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ABSTRACT The influence of interstitial or extracellular potentials on propagation usually has been ignored, often through assuming
these potentials to be insignificantly different from zero, presumably because both measurements and calculations become much
more complex when interstitial interactions are included. This study arose primarily from an interest in cardiac muscle, where it has
been well established that substantial intersitital potentials occur in tightly packed structures, e.g., tens of millivolts within the
ventricular wall. We analyzed the electrophysiological interaction between two adjacent unmyelinated fibers within a restricted
extracellular space. Numerical evaluations made use of two linked core-conductor models and Hodgkin-Huxley membrane
properties. Changes in transmembrane potentials induced in the second fiber ranged from nonexistent with large intervening
volumes to large enough to initiate excitation when fibers were coupled by interstitial currents through a small interstitial space. With
equal interstitial and intracellular longitudinal conductivities and close coupling, the interaction was large enough (induced Vm - 20
mV peak-to-peak) that action potentials from one fiber initiated excitation in the other, for the 40-p,m radius evaluated. With close
coupling but no change in structure, propagation velocity in the first fiber varied from 1.66 mm/ms (when both fibers were
simultaneously stimulated) to 2.84 mm/ms (when the second fiber remained passive). Although normal propagation through
interstitial interaction is unlikely, the magnitudes of the electrotonic interactions were large and may have a substantial modulating
effect on function.

INTRODUCTION

Extracellular potentials
The existence of extracellular potentials of significant
magnitude has been recognized and utilized from the
earliest investigations in electrophysiology. The pres-
ence of such potentials arising from cardiac muscle
made possible such formative studies as those of Lewis
and Rothschild (22) on cardiac excitation sequences, as

well as the investigation of the intracellular-extracellu-
lar voltage and current relationships by Lorente de No
(24) and others in nerves. In 1940 Katz and Schmitt (18)
showed electrical interactions in vitro in a crab nerve

preparation, and in 1941, Arvanitaki (1) defined the
"ephapse" as the locus of close vicinity of two active
membranes, and called transmission across such a site
"ephaptic."

Nevertheless, the development of the penetrating
microelectrode by Ling and Gerhard (23), which al-
lowed investigators to measure intracellular potentials
directly, greatly diminished the need to use extracellular
potentials as indirect measures of transmembrane events.
Thereafter, Hodgkin and Huxley (16), in their study of
the nerve membrane, took advantage of the fact that
extracellular potentials are small in comparison to intra-
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cellular potentials in most in vitro studies. Small extracel-
lular potentials allowed them to equate transmembrane
potentials to intracellular ones and to compute mem-
brane currents as the second spatial derivatives of
transmembrane potentials. This pattern has been fol-
lowed in most analyses of experimental studies until the
present because the structure of the experimental envi-
ronment, which often involves a large conducting vol-
ume surrounding an active fiber, makes the assumption
of near-zero extracellular potentials a good one.

Paradoxically, it is well known that substantial intersti-
tial potentials exist in vivo, especially in cardiac muscle.
Vander Ark and Reynolds (47) described potentials
with magnitudes in excess of 50 mV within the ventricu-
lar wall. Spach and Barr (41) reported voltages that were
tens of millivolts in potential maps of the canine heart.
Kleber and Riegger (19) showed large extracellular
potentials (equal to or greater than intracellular poten-
tials) in rabbit papillary muscle under carefully con-
trolled conditions, and Taccardi et al. (44) showed
dramatic changes in observed extracellular waveforms of
large magnitude based entirely on changes in the extra-
cellular conducting paths. Studying the spinal motoneu-
rons of the cat, Nelson (28) showed that facilitation of
motoneurons can occur as a result of activation of other
motoneurons. Recently, an extensive review of electrical
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field effects and their relevance to central neural net-
works has been presented by Faber and Korn (10),
especially as related to the mauthner cell.

