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ABSTRACT A theoretical analysis is presented of the formation of membrane tethers from micropipette-aspirated phospholipid
vesicles. In particular, it is taken into account that the phospholipid membrane is composed of two layers which are in contact but
unconnected. The elastic energy of the bilayer is taken to be the sum of contributions from area expansivity, relative expansivity of
the two monolayers, and bending. The vesicle is aspirated into a pipette and a constant point force is applied at the opposite side in
the direction away from the pipette. The shape of the vesicle is approximated as a cylindrical projection into the pipette with a
hemispherical cap, a spherical section, and a cylindrical tether with a hemispherical cap. The dimensions of the different regions of
the vesicle are obtained by minimizing its elastic energy subject to the condition that the volume of the vesicle is fixed. The range of
values for the parameters of the system is determined at which the existence of a tether is possible. Stability analysis is performed
showing which of these configurations are stable. The importance of the relative expansion and compression of the constituent
monolayers is established by recognizing that local bending energy by itself does not stabilize the vesicle geometry, and that in the
limit as the relative expansivity modulus becomes infinitely large, a tether cannot be formed. Predictions are made for the functional
relationships among experimentally observable quantities. In a companion report, the results of this analysis are applied to
experimental measurements of tether formation, and used to calculate values for the membrane material coefficients.

INTRODUCTION

One of the primary functions of biological membranes is
to provide a dynamic barrier for the compartmentaliza-
tion of the cell and its contents. Thus, the mechanical
behavior and deformability of membranes is of funda-
mental importance in understanding the dynamics of
living cells. One of the more surprising shapes that
membranes assume is that of an elongated cylinder with
an aqueous core. Such structures are found in the Golgi
apparatus and the endoplasmic reticulum. Their forma-
tion and dynamics have been documented using image-
enhanced video microscopy of cells and cell extracts
(Dabora and Sheetz, 1988; Cooper et al., 1990). Similar
structures were first observed as the result of mechanical
deformations of red blood cell membrane (Hochmuth et
al., 1973). The mechanically-formed cylinders are called
tethers, and have been formed and studied in both red
blood cell membrane and phospholipid vesicles of dif-
ferent compositions (Hochmuth et al., 1982; Bo and
Waugh, 1989; Waugh, 1982a, b; Song and Waugh, 1990).
Although the elastic character exhibited by tethers was
originally attributed to the membrane skeleton of the
red blood cell (Evans and Hochmuth, 1976), it has been
recognized subsequently that tether formation is charac-
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teristic of the membrane bilayer, and that the stability
and elastic behavior of these structures is due to the
elastic resistance of bilayer membranes to changes in
their curvature (Waugh and Hochmuth, 1987). Thus,
mechanically-formed tethers provide an unusual oppor-
tunity to study membrane curvature elasticity and to
understand how membrane structure and composition
can influence membrane behavior.
The elastic behavior of phospholipid membranes can

be described as if they are two-dimensional liquids in the
plane of the membrane and elastic bodies with respect
to bending deformations (Evans and Needham, 1987).
The effect of the lamellar structure of bilayer mem-

branes on their bending properties has been considered
by Evans (1974, 1980), who emphasized different bend-
ing behavior of systems with connected and uncon-

nected constituent layers. In particular he showed, in the
case of closed (or constrained at the edges) unconnected
layers, where local adjustment and relative movement
can take place between the layers, that the correspond-
ing elastic energy depends on the integral of the curva-
ture over the whole membrane. This was described as a

nonlocal bending effect. The integral of the curvature
over the whole membrane is proportional to the differ-
ence between the areas of the two layers. Thus, it is
possible to relate the nonlocal bending energy to the
"relative stretching" term introduced recently (Svetina
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et al., 1985). In this report we shall use the term "relative
expansivity" to describe this contribution to the mem-
brane energy.

In previous analyses of tether formation the contribu-
tion of the relative expansion of the two membrane
layers has been neglected (Waugh and Hochmuth, 1987;
Bo and Waugh, 1989). In this work we consider the
importance of relative expansivity in tether formation
and establish the analytical basis for obtaining the
corresponding nonlocal bending modulus from the exper-
imental data. The first section will provide the descrip-
tion of the mechanical properties of closed bilayers on

which the analysis is based. Then an approximate
geometric model for the aspirated tethered vesicle will
be introduced, on the basis of which the elastic energy of
the system can be determined approximately. The equi-
librium tether configurations will be obtained by minimiz-
ing the free energy of the system, and criteria will be
developed for the stability of the tether. The analytical
framework will be used in a companion paper (Waugh et
al., 1992) to calculate the nonlocal bending modulus
from experimental observations.

