ/mol, or ... .); note, however,
that the DSC transitions do not depend on the values of
AHu and E, but only on (E + AlHu/p.), which is the
apparent energy of activation: Eapp (see Eq. 21).

40 45 50 55 60
T/oC

FIGURE 5 Effect of the value of > on the asymmetry of DSC
transitions corresponding to model IV in situation C. These transitions
have been calculated by numerical integration of Eq. 23 (see text) with
the following parameters: AH = 400 kJ/mol; Eapp = 300 kJ/mol; T* =
55°C; v = 2 K/min; C, = 1 mg/ml. The numbers alongside the
transitions stand for the values of p.

Fig. 5 shows several simulated DSC transitions in
which the parameters AH (400 kJ/mol), Eapp (300 kJ/
mol), T* (55°C), v (2 K/min), and C, (1 mg/ml) have
been kept fixed and the value of p, has been changed
from p, = 1 to 6. In all cases, the transitions are
asymmetrical, the asymmetry being more pronounced
for the higher values of p.

Except for p. = 1 (which corresponds, in fact, to model
II), the DSC transitions for model IV in situation C
depend strongly on the total protein concentration. This
is evident in Fig. 6A, which shows the effect of Ct (0.5-20
mg/ml) for DSC transitions characterized by AH = 400
kJ/mol, Eapp = 300 kJ/mol, T* = 55°C, v = 2 K/min, and
p. =4.
Mathematical elaboration of model IV in situation C

(Appendix 2) leads to several useful relationships that
give:

(a) the scanning rate effect on Tm (at constant CQ):

In (vIT') = constant -RT; (25)

(b) the shape of the transitions:

AHEapp (appAT
= RT2 exp RT(

m m

AT
x 1+ exp app

) (26)

where AT = T- Tm;
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(c) the apparent energy of activation in terms of the
parameters corresponding to the maximum of the transi-
tion:

Eapp = X(A-")RT C"'mIAH; (27)

(d) the effect of the total protein concentration on the
temperature corresponding to the maximum heat capac-
ity (at constant scanning rate):

RTm 21n Tm + lnC, = cte. (28)
RTm

For reasonable values of Eapp, the term 2 ln Tm changes
with Tm much more slowly than does the term Eapp/RTm;
hence, the term 2 In Tm can be taken as a constant and,
therefore, Eq. 28 predicts that a plot of ln Ct versus 1/Tm
should be linear with a slope equal to - jEapp/(p. - 1)R).
The Tm values for the transitions of Fig. 6A, in fact, fit
quantitatively this prediction (see Fig. 6 B). It must be
noted that the protein concentration effects predicted by
the equilibrium unfolding model III (Eq. 15) and the
Lumry-Eyring model IV in situation C (Eq. 28) are

a 0.5 mglmL abcd*f
E b YY,V

e0 .I4o f 20

_~~~~~IL 3 B
E2E 2-X

-1

u 1 X

2.99 3.01 3.03 3.05 3.07
IOZ(Tm/K)

FIGURE 6 Protein concentration effect on DSC transitions correspond-
ing to model IV in situation C. (A) DSC transitions calculated by
numerical integration of Eq. 23 (see text) with the following parame-
ters: AH = 400 kJ/mol; Eapp =300 kJ/mol; T* = 55°C; ,u = 4; v = 2
K/min. The numbers alongside the transitions stand for the total
protein concentrations (C,) in mg/ml. (B) Plot of In C, versus 1/Tm for
the transitions in Fig. 5A (additional Tm values [corresponding to 1.5,
3.5, 7.5, and 15 mg/ml] are included); the straight line has the slope
(_ JEappI[R(PL - 1)]) predicted by Eq. 28.

similar; thus, in both cases the effect is nonsaturating
and plots of ln Ct versus 1/Tm are linear.
Ligand effects on DSC transitions corresponding to

irreversible protein denaturation. Equilibrium thermody-
namics predicts that, for the equilibrium model (model
Vin Fig. 1):