In part because of the papers of Spach et al. (e.g.,
reference 42) on the importance of cellular discontinui-
ties to propagation, the effects of all aspects of structure
on propagation have received more systematic scrutiny
in recent years. Nonetheless, the effects of substantial
interstitial or extracellular potentials on propagation is a
topic that has received much less attention, presumably
because of the recognized importance of syncytial con-
nections of the intracellular spaces of adjacent cells
along with the technical difficulty of studying interstitial
interactions. This technical difficulty arises experimen-
tally because the greatest effects occur when cells or
fibers are closely packed, producing the largest intersti-
tial potentials but allowing the least access to electrodes.
Specifically focused experimental design thereby is re-
quired, as in the work of Knisley et al. (20). In mathemat-
ical and numerical models, extracellular and interstitial
studies also have been few. (Exceptions have included
bidomain models [below], and significant recent studies
such as Halter and Clark for myelinated nerve [13] and
Leon and Roberge [21] showing velocity changes.) With
models, the technical difficulty has been that mathemat-
ical analysis is simpler and numerical analysis is shorter
when extracellular potentials are assumed to be zero.

Bidomain models
The one area of analysis that routinely has included
interstitial potentials has been "bidomain" models, in
which the averaged properties of intracellular and inter-
stitial "domains" have been incorporated. Anticipated
somewhat by Schmitt (39) in 1969 with his description of
interpenetrating domains, Tung (46), Miller and Ge-
selowitz (11, 26), and others took the viewpoint that, in
spite of the actual discrete structure, the electrical
events within cardiac muscle could be examined by
regarding the tissue as a continuum (syncytium). Both
intracellular space and interstitial space were consid-
ered continuous and described by the same coordinates,
separated everywhere by the membrane. The same basic
framework has been used, for example, by Muler and
Markin (27) in a mathematical analysis, by Roberts et al.
(36) in the ventricle, by Eisenberg et al. (9) as related to
the lens of the eye, and by Roth (37) for cardiac muscle.
The results from bidomain models have made it clear

that including interstitial potentials within the analysis
leads to remarkable changes in propagation sequences

compared with what one would have expected from
simple extrapolation of one-dimensional analysis. Muler
and Markin (27) showed remarkable isochrone patterns.

Plonsey and Barr (2, 29) showed that the current flow
patterns within the muclse would have multiple mem-
brane transitions (rather than a simple local circuit with
only two) and that, under extreme conditions, the shape
of the excitation wavefront would deviate markedly from
its expected elliptical shape. Wikswo and co-workers
(40, 48) used bidomain analysis to show that stimulation
of cardiac tissue can produce a virtual cathode, a

dog-bone pattern of response to stimulation that arises
from the anisotropic interstitial and intracellular conduc-
tivity.

Using bidomain analysis, Plonsey and Barr (30) ar-
gued on theoretical grounds that interstitial potentials
rose quite rapidly with movement from the surface into
the tissue, so that substantial interstitial potentials could
be expected within a few cell diameters of the surface.
Henriquez and Plonsey (14, 15) went on to show for
cylindrical bundles that the traditional concept of a
plane wave of excitation traveling down a bundle or
block of tissue in contact with an external bathing
solution could not be supported and that concave
wavefronts were to be expected, a subject also explored
by Roth (37).
These papers also show examples of a major shortcom-

ing of the bidomain models: the scale of some of the
emerging findings is the same as that of the discretiza-
tion of the tissue formed by its cellular nature, so that
the macroscopic averaging that underlies the bidomain
formulation may not be justified. The bidomain model
probably best portrays real tissue when it is extensive
and healthy, since in these circumstances the interstitial
potentials are largest and the uniformity assumed by the
bidomain is greatest. In contrast, if one considers small
numbers of active fibers, examines behavior when fibers
are more loosely coupled, or seeks the potential field at a
cellular (microscopic) level, a more sophisticated treat-
ment is necessary. The goal of this paper is to investigate
interstitial and extracellular effects so as to see how
excitation is affected by each, but to avoid the averaging
assumptions of the bidomain.