Elastic properties of closed
symmetric bilayer with unconnected
layers
The two layers of a phospholipid bilayer are held in
contact by hydrophobic forces but can be assumed to
slide freely one by the other. Then the elastic properties
of the bilayer are determined by the elastic properties of
the individual constituent layers subject to the constraint
that their areas are interrelated by:

AeX=An+ h f(c +c2) dAo. (1)

Here Aex and A are the areas of the external and the
internal layers, respectively, at their neutral planes, h is
the distance between these neutral planes, cl and c2 are
the two principal curvatures, and integration is over the
area of the neutral plane of the bilayer, AO. Following a

more general treatment (Svetina et al., 1985), the elastic
properties of the layers as separate entities (m = 1, 2)
are described by their area expansivity modulus (Ki),
their bending constant (kc,m), and their spontaneous
curvature co,m. The elastic energy of a closed symmetric
bilayer composed of layers of the same composition
(where therefore K2 = K,, k,2 = kc,1, and c0,2 = -cOJ) is
given by the sum of three terms:

(a) the area expansivity term takes the form:

2K(A -A0)21Ao, (2)

whereK is the area expansivity modulus of the bilayer:

K = 2K1, (3)
and A is an expanded area of the neutral plane of the
bilayer;

(b) the bending term is:

2k I(cl + c2)2 dAo, (4)

where kC is the membrane bending modulus:

kC = 2k,sls (5)

and it has been recognized that in the case of symmetric
bilayers the spontaneous curvature is zero;

(c) the relative expansivity term can be conveniently
described by either of the two alternative expressions

1 K, (AA AO)2 =-A (AA/h - AA0Ih)2.
2Ao 2Ao

(6)

It is clear from the first of these expressions that the
relative expansivity term describes the energy of the
membrane arising from the expansion and compression
of the two membrane layers. It is manifested in that the
difference between the areas of the inner and outer
leaflets in the deformed state (AA = A X- Ain) is dif-
ferent from the corresponding difference in the equilib-
rium state (AA). Kr is the relative expansivity modulus,
which for a symmetrical membrane is equal to (Svetina
et al., 1985)

Kr= Ki12 = K14. (7)
The same membrane deformation can also be expressed
(cf. Eq. 1) as the difference between the integral of the
curvature over the membrane area in the deformed state
(AA/h) and in the equilibrium state (AA0Ih). The
corresponding energy term (the second expression in
Eq. 6) involves as the elasticity modulus the nonlocal
bending modulus kr related to Kr by

kr = h2Kr. (8)

The moduli Kr and kr are defined in such a way that they
are intrinsic properties of the membrane. In this work
the relative expansivity term will be expressed by the
nonlocal bending modulus.

Analysis of tether formation
In the experimental procedure to be analyzed (Bo and
Waugh, 1989), a vesicle is aspirated into a pipette,
forming a spherical portion outside the pipette and a

projection within the pipette. Then the vesicle is placed
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into contact with a glass bead which sticks to it, i.e., a
vesicle-bead pair is formed. After reducing the aspira-
tion pressure the bead falls away from the vesicle,
forming a tether between the bead and the body of the
vesicle. The pressure can be adjusted to stop the bead
movement, which means that equilibrium can be estab-
lished. Reduction of the magnitude of the aspiration
pressure causes the bead to move away from the vesicle
drawing more material into the tether, whereas an
increase in the magnitude of the aspiration pressure
causes the bead to move toward the vesicle as material is
drawn from the tether back onto the body of the vesicle.
The length of the vesicle projection into the pipette
changes accordingly.
The analysis involves the determination of the elastic

energy of the membrane for a given configuration of the
tethered vesicle (We1), and the search for the configura-
tion that corresponds to the minimum of the free energy
of the system. The free energy (F) comprises the elastic
energy (described above), the gravitational potential
energy of the bead, and the contribution of the work
done by the membrane due to hydrostatic pressure
differences:

F = We,-fx-Ap'RpLp. (9)