K
N,LL = vL + ,LU,

in which the protein undergoes two-state unfolding with
simultaneous dissociation and ligand loss, the effect of
ligand and total protein concentrations on the tempera-
ture of the maximum of the DSC transitions is given by
(Fukada et al., 1983):3

AHuH

RT + v ln Lo + (,u - 1) ln C, = constant, (29)

where Lo is the ligand concentration (Eq. 29 corresponds
to the case in which the concentration of ligand is much
larger than that of protein).
The Lumry and Eyring model corresponding to model

Vis

K
N,L=vL +p U

F

which is model VI in Fig. 1.
The unfolding equilibrium constant, K, is defined by:

K= [UHILI = pm(I-Ol(CoI.4) (30)

whereM is the monomer molecular weight, [U], [L], and
[N.,LV] are the concentrations in mol/liter, Cu and CN are
the concentrations in mg/ml, and Lo is the ligand
concentration in mM (it is convenient to use these units,
as they correspond to the usual protein and ligand
concentration ranges employed in DSC studies).

In this case, the rate of formation of the final state is
also given by Eq. (17) and, following the same procedure
employed with model IV, it is straightforward to arrive
to:

---k -vl,=C'I,,
dt kappLO N L

where the apparent rate constant is given by:

kapp = k MO-lwV/1L

(31)

(32)

The assumptions made in deriving Eq. 31 are the same
as in model IV. In addition, we have assumed that the
ligand concentration is much larger than the total
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protein concentration and, therefore, the former can be
taken as a constant in a given DSC experiment. It is also
important to note that Eq. 31 is valid exclusively for
situation C (the concentration of U is very low and only
the states NFL,, and F are significantly populated).
As was the case for model IV, kapp is proportional to

kKW11 and, therefore, its temperature dependence can be
described by Eq. 21 with an apparent energy of activa-
tion, Eapp, and a temperature, T*, at which kapp = 1 (in
units of min-' (mg/ml)("`)'/ mMv/L). Thus, for a DSC
experiment,

dC -(/lv) kapp(T)LOv/ C`N, (33)

where kapp(T) is the temperature dependent value of kapp
given by Eq. 21. Eq. 33 can be written as,

dC _-(1IV) k'pp(T, LO)C"IL, (34)

where k' = kap -V/0 For a given DSC experiment,
however, Lo is constant and Eq. (34) is equivalent to Eq.
(23). Therefore, Eqs. 25 (scanning rate effect), 26 (shape
of the transitions), and 27 (energy of activation in terms
of the parameters of the maximum) hold true for model
VI in situation C (see Appendix 2).
Of course, in this case there is ligand concentration

effect on the transitions. This effect (together with the
total protein concentration effect) is given by (Appendix
2):

lnT. + In C + -In Lo = constant. (35)
RTm

Thus, the effect of C, on Tm (at constant Lo and
scanning rate) is the same as that described for model IV
in situation C (Eq. 28). In addition, the Tm value
increases with the ligand concentration (at constant C,
and scanning rate) and a plot of ln Lo versus 1 /Tm will be
linear with a slope equal to - IJEapp/(vR) (given that the
term 2 ln Tm can, in fact, be taken as a constant).

Fig. 7A shows the effect of the ligand concentration
(0.5-20 mM) on DSC transitions characterized by the
following parameters: AH = 400 kJ/mol, Eapp = 300
kJ/mol, T* = 55°C, = 4, v = 4, Ct = 1 mg/ml, and v =
2 K/min. These transitions were calculated by numerical
integration of Eq. 33 (as described for model IV). The
effect of Lo on Tm is quantitatively described by Eq. 35
(Fig. 7 B). Therefore, we find that, both, the equilibrium
unfolding model V (Eq. 29 and the Lumry-Eyring model
VI (Eq. 35 predict a nonsaturating ligand effect and that
plots of ln Lo versus 1/Tm are linear.