Model of two fibers
A central difficulty in conceiving a plan to investigate the
effect of interstitial potentials on propagation has been
the complexity of the experimental preparation or the
model, which is the basis of a simulation. The problem
intrinsically includes multiple regions that are simulta-
neously electrically active as well as the electrically
conductive volume surrounding them (i.e., the extracel-
lular medium) through which effects may be linked.
Knowing this, we sought a numerical preparation

which retained the essential elements but was still
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relatively simple, both in terms of geometric structure
and related computational algorithms. This goal was
achieved in the investigation of propagation in a two-
fiber pair, within a restricted extracellular space. By
varying the characteristics of the intervening extracellu-
lar volume, the interaction between extracellular and
intracellular potentials, the effects of potentials gener-

ated by the one fiber on transmembrane potentials in the
other, and the effects of the interaction on propagation
could be investigated. Furthermore, as shown below,
these steps could be accomplished within a context that
was a direct (though not straightforward) extension of
well-established methods and models frequently used
and reported for studying one-dimensional propagation,
an advantage in checking for errors as well as in
differentiating results.

METHODS

Model structure
In concept, our goal was to evaluate interactions between two
cylindrical fibers, A and B (Fig. 1), each with an intracellular (L4 and
IB) and surrounding extracellular (EA and EB) region. The extracellu-
lar region was limited in extent.
A widespread practice in electrophysiology has been to represent an

individual cylindrical fiber as if it were purely one-dimensional by
means of a core-conductor model. Extending this idea, we used two
linked core-conductor models to represent the fiber pair. In the linked
model (Fig. 2), there were two core-conductor models, one for fiber A
(top half) and one for fiber B (bottom half). As is conventional, the
core-conductor model for each fiber represented the intracellular
region as a series of axial resistances in one dimension (e.g., RIA), the
extracellular region similarly described (e.g., REA), and intracellular-to-
extracellular interconnections described by discrete units (open rectan-
gles) assigned membrane properties. Departing from convention, for
the two fibers we linked their two core-conductor grids through a series
of extracellular resistors (e.g., REC), representing the connection
through the common extracellular region. The resulting model clearly
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FIGURE 2 Resistive grid to represent paired cylinders. To a good
approximation, the electrical properties of the paired cylinders can be
represented by this resistive grid. The rectangles are membrane
elements. Resistances RIA and RIB are along intracellular paths; REA,
REB, and REC characterize the extracellular space. Points where lines
join are referred to as "nodes," and the nodes are numbered from 1 to
N across the top row,N + 1 to 2N on the second row, up to 4N in all. In
the calculations shown below, N was set to 200, and the fiber length
was set to 10 space constants.

was not a complete representation of the full three-dinensional
electrical characteristics of the paired cylinders of Fig. 1. At the same

time, it retained essential characteristics: a separately active fiber A
and fiber B, an extracellular volume linking the two, and a means of
varying the degree of linkage through changing the resistances REA,
REB, and REC of the extracellular region.

In the results, two specific cases held particular interest. In the first
case, the two fibers were considered widely separated. For this case,
Fig. 3 I shows the pattern of relative conductances (conductances
being the reciprocals of the resistances of Fig. 2) that were used. In
case 1, the total longitudinal extracellular conductance, taking the two
paths EA and EB in parallel, was 100 times the conductance of either
intracellular axial conductance. In case 1, one would expect the
interaction of fibers A and B to be small and the results to be quite
close to those for a single fiber. In contrast, in case 2 the fibers were

I. "LARGE" SEPARATION II. "EQUAL" SEPARATION
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B EB

10l0 IB l0 lo

FIGURE 3 Two particular choices for grid values for the resistive grid
of the paired cylinder problem. Numbers given are the relative
conductances (reciprocal resistance), and are scaled before use to the
actual fiber diameters. In I the longitudinal extracellular pathways
have high conductance (as in a tissue bath), whereas in II the
extracellular pathways have low conductance (fibers close together).
Note that otherwise the conductance patterns are the same.
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FIGURE 1 Paired fibers. Two fibers, A and B, are represented by
cylinders, within a restricted extracellular space. IA and IB identify
intracellular space for fibers A and B respectively, and EA and EB
identify portions of the extracellular volume nearA and B.
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close together. The total longitudinal conductance, again taking EA
and EB in parallel, was equal to that of either fiber's intracellular
longitudinal conductance.