Here, f is the gravitational force of the bead, x is the
distance from the pipette end to the bead, Rp the pipette
radius, and Lp the vesicle projection into the pipette.
Ap = p0 - pp is the difference between the external
pressure outside the vesicle (p.) and the pressure in the
pipette (pp), and is positive.
To determine Wdl, the shape of the tethered vesicle is

approximated by a simple geometrical model (Fig. 1).
We consider only those contributions that change signif-
icantly in the course of varying the aspiration pressure
and thus the configuration. To justify this approximation
a more involved geometrical model is analyzed in

FIGURE 1 Schematic representation of the vesicle, which is aspirated
in a pipette and pulled with constant force in the opposite direction.
Notations given in the figure are: pipette radius (RP), pipette projec-
tion length (LP), vesicle radius (RJ), tether length (L,), tether radius
(RI), the pressure surrounding the vesicle (po), the pressure in the
pipette (pp), and force pulling the tether (f ).

Appendix 1. In that model, contributions to the elastic
energy of all vesicle parts are taken into consideration.
Comparison of the predictions of the two models shows
that the simplifications used here are justified. The
simplified shape of the tethered vesicle presented in Fig.
1 can be described by five parameters: pipette radius
(Rp), the length of the vesicle projection into the pipette
(Lp), radius of the spherical part of the vesicle (RJ,
tether radius (Re), and tether length (L,). Four of these
parameters are variable because Rp in a given experi-
ment does not change. Due to the low permeability of
phospholipid membranes to water, the vesicle volume
(VO) also does not change during the experiment. Thus
the variables Lp and R. are interrelated by the volume
conservation equation valid for Lp 2 Rp:

,rr 4rT
Vo=-R +irLRp + -R3. (10)

In this expression we have neglected the volume of the
tether because the tether radius is small (R, << Rp < Rv).
The configuration of the tethered vesicle in the

approximation used here thus involves only three free
variables. These can be Rt, Lt, and RV ifLp is by the use of
Eq. 10 expressed in terms of Rv:

1 (Vro3 4ir3
L =~ o+ R-- (11)

The significant contributions to the elastic energy of
the system shown in Fig. 1 are expected to be due to
membrane area expansivity, relative expansivity due to
changes of the tether length, and bending energy of the
tether cylinder as demonstrated in Appendix 1. The
changes in the area difference due to the contribution of
other than tether parts of the vesicle are less than one
percent of the contribution of the tether. This is valid
even in the limit as the tether length becomes small, i.e.,
of the magnitude of only a few tether radii. Also,
because changes in the value of RV in the course of
experiment are small, it is sufficient to consider only the
length of the tether in the gravitational potential energy,
and we can use L4 instead ofx in the corresponding term.
Then the functional to be minimized with respect to the
three free variables reads

1 K 2'rr2k
F = 2- (A- A (LtA-)Lt0A AO

Lt
+ wk-R-IfLt-Ap PRpLp. (12)

The areaA is given by

A =-rR2 + 2rrLpR + 4,TrR2 + 2rTL Rt. (13)
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In the relative expansivity term of Eq. 12 it is taken into
consideration that the area difference of the constitutive
vesicle (AAJ) is not necessarily the same as the area
difference of the aspirated vesicle with the spherical
external part (AAj), i.e., the possibility exists that the
areas of the layers of the aspirated vesicle may be
relatively expanded (or compressed) before the tether is
made. In view of this the deviation of the area difference
from its equilibrium value (AA - AAO) can be conve-
niently expressed as the difference between the value of
such a deviation for the tether (AA - AAj) and for the
aspirated vesicle without the tether (AA, - AAj). In Eq.
12 these two differences are defined in terms of the
tether length L, = (AA - AAi)/2Trh and the parameter
L* = (AAo - AAi)/2rrh. The parameter L* could have
either a negative or positive value, depending on the
vesicle history and the chemical environment inside and
outside the vesicle.
To obtain the equilibrium tether configuration it is

sufficient to determine the first derivatives of the free
energy, Eq. 12, and set them to zero. These first
derivatives are

dF K Lt0(A AO)AtC-TR2 = O,

dF K 4r2kr rrkc
dL = A-(AO- Ao + A (Lt-L+-- R -f =0,

t 0nt

and

dF K
d- =A_(A -Ao)A, + 47rR2Ap = 0,

0

(14)

(15)

(16)

where

aA
A, = = 2wLt

aR,

dA
AL = -=2LrR,

and

aA Rv
A, =-= -81TrRv~1)dRvRp1

By suitably rearranging Eqs. 14 to 16 they read

K k
(A -Ao) -2 = 0

2rrk 4ir2k
2,r

-feff + A
=0

and

_kC (1 1

'A_-- =0.