It is worth noting here that, in models IV and VI (Fig.
1), the equilibrium unfolding step leads to the unfolded
monomer (U), which, subsequently, undergoes the irre-

1 rn/(T /K)

FIGURE 7 Ligand concentration effect on DSC transitions correspond-
ing to model VI in situation C. (A) DSC transitions calculated by
numerical integration of Eq. 33 (see text) with the following parame-
ters: AH = 400 kJ/mol; Eapp = 300 kJ/mol; T* = 55°C; p. = 4; v = 4;
v = 2 K/min; C, = 1 mg/ml. The numbers alongside the transitions
stand for the ligand concentrations (Lo) in mM. (B) Plot of In Lo versus
1/Tm for the DSC transitions in Fig. 6A (additional Tm values
[corresponding to 1.5, 2.5, 7.5, and 15 mM] are included); the straight
line has the slope (-IEapp/(vR)) predicted by Eq. 35.

versible process to give the final state. We could have
devised similar models in which the first step led, for
instance, to folded monomers (N). This, however, would
not make any difference for situation C, in which the
amount of monomeric species is very low. Thus, the
conclusions reached in our treatment of models IV and
VI in situation C (Eqs. 25, 26, 27, 28, and 35) remain
valid if we assume that the unfolding step leads to, in
general, an intermediate monomeric species (folded,
unfolded, or partially folded).

DISCUSSION

Lumry and Eyring models lead to different situations
depending on the rate of the irreversible process. In two
of these situations (C and C', the difference being the
rate determining step) chemical equilibrium between
the significant populated states is not established and
the relative amounts of these states during denaturation
are given by the integration of a rate equation (not by a
temperature-dependent equilibrium constant). Situa-

J.M. Sanchez-Ruiz Lumry-Eyring Models in DSC 929

I

-6
E

T/OC
65

J.M. Sanchez-Ruiz Lumry-Eyring Models in DSC 929



tions C/C' are not just theoretical possibilities; in fact,
they correspond to the so-called two-state irreversible
model, which has been recently demonstrated for the
thermal denaturation of several proteins (Sanchez-Ruiz
et al., 1988a and 1988b; Guzman-Casado et al, 1990;
Lepock et al., 1990; Morin et al., 1990; Conejero-Lara et
al., 1991).

Equilibrium thermodynamics analysis of DSC transi-
tions in situation C/C' is not permissible. This statement
means that: (a) the denaturation entropy change (and,
hence, the denaturation Gibbs energy change) cannot
be determined from the transitions, given that entropy
calculations from experimental heat capacity data are

based upon the Clausius equality, which does not hold
for an irreversible, rate-limited process; (b) analysis of
the transition shapes based on the assumption that two
or more protein states coexist in equilibrium during the
scan are obviously incorrect. (It must be noted, neverthe-
less, that, according to the first law, the total heat
absorbed equals the denaturation enthalpy change, even

if the denaturation process is irreversible. Of course, this
denaturation enthalpy will be the enthalpy difference
between the final and native states.)
The main experimental evidence supporting equilib-

rium thermodynamics analysis of irreversible DSC tran-
sitions comes from the fact that, in several cases (see
Manly et al., 1985; Edge et al., 1985; Hu and Sturtevant,
1987), ligand and protein concentration effects on the
transitions conform to Eqs. 15 and 29, which are derived
from equilibrium unfolding models (models III and V in
Fig. 1); that is, plots of ln C, and ln Lo versus 1/Tm are

often found to be linear (within the scatter of the
experimental data), and the AH H values obtained from
the slope of these plots show a "rough" agreement with
those calculated from the shape of the transitions (Eq.
16).
The analysis of models IV and VI reported here