In converting these conductance ratios into a specific numerical
prototype, we used a fiber radius a = 40 pLm, Ri = 100 Ql-cm, and Cm =

1.0 py /cm2, values adapted from those used in an analysis of the
cardiac conduction system (33). The longitudinal intracellular and
extracellular conductances of cases 1 and 2 occur if one considers each
fiber to have circular cross-section with diameter 2r located within an

extracellular region with square cross-section and side length 8.5%
> 2r, located within a nonconductor. The linkage conductances were

not determined geometrically but rather were chosen to reflect the
extremes of moving the extracellular regions apart (case 1, linkage
conductance one-tenth of the longitudinal) or together (case 2, linkage
conductance 10x). It is worth noting that once the linkage conduc-
tances become very large (or very small) in relation to the longitudinal
ones, the precise value of the linkage conductance is not very

significant since the longitudinal conductances dominate. These numer-

ical values were useful in forming a simplifed example, but caution is in
order in extrapolating the results to measured results from any tissue,
because both differences in the conductances of the surrounding tissue
and the actual (three-dimensional) structure of the extracellular
volume are potentially significant, as well as changes in the parameter
values themselves.
From a theoretical perspective, the linked core-conductor represen-

tation can be expected to be valid so long as the transverse extracellu-
lar dimensions are small compared with each fiber's length constant,
since this condition validates a one-dimensional treatment. An excep-

tion, which is considered here as case 1, is where the separation is
large, in which case the situation reduces to two uncoupled fibers.
Then each behaves according to the classical case of low extracellular
potential, so that (Fi - bFe = Vm in view of (be 0. In this case the
intracellular behavior will be represented correctly, but the distributed
extracellular volume will not be represented accurately.
One should also note that the behavior described by Fig. 2 at the

ends of each fiber coresponds to an open circuit condition. Thereby
the total axial currents must be equal in magnitude to the total
transmembrane current in the discrete membrane element at the end.

Mathematical and numerical methods
An outline of the mathematical and numerical methods is given in
Table 1. Most algorithms that find action potentials (that is, that find
Vm as a function of time) operate in the sequence of Table 1 A.
Specifically, one begins with a knowledge of the transmembrane
current density, In, everywhere, at a certain time t. From the set of
values of Im one finds new values for V.. at a slightly later time t + At.

(Often the initial values of Im are zero, as a baseline, and then change
to nonzero values with an applied stimulus.) Explicit and implicit
methods for the time extrapolation have been widely utilized. The new

values of Vm for time t + At then are used to get new values for the
membrane state (parameters such as m and h for the sodium
channels), and for intracellular potential (Di (Table 1 A, step 3). (So
doing is facilitated by the network of Fig. 2.) The new values for (Di can
be spatially differentiated to get new values for Im (Table 1 A, step 4).
Repeating this cycle generates a series of values of Vm (or the other
variables) as a function of time.

Simple Vm - 4j relationships
In many problems, computation of (D can be shortened or omitted
entirely. As outlined in Table 1 B, there are three cases of interest. In
the first (Table 1 B, case 3a), the extracellular potentials are small
enough that they can be ignored. That is, (Di V,,. (This is the
assumption used for analysis of most in vitro experiments, where active

TABLE 1 Numerical methods

Compute From

A Sequence
1. Vn(t + At) Im(t)
2. Membrane gating, e.g., m(t + At) Vm(t + At)
3. (Di(t + At) Vm(t + At)
4. Im(t + At) 4Fi(t + At)

Repeat steps 1 to 4, moving from (t + At) to (t + 2At), etc.