(17)

Here we have incorporated the contribution due to
constitutive area differences between the leaflets (LI)
into an effective force defined as

4iT2kr
fcff=f+ L*.

A0
(23)

For practical purposes it is sufficient to analyze the
tether formation under the assumption that the mem-
brane area does not change, which is justified by the
relatively large value of the area expansivity modulus
(Appendix 1). Then we can determine the tether config-
uration by solving the set of equations 21, 22, and 13 in
which we take A = AO. It is first necessary to find the
range 0of values for the system parameters over which
tethers can form, and then to examine at which of these
values the system is stable.
A possible representation of the system is obtained by

introducing as a new variable the product LtRt. By
eliminating Lp from the Eqs. 10 and 13, this product can
be expressed in terms of the vesicle radius RV:

(24)LtRt + 2 3R - 1/ _

Then by eliminating the tether radius R, from Eqs. 21
and 22 and using Eq. 24, a single equation is obtained
from which the vesicle radius can be determined

47r2kcAp
2

f eff

1 1

.

2|+ k [ 2(2+ 1 (Vo AO'212}
Aok~L 6 v\3R I r'* \R 2/J

(25)

Tether configurations are possible where a solution of
(18) Eq. 25 exists. It is of interest to determine at what values

of the model parameters Eq. 25 has a solution. This can
be done conveniently for a vesicle with an arbitrary
membrane area if all the lengths appearing in Eq. 25 are

measured relative to the radius of the sphere with area
(19) AO: Ro = (AO/4'r)112. The parameters entering this equa-

tion are then the relative volume (v = 3VO/4irR3), the
relative pipette radius (RpIRO), the ratio between the
nonlocal bending modulus and the bending modulus

(20) (q = k,/kC), and the dimensionless pressure difference
defined as

(21)
AP = 4w2k,ApR0

f eff
(26)

In Fig. 2 is shown for given values of v and RP/R0 the
(22) region in the AP/q diagram in which tether configura-

tions are possible. This region is essentially bounded by
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values obtained for such minimal tethers (L, = 10 R,)
differ from the values obtained for LtRt = 0 by less than
i-O of their values.) The former line is obtained from
Eq. 25 by inserting the value for R, obtained from Eq. 11
with Lp = Rp. The latter line is a constant, because in the
case LtRt = 0, Eq. 25 reduces to

4T2k,Ap 1 1

f eff R k. (27)

(R, does not depend on q as can be seen from Eq. 24.)
Tether configurations exist in the region between these

i 1 | 10 two lines (Fig. 2A), however, there is another small
q region in the close vicinity of the point where they

A intersect (q = q,,). Within this region (it is shown in
Fig. 2 B by the cross-hatched area) Eq. 25 has actually
two solutions. That means that for an arbitrary pair of
parameters q and AP from the cross-hatched area two
values for the radius RV can be obtained corresponding
to two different tether configurations. (A third root of
Eq. 25 also exists but in the nonphysical regime, L, < 0.)

It is appropriate at this point to consider the stability
of these equilibrium solutions. We analyze the stability
of the system by determining the second derivatives of
the free energy, Eq. 12. The matrix of second derivatives
a2FIaxlax,, wherexi andxj denote consecutively R,, Lt, and
RV, is

Li
I I I

0'3 QC U 0.

q
I

FIGURE 2 The diagram shows the values of the dimensionless param-
eter AP and ratio q = k,IkC at which tether configurations are possible
for a vesicle with the relative volume v = 0.7 and relative radius of the
pipette RPIRo = 0.4. (A) The dependence of the dimensionless
parameter AP on q for L,R, = 0 obtained by eliminating R, from Eqs. 24
and 27, and forLp = Rp obtained by eliminatingR, from Eqs. 11 and 25.
Tether configurations exist essentially between these two curves except
in close vicinity of q, which denotes crossing of these two curves. (B)
The detailed presentation of the region close to qc, where there is the
transition between the stable and unstable tether configurations. The
horizontally shaded area shows at which values of AP and q there are
unstable configurations, and the vertically shaded area shows where
there are stable configurations. Within the cross-hatched area there
are two solutions one corresponding to the stable and one to the
unstable configurations. The arrows denote values of q at which the
product L,R, as a function of AP is presented in Fig. 3.