shows, however, that the Tm values may increase with
ligand and protein concentrations and that plots of ln Lo
and ln Ct versus 1/Tm may be linear, even in cases of
strongly rate-limited denaturation. In addition, it is not
at all clear whether a "rough" agreement between the
AHlV values derived from the plots of ln Lo and ln C,
versus 1/Tm and those calculated from Eq. 16 proves

conclusively that the denaturation follows equilibrium
thermodynamics. For instance (see Table 1), if Eq. 16 is
applied to a DSC transition corresponding to models IV
or VI in situation C, the apparent AH H value obtained
would, in fact, be equal to AEapp/ W1(IL-1) (compare Eqs.
16 and 27); the values derived from the ligand and
protein concentration effects (compare Eqs. 29 and 35)
would be equal to IuEapp. In Table 1 we show the
apparent AH vH values that would be obtained for several
values of p, (1-4); the percentage deviation between the

AlHlL values is 30%; that is, there is a rough agree-

ment. It must be noted that the Lumry-Eyring models we
have analyzed (as well as the reversible unfolding
models: I, III, and V) are very simple ones; even if a

good agreement between the several AHlH values is
experimentally found, the possibility that more complex
kinetic models could also explain the data must be
considered.

It appears, therefore, that ligand and protein concen-

tration effects are not reliable equilibrium criteria in
DSC of proteins. This statement can be illustrated with a

specific example; Manly et al. (1985) carried out a DSC
study on the irreversible thermal denaturation of the
tetrameric (,u = 4) core protein of lac repressor in
phosphate buffer 0.048 M, pH 7.4, 15% glycerol, 0.1 mM
dithiothreitol. They found that, in the absence of ligands,
the shape of the DSC transitions and the total protein
concentration effect on the Tm values could be inter-
preted on the basis of the reversible unfolding model III
with p, = 4. However, the shape of the transitions can

also be explained by model IV in situation C, as shown in
Fig. 8 A; in addition, the plot of Tm versus Ct of Fig. 8 B,
in which the data reported by Manly et al. are compared
with the theoretical curve predicted by Eq. 28 with the
Eapp value (372 kJ/mol) calculated from the shape of the
transitions (Eq. 27), shows that the observed protein
concentration effect is also consistent with model IV in
situation C. Manly et al. also found an effect of the
ligands IPTG and ONPF on the DSC transitions, which
was explained (qualitatively) on the basis of the equilib-
rium model V with v = 4; thus, plots of ln Lo versus 1/Tm
were linear, but the AH vH values derived from the slopes
(3,025 kJ/mol for IPTG and 4489 kJ/mol for ONPF)
were in poor agreement with those calculated from the
shape of the transitions by using Eq. 16 (1766 kJ/mol for
IPTG and 1715 kJ/mol for ONPF). If the plots of ln Lo
versus 1/Tm are interpreted according to Eq. 35 (model
VI in situation C), values of Eapp = 756 kJ/mol for IPTG
and Eapp = 1122 kJ/mol for ONPF are obtained. Again,
these values are in very poor agreement with the ones

calculated from the shape of transitions (Eq. 27): Eapp =
311 kJ/mol for IPTG and Eapp = 303 kJ/mol for ONPF.
It appears, therefore, that neither model V nor model
VI in situation C are able to account (in a quantitative
manner) for the observed ligand effects. Of course, both
models can be "improved"; for instance, Manly et al.
pointed out that the discrepancy between the AH '

values could be removed if only three or less molecules
of ligand were bound to the native protein at denatur-
ational temperatures (v < 3). Obviously, this procedure
would also work for model VI in situation C.
The fact that the ligand and protein concentration

effects for models VI and IV in situation C are similar to
those predicted by equilibrium unfolding models was to
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FIGURE 8 (A) DSC thermogram for the irreversible thermal denatur-
ation of the core protein of lac repressor (pH = 7.4; C, = 5.74 mg/ml;
v = 0.23 K/min). (0) Experimental data, taken from Manly et al.
(1985). (---) Best fit of the theoretical curve for model III with ,u = 4,
taken from Manly et al. (1985). ( ) Best fit of the theoretical curve
for model IV in situation C (Eq. 26) with p. = 4. (B) protein
concentration effect on the Tm values for the thermal denaturation of
the core protein. (0) Experimental data, taken from Manly et al.
(1985). ( ) Curve predicted by Eq. 28 (model IV in situation C)
with p. = 4 and the Ea.p value (372 kJ/mol) derived from the shape of
the transitions according to Eq. 27.