Extracellular
Space (De Computation

B Detail for step 3 of sequence
3a Large Small Short, since V VIM
3b Small but 1D Large Short, since (14 Vm (core

conductor)
3c Small Large Long, since 14 v

(a2 Vt,jdx2)/f (r) dV

C Restatement of 3c in discretized (matrix) form
[¢?(t)] = [Mii ] [VMt(j)],

where i = 1, . . ., 2N and j likewise, and N = the number of node
points along a single fiber (2N total for a pair).

tissue is surrounded by a large extracellular volume.) In the second
case (3b), the extracellular potentials may be large, but the problem is
entirely one-dimensional, so (D is proportional to Vm. While the
proportionality has to be taken into account, the computation is short:
the one-dimensionality leads to the linear core-conductor equations,
and = rIl(ri + re), where ri, re are the intracellular and extracellular
axial resistances per unit length (31). Consequently, (Fi is immediately
obtained from V.. This case applies for fibers in oil, (e.g., reference
24).

More complex Vm - j relationships
In the third case (Table 1 B, case 3c) the simulation is considerably
more complex. The complexity arises because, when the interstitial
potentials are large, and when excitation is not one dimensional, there
is no simple relationship between (Di and Vm. Unless simplifying
assumptions apply, the resulting relationship between (D and Vm will
show that (F at a single point (and I. at a point) will depend on V,,
everywhere.

Matrix formulation for grid
For the two-fiber problem, the resistive grid of Fig. 2 was used to
represent the intracellular and extracellular regions. For the resistive
grid, we considered the problem of how to find (D and (4e at all nodes,
given a set of values for Vm at a particular time. The solution to this
problem was found using conventional circuit analysis, namely, by
creating and then solving a set of simultaneous linear equations, where
the number of equations equaled the number of nodes. In so doing it
was useful to number the nodes from 1 toN along the top row of Fig. 2,
from N + 1 to 2N along the second row, and similarly for all four rows,
giving 4N nodes in all. Equations then were created in three ways.

First, a set of 2N equations defined transmembrane potentials Vm at
each node pair crossing a membrane, e.g.,

-D (F2=(2 -40N+2=V2 (1)

where the lower case O is used to signify the potential at the particular
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node, without distinguishing whether the node is intracellular or

extracellular, and the superscript identifies the particular node as
defined in Fig. 2.

Second, a set of 2N - 1 equations arose from the requirement that
the current entering the membrane from node k equal the current
leaving the membrane into node N + k (continuity of current), and
that the total node current at k and N + k be zero, e.g.,

2GIA42 - GIA43 -GIA4l + (2GEA + GEC)4N+2

- GEA4)N+3 - GEA4N+l- GECOVN+2 = 0, (2)

for the membrane transition from node 2 to node N + 2, and where
conductance G is the reciprocal of resistance R, e.g., GEA = 1 /REA.

Third, one equation determined the reference potential. To keep
the results symmetric from fiberA to B and end to end, we chose the
reference potential as the average potential at all four extracellular
endpoints, i.e.,

41N+1 + 4,2N + 4¢2N+1 + 4b3N = 0.

The set of 4N equations that resulted was stated conveniently in
matrix form,

[A]+= [V], (4)

where matrixA was the set of coefficients arising from Eqs. 1-3 above,
and + was a column vector of the potentials at all nodes. V was a

column vector with the top 2N values equal to Vm at each membrane
element (from equations like 1 above) and the bottom 2N entries equal
to zero (from equations like 2 and 3 above). Inversion of matrix A
produced

[41 = [A]-1[V]. (5)

In Eq. 5, only the left 2N columns of [A ]-I matter, since the columns to
the right would be multiplied by the zeros in vector [V]. Further, since
finding (D (but not (Se) was required to get In, half the rows of Eq. 5,
corresponding to nodes for a ct,e value, could be discarded. (Rows for a

few extracellular points were retained separately to find wave forms at
those sites.) With these reductions, Eq. 5 was restated as

[(i] = [M][VmI, (6)

where [M] is the remainder of matrix [A ]' after half the rows and half
the columns were discarded.