12'n*cL, K2Ik+ -KA2
R3 A t

t 0

K
jAAL

0O

KA 41kr+r KA2AtALAA0 0 A0

K
A-AtAAO

K
-AtA,AO
K
-ALA,AO

-ALA --4-kc+KA2A0 v R2 A0V

(28)

The system is stable provided that the eigenvalues of this
matrix are all positive. The eigenvalues are roots of the
equation

det IM - AI| = 0 (29.)

where I is the unit matrix. The resulting cubic equation
can be conveniently expressed as

-A3 + x2(pI + AP2) - Q3 + P4) + P5 + oP6= 0, (30)

two lines: the line where pipette length is equal to
pipette radius and the line where the tether length is
zero, i.e., where the product L,R, is zero. (We assume
that the cylindrical approximation for the tether is good
if Lt is larger than 10 R,. We estimated that the AP

where

2'rrkcL, 4¶T2kr 4'rk,
Pi =R3 +v Ao - R2

t t

P2 =A2 +A2 +A2
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87r3kckr L, 87r2k,2Ltp3 = 8 -sr(L 2 - R (33)
( ' -AR2

2 (44r2kr 2rkkLt\4rk
A0 R3

3224kkrLt
Ps R tsA0 (c r)R5AO (35)

163= r k,A 2 tA2kcL,A 2 Cr3 A2 (36)

AOR?2 R AdR 3

One of the roots of Eq. 30 is proportional to the area
expansivity modulus K. For large values of K this root
becomes equal to Kp2/AO and is therefore positive
becausep2 (Eq. 32) is positive. It is of interest to inspect
the sign of the other two roots. We take advantage of the
fact that the expansivity modulus K is large in compari-
son to other constants appearing in Eq. 30. By dividing
Eq. 30 byKand neglecting the terms in it proportional to
1 /Kwe get a quadratic equation:

Fig. 3. It can be seen that the region of instability is
characterized by a positive slope in the relationship
between LtR, and AlP, which corresponds to an increase
in tether length upon an increase of the aspiration
pressure. On the other hand, the region of stable
solutions is characterized by decreasing tether length
upon an increase of the aspiration pressure.

It can be seen in Fig. 3 that the experimentally
assessed behavior of the system may depend on how
much the ratio, kr/kc = q, differs from the critical value
qc. The latter value depends on the relative volume of
the vesicle and the relative pipette radius as is illustrated
in Fig. 4. For decreasing vesicle volume or increasing
pipette radius, qc increases.

During an experiment with a given vesicle the only
system parameter that can be adjusted is the pressure
difference. Neither the pipette nor the glass bead can be
exchanged in the course of the experiment. The measur-
able quantities are the initial outer radius of the vesicle,
R,,o and pressure and Lp as functions of Lt. In Figs. 5 and
6 are given the predicted (by solving Eqs. 21, 22, 13, and
11) relationships between Ap or Lp and Lt, for different
values of the system parameters and for values of the
ratio q = 2 or 4. All calculations are performed for three
values of the effective force. It can be seen that the

p22 -p4X + P6 = 0, (37)

the roots of which correspond to the two roots of Eq. 30
that are not proportional to K. The roots of Eq. 37 are
positive if the third term (p6) in Eq. 37 is larger than zero

(because it can be shown that the parameterp4 is always
positive ifp6 is positive). The criterion for the stability of
the tether configuration can then be conveniently ex-

pressed by inserting into Eq. 36 the expressions 17 to 19
as

8k 2 (_ 12 0. (38)

We apply this stability criterion to the solutions
illustrated in Fig. 2A and 2 B. We find that in the region
where two solutions exist, one of them is stable and one
is unstable. The cross-hatched area is bounded by the AP
versus q dependences for Lp = Rp and LR, = 0, and the
one obtained if the equation for the stability criterion,
Eq. 38, is set to zero, i.e., for where stable tether
configurations transform into unstable ones. The stable
tether configurations extend to the region (vertically
hatched) of higher values of q whereas unstable ones to
the region (horizontally hatched) of lower values of q.
To clarify the nature of the instability of this system, the
relationships between the product L,R, and the parame-
ter AP for several values of the parameter q are shown in