be expected: in situation C the rate limiting step is the
irreversible process itself (U -+ F), the concentration of

unfolded state (or intermediate state, in general) is very
low, but chemical equilibrium between the native and
unfolded (or intermediate) states is established (this
kind of kinetic mechanism is sometimes referred to as

"preliminary equilibrium mechanism"; see Lowry and
Richardson, 1976). Clearly, any factor that "displaces"
the preliminary equilibrium will affect the rate of forma-
tion of the final state; thus, increasing the total protein
concentration (models IV and VI) or the ligand concen-
tration (model VI) originates a lower molar fraction of
unfolded (or intermediate) state, a lower rate of forma-
tion of the final state (per mole of protein) and a shift of
the DSC transitions to higher temperatures. Accord-
ingly, we believe that our conclusions can be stated in a

general way.
(a) For a strongly rate-limited, irreversible DSC

transition, protein concentration effects may be ex-

pected to occur if the dissociation of the native multi-

meric protein into monomers takes place before the
rate-determining step (even if no dissociation takes
place before the rate-determining step, protein concen-
tration effects may occur if the kinetics of the irrevers-
ible process is not first order; see Galisteo et al. [1991]).

(b) For a strongly rate-limited, irreversible DSC
transition, ligand concentration effects may be expected
to occur if ligand dissociation takes place before the
rate-determining step.

In general, these effects are not expected to be much
different than those predicted by equilibrium unfolding
models, given that their origin is the preliminary equilib-
rium step.

Finally, it is interesting to note that recent DSC
studies on irreversible protein denaturation have yielded
results that appear difficult to rationalize on the basis of
equilibrium thermodynamics. Thus, it has been found in
some cases (Edge et al., 1985; Guzman-Casado et al.,
1990) that the Tm values corresponding to the irrevers-
ible denaturation of multimeric proteins do not change
with protein concentration; according to equilibrium
thermodynamics, this means that the unfolded protein
remains in the same oligomerization state as the native
one (Edge et al., 1985), which appears to suggest that
the specific monomer-monomer interactions responsi-
ble for the multimeric character of the native protein are
still present in the unfolded state. It has also been
reported (Edge et al., 1985; Hu and Sturtevant, 1989)
that, in some cases, increasing the ligand concentration
causes irreversible DSC transitions to shift to lower
temperatures; this result has been explained, in terms of
equilibrium thermodynamics, by assuming that the ligand
binds more tightly to the unfolded protein than to the
native one (Edge et al., 1985; Hu and Sturtevant, 1989),
which appears to suggest that the binding site for the
ligand is still formed in the unfolded protein.
The results described above, however, can be easily

understood if one assumes that the irreversible DSC
transitions are strongly rate limited. Thus, a lack of
protein concentration effect on the Tm values for the
denaturation of multimeric proteins is to be expected if
protein dissociation into monomers does not take place
before the rate-determining step and the irreversible
process shows first-order kinetics. In addition, a lower-
ing of the Tm values upon increasing ligand concentra-
tion could simply mean that the ligand increases the rate
of irreversible denaturation (if, for instance, both the
native protein with (NL) and without (N) bound ligand
can react irreversibly to yield the final state (F), being
the rate of the process NL -* F + L faster than that of

the process N -+ F). Of course, these kinetic explana-

tions make no assumption regarding the oligomerization
state or the ligand-binding characteristics of the un-

folded protein.
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rium:
CONCLUDING REMARKS