Eqs. 1-3 arise from the same physical considerations used previously
for bidomain calculations, where exact analytical relations are given
(29). The result in the bidomain was

2V ~ 32Vm

(Di(x,y) = 9oJvgx dv>t +g°9( '2

J(X X)2 (y y )2
.log +

AgX + gox giy + goy,
dx 'd'

\(gOX+ g)\(goy + tgy) (7)

where the g's are bidomain conductivities (29). Eq. 7 for the analytical
bidomain is the analogue of Eq. 6 for the grid. Note that an integral
over the whole volume is required to find the potential at a single
point, an analogue to the matrix multiplication.

Calculation length
Results below are shown forN = 200. The fact that a matrixM must be
used to find (i from Vm complicated and lengthened the process of
finding action potentials. For N = 200, Vm was specified at N = 200
points along each fiber, so 400 values of Vm were present in total.
Matrix M therefore was 400 by 400. Three problems had to be
addressed. First, finding matrix M required the inversion of matrix A,
an 800 by 800 (4N by 4N) matrix. Second, to find Vm as a function of
time, a matrix multiplication (Table 1 B, step 3c) had to be completed
at each time transition, i.e., thousands of times. For increasing N, this
part of the calculation quickly came to dominate the overall execution
time, because it involved more steps than those required for mem-
brane transitions (which otherwise were limiting). Third, the condi-
tions for stability were different than for simple core-conductor
problems; i.e., arguments based on the mesh ratio no longer applied in
the same way. The calculation tended to be more unstable. All three
factors were significant, but tractable.

Membrane model
In the calculations done here, each membrane element was assigned
Hodgkin-Huxley (16) properties. Hodgkin-Huxley membrane proper-
ties were used because they were relatively simple computationally
and allowed both depolarization and repolarization effects to be seen

in strands of short spatial dimensions.

Numerical methods
A space constant X first was determined from the expression A =

Frm/(ri + re), where rm is the membrane resistance times length, and r,

and re were the intracellular and extracellular resistances per unit
length, respectively. (31, p. 127) Values used were those for fiber A.
Second, interval Ax between nodes was chosen so that the one space

constant corresponded to 20 nodes. The 200 nodes along the length of
the fiber thereby made the fiber 10 space constants long, both for case I
and case II. Because X varied between these cases, the absolute fiber
length in millimeters also varied. Third, making use of the definition of
the mesh ratio as At/(ricmAx2) (31, p. 116), we then assigned a value to
interval At which made the mesh ratio equal to 0.1. Having been
derived for one-dimensional current flow, neither the space constant
nor the mesh ratio had the same significance in case 2 as in case 1. The
extension of their use to case 2 thereby was arbitrary but proved
satisfactory in practice.
For case 1, X = 0.17 cm, Ax = 0.00851 cm, and At = 0.369 p.s. For

case 2, X = 0.0992 cm, Ax = 0.00496 cm, and At = 0.369 p.s.

Computer methods
Calculations reported here were accomplished with two FORTRAN
programs of 800 lines each. The first program made use of

information about the fiber structure and produced matrixM of Table
1 C. The second used this matrix and computed potentials as a

function of time. Program development and initial executions were

completed on a personal computer (IBM PS/2 model 70/486, IBM
Corporation, Research Triangle Park, NC), operating under AIX to
allow larger arrays of data. When the simulations grew from small test
cases to those reported here, time required for execution of the second
program grew to - 12 h on this machine. To allow the series of final
calculations to be done more quickly, the programs were transferred to
the Cray YMP at the North Carolina Supercomputing Center, located
in Research Triangle Park, NC, where they were compiled and
executed remotely using the Center's network access.
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RESULTS

Coupling coefficients
The degree of interaction between the fibers was re-
flected by the numerical values of the entries in matrixM
of Eq. 6. For illustration, consider the single scalar value
4D!00, the intracellular potential at the center of fiber A.
(D1°°(t) was found as IjM1oo,jVJ(t), so the entries in row
100 of matrixM determined how CFi at the center of fiber
A originated from Vm everywhere, at a particular time.
Table 2 shows selected elements of row 100 of matrix M.
The top portion of Table 2 identifies which of the 400