40 -\

[,A2] 30

20

10

0-
1.08 1.12 1.16 1.20 1.24 1.28

FIGURE 3 The diagram shows the product of the tether length and
radius as a function of AP as obtained for a given q from Eqs. 24 and 25
(expressed by relative quantities). The relative volume of the vesicle is
v = 0.7 and relative pipette radius is RP/Ro = 0.4. The four curves
correspond to four different values of the ratio q = k,/kc indicated with
arrows in Fig. 2 B. From left to right, q = 0.60 (a), 0.45 (b), 0.30 (c),
and 0.15 (d). The stable states correspond to the part of each curve
where the product L,R, is decreasing as a function of AP. Maximum
LARt value corresponds to L, = R, and it is obtained by eliminating R,
from Eqs. 11 and 24 (it does not depend on q).
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FIGURE 4 The dependence of critical ratio q, on relative volume v for
five values of relative radii of the pipette, RPIRo = 0.40 (a), 0.37 (b),
0.34 (c), 0.31 (d), and 0.28 (e).

absolute value of the slope in the LpILt diagram is larger
for smaller effective forces. This reflects the fact that at
smaller effective force the radius of tether is larger, and
therefore more area from the pipette region is used for
tether formation for the same change of Lt. Comparison
of Figs. 5A and 6A shows that the larger is q the more
curved is the dependence ofLp on Lt. Depending on the
value of q and the length of the tether, this curvature
may or may not be detectable experimentally. Figs. 5 B
and 6 B show that the larger the effective force, the
larger is the initial pressure difference. Also, the depen-
dence of Ap on Lt is steeper at larger effective forces,
and for larger values of q. At q approaching infinity, i.e.,
where it is not possible to expand the areas of the two
layers relative to each other, the tether can not be
formed.

DISCUSSION

Elastic behavior of phospholipid membranes is usually
described by their resistance to area expansion and to
bending (Evans and Needham, 1987). The present
theoretical analysis focuses on the realization that in
treating bilayer membranes that form closed surfaces, it
is necessary to take into consideration the possibility of
relative expansion (or compression) of the two constitu-
ent layers. The energy corresponding to relative area
expansion can be deduced by recognizing that the two
layers of the bilayer can deform elastically and indepen-
dently of each other, but that they are geometrically
constrained because they must remain in close contact
(Svetina et al., 1985). An analogous expression for

A
Lt [mm]

100
[p

[Pa] 80 F
so

40

zo

aI
0 0.4 0i 1.2 1.6 2.0

Lt [mm]

FIGURE 5 (A) The dependence of the length of the projection of the
vesicle into the pipette (Lp) on the length of the tether (L,) (at
equilibrium) for three different values of the effective force, ftff = 5 x
10-"N (a), 4 x 10-"N (b), and 3 x 10-"N (c). Area of the vesicle is
4w x 100 p.m2 and relative volume v = 0.75. The radius of the pipette is
taken to be 3.5 p.m. The membrane material constants are: kC = 1 x
10-'9 J and kr = 2 x 10-'9 J. (B) The difference between the pressure
surrounding the vesicle and pressure in the pipette as a function of the
tether length for the same three different effective forces. The curves
end where Lp = Rp.

nonlocal bending was introduced by Evans (1980). It has
been suggested previously (Svetina and Zeks, 1989) that
the relative expansivity of the constituent layers of a
bilayer could be important in determining the shapes of
closed membranes. If the system is unsupported and
otherwise unconstrained, a given shape can be specified
by requiring that the two layers be unstressed. However,
when external forces are applied, the two membrane
leaflets may be unequally stressed, and the elastic
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FIGURE 6 The same as Fig. 5, except k, = 4 x 10i J.

response of a vesicle will be determined in part by the
relative expansivity of the membrane. This investigation
represents an analysis of one such application of exter-
nal forces, namely, the formation of a membrane tether
from a micropipette-aspirated phospholipid vesicle. The
contribution from relative area expansion is recognized,
and predictions made for the elastic response of the
membrane.
The geometrical approximation of the aspirated teth-

ered vesicle was introduced to estimate the values of the
system parameters for which tethers can exist. The
tether can exist if there is an equilibrium among all the
forces involved. To obtain such an equilibrium, the
minimum of the free energy was sought where the elastic
energy of the system included membrane bending,
membrane area expansivity, and the relative expansivity
of the two membrane layers. This analysis was simplified

in the sense that only the significant contributions to the
energy were included. This enabled us to derive the
necessary relationships in an analytical form. As is
shown by the analysis in Appendix 1 this simplification is
justified.