It has been widely held in the literature that irreversible
alterations of the unfolded state do not distort signifi-
cantly the DSC transitions, but take place at somewhat
higher temperatures; this is equivalent to assume that
protein thermal stability is determined by equilibrium
factors (the unfolding Gibbs energy versus temperature
profile), even when denaturation is overall irreversible.
The fact that, in some cases, ligand and protein concen-
tration effects on irreversible DSC transitions appear to
conform to the dictates of equilibrium thermodynamics
has been claimed to support the above point of view.
However, the theoretical analysis reported in this work
highly disfavors this claim; in addition, recent experimen-
tal studies have shown that, often, irreversible DSC
transitions are strongly rate limited. It appears very
likely, therefore, that, in many cases of irreversible
denaturation, operational thermal stability (as mea-
sured by the denaturation temperature under given
conditions) is subject to kinetic constraints. This fact
ought to have influence, not only on DSC data analysis,
but also on the approaches employed to obtain modified
proteins with enhanced thermal stability; thus, equilib-
rium approaches (such as introducing mutations that are
thought to increase the unfolding Gibbs energy) might
not be adequate in some cases of irreversible denatur-
ation, while changes (in the protein or in the solvent
conditions) that decrease the rate of irreversible denatur-
ation might be found to be more successful.

(A1.3)Yj = CjICeq.

The two sets of fractions are related by,

xi

1 -XF
(A1.4)

The apparent excess enthalpy, (AH), is an average over all the
protein states:

() = XF AH + EXi AHj, (A1.5)

where AHi is the enthalpy difference between the state Ii and the
reference state Io (i.e., the native state). Note that the enthalpy
difference between the state F and the state 10 is equal to the total
enthalpy change of the transition, AH, as eventually all the protein
molecules will be found in the state F.

Again, we define another excess enthalpy, (A, for the states I,
exclusively:

(AH)M = I yj AlHl. (A1.6)

The relationship between both excess enthalpies can be easily
derived by combining Eqs. A1.4-6:

(AH) = (1 -XF) (H, + XF AH. (A1.7)

(AM) versus temperature profiles can be obtained from the experimen-
tal excess heat capacity data by integration. However, the thermody-
namic information associated with the DSC transitions is contained in
the (A-),/T profile (note that (Al), is an average over the states Ii in
equilibrium only). If the (AH),/T profile can be extracted from the
experimental data, then it can be analyzed using the equilibrium
thermodynamic procedure.
Assume that the rate of formation of the final state is given by4:

APPENDIX 1

Multistate denaturation mechanism
including irreversibility
Assume that several, significantly populated states of the protein (Is, II,
12, 13 ... In) coexist in chemical equilibrium during the thermally-
induced denaturation and that any (or, in general, all) of the Ii states
undergo an irreversible, rate-controlled conversion to a final state F.
The concentrations of states are related by:

Ceq = XCi Ct = Ceq + CF, (A1.1)

where C, is the total protein concentration, CF is the concentration of
final state, C, is the concentration of a state I, and C,q the total
concentration of states Ii in equilibrium. The fractions of states are
given by,

X = Cj/C, = C +CF XF = CF/Ct + CF'
Ceq + CF Ceq + CF 9(A1.2)

where xi and XF are, respectively, the fractions of states Ii and F. We
define a second set of fractions (y;), only for those states in equilib-

d CF_ dCcqCC
dt dt app eq'

or for a DSC experiment at constant scanning rate (v),

dT -(1Ilv) kappCq,

(A1.8)

(A1.9)

where n is the reaction order and kapp is an apparent n-order rate
constant. k.PP may, in general, be a complicated expression including
individual rate constants (corresponding to irreversible steps: Ii -> F)
and equilibrium constants (corresponding to reversible steps: Ii
I*+,); it is assumed, however, to depend only on temperature. For
instance, in model II only two states of the protein coexist in
equilibrium (Io = N and I, = U), the reaction order is unity and the
apparent rate constant is given byk,pp = kK/(K + 1) (Eq. 5).