columns of matrixM have been extracted for the table.
(Other columns were not extracted because the value of
the element was near zero.) As identified in the top third
of Table 2, the columns selected were those correspond-
ing to the ends of fiber A (elements 1 and 200), the
middle of fiberA (98-102), the ends of fiberB (201, 400),
and the middle of fiber B (298-302). Although all
columns came from a single row of matrixM, the column
values are arranged on two rows in Table 2 to better
suggest their relative geometric positions in Fig. 2. The
top third of Table 2 gives the specific arrangement of the
columns.
The middle third of Table 2 gives the values of

elements of matrixM for large extracellular conductivity
(Fig. 3, case 1). The entries of Table 2 showed that V00
was determined almost solely from Vm at the same site
(coefficient of 0.983), not being affected significantly
either by Vm at adjacent sites on the same fiber (coeffi-
cients of 0.002) or by Vm at the adjacent site on fiber B
(coefficient of -0.003). The coefficient was 0.983 rather
than 1 because case 1 included extracellular resistances
that, while small, relative to the intracellular ones, were
not zero.
The bottom third of Table 2 shows coupling coeffi-

cients for equal extracellular conductivity (Fig. 3, case
2). Here V00 had a weaker relationship with Vm at the
same site (coefficient of 0.626), a much stronger relation-
ship to Vm of fiber B at the adjacent site (coefficient of

-0.292), and an increased dependence on Vm at adja-
cent sites on the same and opposite fibers (coefficients
with magnitude of 0.019). Additionally, there was a

significant contribution from the ends of either fiber
(coefficient of 0.167). The end effect did not diminish
when the length of the fiber was extended from 100 to
200 elements.

Physical reasoning suggests that potentials 4D should
depend mainly on values of Vm nearby. Inspection of the
pattern of numerical values within matrixM confirms in
part that this is the case, because (D at position 100
depends strongly on the transmembrane potentials from
fibersA and B at the same axial position. Nonetheless,
there remains a significant end effect, a consequence of
the restricted extracellular volume. It also is noteworthy
that the great majority of entries in matrix M are still
virtually zero.

For both cases 1 and 2, note that the sum of the
entries along row A of Table 2 is one. The consequence
was that, in the absence of a contribution from fiber B, a

uniform Vm along fiberA produced the same intracellu-
lar potential at the center of fiber B for either case. In
contrast, the sum of the entries along row B is zero, so

that a uniform Vm along fiber B had no effect on (Di at the
center of fiberA, in both cases.

Large extracellular conductance (1),
in time
With large extracellular conductance, one expects there
to be little interaction between fibers and expects
propagation down either fiber to be essentially un-

changed from that of a single isolated fiber. That such is
the case is seen in Fig. 4. (Note the vertical displacement
between the traces for fiber A, plotted against the scale
on the left, and the traces for fiber B, plotted against the
scale on the right.) Transmembrane potentials (Vm) are

shown as a function of time at positions 10 and 100 on

fiber A (designated alO and alOO) and corresponding
sites on fiber B. Site 10 is near the left end, and site 100 is
in the middle. As expected, a 1-ms transmembrane

TABLE 2 Sample coupling coefficients from row 100 of matrixM

Numbers of the nodes with corresponding values presented below.
A 1 ... 98 99 100 101 102 ... 200
B 201 ... 298 299 300 301 302 ... 400

Values of elements in MatrixM for 1. Large extracellular conductivity
A 0.005 ... 0.001 0.002 0.983 0.002 0.001 ... 0.005
B 0.005 ... -0.001 -0.002 -0.003 -0.002 -0.001 ... 0.005

Values of elements in matrixM for 2. Equal extracellular conductivity
A 0.167 ... 0.001 0.019 0.626 0.019 0.001 ... 0.167
B 0.167 ... -0.001 -0.019 -0.292 -0.019 -0.001 ... 0.167

The node numbers correspond to columns in matrix M. Nodes 1-200 lie on fiberA, whereas 201-400 are on B.
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Vmb
(mV)

time (msec)

FIGURE 4 Action potentials for large extracellular volume, i.e., large
extracellular conductance. Fiber A was stimulated at node 10. Simu-
lated action potentials for nodes 10 and 100 of fiberA (alO and alOO)
are plotted against the left vertical axis; APs for nodes 10 and 100 of
fiber B (blO and blOO) are plotted against the right vertical axis. Node
10 is near the left end, and node 100 is in the middle. The baselines are
offset to allow easier visualization of the individual waveforms.

stimulus (beginning at t = 0) applied to fiber A at alO
produced an action potential at a 10 and, after a delay, a

similar action potential at alOO. Fiber B was not stimu-
lated, and no action potentials occurred at blO or blOO.