Besides the analysis of the equilibrium of the system,
stability analysis was also performed. An important
result of the stability analysis is that not all tether
configurations obtained by the equilibrium analysis are
stable. In particular, consideration of the bending en-
ergy alone does not yield stable tethered vesicles. This
means that other elastic modes, i.e., the relative expan-
sivity, must be included in the interpretation of the
phenomenon. The nonlocal bending modulus must be
finite because at its infinite value, i.e., at constant
difference between the areas of the two membrane
layers, the tether can not be formed.
From the described analysis of a tethered vesicle it is

clear that its behavior also depends on L*. The occur-
rence of this parameter is the consequence of the initial
difference between the areas of the two membrane
layers. This difference depends on how the vesicle was
formed and on its history. When a vesicle is aspirated
such that the portion outside the pipette is spherical, the
difference between the areas of the two layers is, in
general, not the same as the initial difference between
these areas in the unsupported vesicle. The difference in
the areas could be either larger or smaller than for the
unsupported state. In one case, the external leaflet is
compressed in the initial aspirated configuration, and
the internal leaflet is expanded. In this case, a smaller
force is needed to form the tether than in the case of
L * = 0. Thus, in this case L* > 0. In the other case we
have correspondingly L* < 0. The value of L* deter-
mines the effective forces on which the slopes in Figs. 5
and 6 depend, and uncertainties in this value can lead to
scatter in the values of the parameters determined
experimentally from these slopes (Waugh et al., 1992).

This analysis provides a formal basis for interpreting
membrane tether formation experiments in terms of
intrinsic membrane properties. Several aspects of the
tether formation process not considered in detail previ-
ously have been incorporated into the analysis. Specifi-
cally, the contribution of relative area expansivity to the
equilibrium conditions during tether formation has been
established. In addition, the effects of constitutive differ-
ences in the areas of the opposing layers have also been
included via the parameter L *. Finally, predictions have
been made for functional relationships among the exper-
imentally measured parameters. Thus, this analysis is an
essential step for properly interpreting tether formation
experiments and for understanding the physical basis of
membrane behavior in mechanical deformation.
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APPENDIX 1

A more detailed model for the
estimation of the bending energy of
aspirated tethered vesicle
We would like to test the validity of the approximations used in this
paper to evaluate the membrane bending energy of the aspirated
tethered vesicle. This will be accomplished by comparing the magni-
tude of the neglected contributions with those that were kept in the
approximation. The model treated here is more detailed geometrically
in that it includes a segment of a torus as the connection between the
spherical part of the vesicle and the tether (Fig. A 1). The importance
of the contribution to the bending energy of this region is evaluated.
The vesicle is therefore composed of the cylinder with the hemispheri-
cal cap in the pipette, the spherical section, the toroidal section, and
the cylindrical tether with a hemispherical cap.
The membrane bending energy is given by Eq. 4. The total bending

energy is the sum of the bending energies of the vesicle parts: the
bending energy of the hemispherical cap within the pipette (Whp), the
bending energy of the cylinder within the pipette (Wp), the bending
energy of the spherical section (Wj), the bending energy of the section
of the torus (W), the bending energy of the cylindrical tether (W,), and
the bending energy of the hemispherical cap of the tether (Wh,). The
membrane elastic energy is the sum of membrane bending energy and
energy due to relative expansivity

kc kr(A
W = 2 J (cl Soc,)2dA+ 2A h2 (A- AAO)2, (Al)

where AAO is the difference between areas of the two leaflets when the
vesicle is aspirated in the pipette before the tether is made, and h is the

distance between neutral planes of the layers. We assume here that the
equilibrium difference between these two areas of the leaflets is equal
to the initial equilibrium difference between areas in the unsupported
vesicle (AAO), which means that the areas of the leaflets of the
aspirated vesicle are not relatively expanded (or compressed) before
the tether is made (i.e., L,*= 0). The area expansivity term is neglected
because its contribution to the membrane energy is small. We
estimated that for the area expansivity modulus 0.2 J/m2 (Evans and
Needham, 1987) the changes in the area expansivity energy in
increasing L, from zero to 1 mm are less than five percent of the
corresponding changes in the relative expansivity energy and less than
one percent of the corresponding changes in the bending energy.