Separation of variables in Eq. A1.9 followed by integration from a
low temperature, To, at which the reaction rate is negligible and

4Eq. A1.8 assumes that the collection of states Ii in equilibrium behaves
as a single species from the kinetic point ofview, as is to be expected on
general grounds.
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essentially all the protein is in the native state, leads to:

c(I-n) = (n 1)

where F(T) is the following integral:

F(T) = Jf kappdT.

From Eq. Al.10 the following can be easily obtained,

XF = 1 -(1 + (n ) F(T)

which, substituted in Eq. A1.7, yields:

AH (AH) = (AH (AH)e)

(n- 11(-n
X 1 +-'C(n- 1) F(T)

kapp = exp (EappIRT*) exp (EappIRT),
(A1.10)

(A2.2)

which is Eq. 21 in the text. Note that, for a given DSC experiment, the
scanning rate (v) and the ligand concentration (Lo) are taken as

constants.

(A1. 1 1) Condition ofthe maximum ofthe DSC transitions. For T = Tm we have

(A1.11) that dCPX/dT = 0 and, therefore, (d2CNIdT2)m = 0. Applying this
condition to Eq. A2.1 we obtain:

dpp Cl + k
1

C(1- dCN

\ dT CNm app,m 11 N,m dT 1m(A1.12) (A2.3)

or

1

(d In kapp/dT)m = (d In CNIdT)m,

(A1.13)

or

(A2.4)

where CNm, kappm, (d In ka.pp/dT)in, and (d In CNIdT)m are the values of
CN, kapp, (d In kappldT), and (d In CNIdT) at T = Tm. Finally, taking into
account Eqs. A2.1 and A2.2, the following is easily arrived at,

(AH - (AH))1'n = (AM - (AM) )1 n

(n (A )'+ (A-(A)e)"n CI"n-1 F(T). (A1.14)

Thus, at constant T and C,, a plot of (AH - (AH))'-n versus 1/v

should result in a straight line; (AH)e and F(T) could then be obtained
from the intercept and slope of that line (of course, a nonlinear least
squares analysis based on Eq. (A1.13) would also be possible). This
procedure should be applied to several temperatures (within the
denaturational range) to produce the (Al)i/ T profile (thermodynamic
information associated with the DSC transitions) and the F(T)IT
profile (kinetic information about the irreversible formation of F).
Note that, if this procedure is applied to DSC transitions in situation
c, (AH) values close to zero will be obtained, indicating that no

information about the equilibrium unfolding is associated with the
transitions.

Eq. A1.13 is valid for n 1. The equation corresponding to n = 1
can be easily shown to be:

(AH- (AM)) = (AH - < AH)) e F(T)
(A1.15)

, E-PP exp (-EappIRT*)

=- exp (-EappIRTm) LovlR C('-m)IA. (A2.5)

Temperature dependence ofthe concentration ofnativeprotein. Separa-
tion of variables in Eq. A2.1, followed by integration from a tempera-
ture, To, low enough to make the reaction rate negligible, leads to:

CNP-I)IA = Ct(-1)/p' + (1 ) LO "F(T), (A2.6)

where C, is the total protein concentration (for T = TO, CN = C,) and
F(T) is the following integral:

rT
F(T) = fT kap dT

T
= exp (Eapp/RT*) fT exp (-EappIRT) dT. (A2.7)

Eq. A2.6 can also be written as:

APPENDIX 2

Transitions shape and effects of
ligand concentration, protein
concentration, and scanning rate for
models IV and VI in situation C
We will carry out the derivations specifically for model VI (model IV
can be considered a particular case of model VI for the case in which
v = 0). The differential equation corresponding to a DSC experiment
(Eq. 33 in the text) is:

dCN 1d

_
-

1,k L-V/& Cl/L
dT -v app 0 N (A2.1)