The free energy of the system is

LF L,
F =,Trki 7+ +

Rp Rt

2(Rt -R,)
+s ^/(Rt-R,y -Rs

* arctg

+

kr
+T 2(&A &40)2 L~rR 2Ap -4Xf (A2)

where Ap is the difference between the pressure surrounding the
vesicle and in the pipette, and

x = VR2-R2+ RV 21-t +L +Rt (A3)

is the distance between pipette and the end of the tether and f is the
force pulling the tether.
To obtain the shape of the vesicle we minimize the free energy with

respect to the length of the projection in the pipette, the vesicle radius,
the radius of the torus, and the tether length and radius. The radius of
the pipette is taken to be constant. The total volume of the vesicle and
the total area of the bilayer are fixed (V = V0,A = AO). The pressure in
the pipette and the force pulling the tether are also fixed.
The total volume of the vesicle equals

V 3-3R' +R2L +R2L,

- (Rt - RS)RS arccos

+ (2RV2 + R p) R2 _R2 + ;

* [2R3 + 2RS3 + (Rt - RS)2 (RV -Rs)]) (A4)
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FIGURE Al Schematic representation of the segment of the torus
between the spherical part of the vesicle and tether. Notations given in
the figure are: vesicle radius (R,), torus radius (R), and tether radius
(R,).
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Analogously, the area of the vesicle is

A = 27r{R + RPLp + RtLt + RV >R2 RP

+(R2-R)2 1
Rs) Rs

+ (R, - RS)RS arccosx IR:la (AS)

The difference between the areas of the two membrane leaflets is

AA =2ih{2RP + 2Rt+Lp+Lt + R- RP

+ 2(RV RS) 1
- Rs

R
RP arccos-

- (R, - R.) arccos I-:1* (A6)
The toroidal radius R. is shown as a function of Lt in Fig. A2. Note

that the dependence of RS on L, is not strong. The bending energies of
each region of the vesicle for three different tether lengths are
tabulated in Table Al. Because the bending energy of the tether is
several orders of magnitude bigger than the contributions to the
bending energy of the other parts, the approximation used in this
paper is justified. The bending energy of the section of the torus is
small in comparison with the bending energy of the cylindrical tether
because the value of the curvature of the torus is comparable to the
value of the curvature of the tether only within a very small region near

0.24
Rs

0.20

0.16

0.12

0.08

0.04

0
0 0.4 0.8 1.2 1.6

Lt [mm]

FIGURE A2 The torus radius is presented as a function of the tether
length at a constant force in the tether (fff = 4 x 10-"'N). The curve is
obtained by varying the difference between the pressure surrounding
the vesicle and the pressure in the pipette. The relative volume is v =
0.75 and the total area isA = 4r x lOO1m2. The radius of the pipette is
taken to be 3.5 1Lm. The membrane bending modulus is k, = 1 x 10-' J
and the nonlocal bending modulus is k, = 2 X 10-19 J.

TABLE Al The bending energies of the parts of the vesicle at
three different values of the length of the tether In units of the
bending energy of a sphere

Lt [mm] 0 0.5 1
Whp 0.5 0.5 0.5
WP 0.5405 0.3930 0.2205
Wv 0.9545 0.9564 0.9584
Ks 0.3169 0.3426 0.3765
WI 0 3665 6710
Wh, 0.5 0.5 0.5

The total area of the vesicle, the relative volume and the membrane
material constants are the same as in Fig. A2.

the connection between these two vesicle parts. The section of the
torus can be omitted in the approximation of the aspirated tethered
vesicle also because R, only slightly depends on the length of the tether
(Fig. A2).
An analogous calculation reveals that the change in the bending

energy at the entrance to the pipette is an order of magnitude smaller
than the change in energy at the tether junction. This is because the
membrane curvature at the pipette entrance changes very little during
tether formation. Thus, this contribution to the energy change during
tether formation can also be neglected.
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