(1 C/('-)1)XN = 1 + -L LV/l C('-P')/P F(T) (A2.8)

wherexN (= Cs/C,) is the fraction of protein that remains in the native
state at the temperature T.
The integral in Eq. (A2.7) does not have an exact closed form

solution. An approximate expression for F(T), valid within the
relatively narrow temperature range of a DSC transition, can be
obtained, however, by taking into account that, within that tempera-
ture range, 1 /T can be approximated by (Sanchez-Ruiz et al., 1988a):

1T = 1/Tm - AT/Tm,2 (A2.9)

where AT = T - Tm. Substituting A2.9 into A2.7 and integrating from
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ATo (AT = T - Tm) to AT, we arrive at,

1 Eapp(1 1'
F(T) = Wexp R (T* i')J

{exp (WAT) - exp (WATO)}, (A2.10)
where W = Eapp /RTM. If To is low enough, and for the temperature
range of the calorimetric transition, exp (WATO) << exp (WAT).
Therefore, and taking into account Eq. A2.5, F(T) can be expressed
as:

F(T) = pLv Lo'/ C(ml)/ exp (EappATIRT2) (A2. 11)
Substituting Eq. A2.11 into A2.8, we obtain,

XN = (1 + (1 - pL)X(R)/! exp (EappAT/RT2)) 'l (A212)

where XNm (= CNm/IC) is the fraction of protein that remains in the
native state at the temperature Tm. For T = Tm, AT = 0 and XN = XNm;
therefore.

XNm = (1 + (1 - ) XN m -) (A2.13)
from whence,

XNm IL (A2.14)

Finally, substituting Eq. A2.14 into A2.12 the following is arrived at:

wcCN (= + (1 I exp (EappAT/RTM)) , (A2.15)

which gives the temperature dependence of the concentration of
native protein.

Scanning rate, ligand concentration, and protein concentration effects
on the DSC transitions. Substituting Eq. A2.14 into A2.5 yields:

Eap exp (-E IRT*)R Eapp!R*

T2
=-exp (Eapp/RTi) Lj-'' C (A2.16)

Therefore, at constant Lo and C, the scanning rate effect on the
DSC transitions is described by,

In (v/T2) = constant - RTEp (A2.17)

and, at constant scanning rate, the ligand and protein concentration
effects on the transitions are given by:

constalt = Tpp - 2 In TmRTM
(p.-1) v

+ In Ct +-1n LO. (A2.18)

Temperature dependence of the apparent excess heat capacity. The
apparent excess heat capacity if given by,

p" (Al/C) d = AH d , (A2.19)
p ~~dT dT'

dXN/dT can be obtained from Eq. A2.15 and substituted into Eq. A2.19
to yield5,

cex =
AH

Eap exp (CRApTp RT~ ex RT 2

1 + ( T It)exp / TT2 (A2.20)

Taking the ,u-- 1 limit in Eq. A2.20 the following is obtained:

cex = HEapp japp
A

CP RT 2 exp RT2

(Eapp AT \
x exp |-expk RT2)J2 (A2.21)

which corresponds to ,u = 1, that is, to the two-state irreversible model
with first-order kinetics (Sanchez-Ruiz et al., 1988a).

Setting T = Tm (AT = 0) in Fig. A2.20 leads to,

Eapp = 1(')RT2 Cem/AH. (A2.22)

Given that limr,1 L,u/(G-l) = e, the equation corresponding to the
two-state irreversible model with first-order kinetics is:

Eapp =eRTm Cp,/AH, (A2.23)

which was obtained by Sanchez-Ruiz et al. (1988a) using a different
procedure (Eq. (A2.23) can also be arrived at by setting AT = 0 in Eq.
A2.21.
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