Equal extracellular conductance (11),
in time
Active fiber B
Quite different results occurred when the pattern of
equal conductances of Fig. 3 II was used. With equal
conductances, when fiberA (only) was stimulated at site
a 10, action potentials occurred both in fiber A and in
fiber B, as shown in Fig. 5. In that figure, note that action

40. 70.

~~~~~~~~~~~30.
Vma _ Vmb
(mV) (mV)

potentials occurred at alO and then alOO, as before. In
addition, action potentials occurred at blO (the site on
fiber B across from alO on fiber A), and later at blOO.
(As in Fig. 4, the action potentials for fibers A and B
again were displaced vertically for greater visibility.) The
action potentials in fiber B occurred even though there
was no intracellular linkage between fibers A and B.
(There was the possibility of excitation of fiber B
occurring through numerical error in the simulation, but
extensive checking did not show evidence of such an
error.) A number of interesting details can be observed
in Fig. 5. For example, in the varying waveshapes among
the four sites, note the longer delay at alO-blO com-
pared with a 100-b100, and the hyperpolarization at blOO
that precedes the upstroke.

Passive fiber B
As shown above, the equal conductance pattern pro-
duced action potentials in both fibersA and B soon after
the onset of the stimulus to A. Active responses in both
fibers began during the stimulus. The question arose as
to whether the events in fiber B were primarily a result of
the stimulus, which, although applied to A, also was
coupled to B, or primarily the result of some other facet
of the initiation of excitation in fiberA that would not be
present once stable propagation was established.
To consider this possibility, the intracellular and

extracellular conductances were maintained but the
membrane conductances of fiber B were not allowed to
vary with time for 3.3 ms after the onset of the stimulus.
(Approximately 3.3 ms was required for propagation
three-fifths of the distance down the fiber.) That is, for
3.3 ms the computer simulation forced fiber B's mem-
brane to retain its resting membrane ionic conductivi-
ties, so that fiberB remained passive during this interval.

Action potentials again were calculated (Fig. 6). In
fiberA, action potentials at alO and alOO were similar to
those before. In fiber B, Vm showed deflections at blO
and blOO at the time of the corresponding upstrokes in

40.

time (msec)

0.0 4.0
time (msec)

8.0

70.

30.

-10.

Vmb
(mV)

-50.

FIGURE 6 Action potentials for extracellular resistance equal to intra-
cellular, with fiberB passive for 4 ms. Otherwise the same as Fig. 5.
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FIGURE 5 Action potentials for extracellular resistance equal to
intracellular. As in Fig. 4, node 10 of fiber A was stimulated, but no
stimulus was applied to fiber B. Action potentials began in fiber B
because of the interaction through the extracellular volume. Wave-
forms for fiberA (B) are plotted against the left side (right) axis.
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fiber A. When fiber B was allowed to become active at
3.301 ms, excitation began in fiber B, leading to an action
potential at blOO. Then excitation propagated in a
retrograde direction so that the action potential at blO
occurred later than the action potential at blOO. This
result showed that initiation of action potentials in fiber
B was not simply a direct effect of the stimulus current.

Large extracellular conductance (1),
in space
The nature of the interaction between fibers A and B
with the equal conductance pattern is difficult to under-
stand using waveforms plotted versus time, since the
interaction is primarily a spatial one. For reference, a

spatial distribution is plotted in Fig. 7 for large extracel-
lular conductance, at a time when propagation had
proceeded about halfway down fiberA. The figure shows
that both Vm and (Di had a sharp upstroke to the right,
the direction of propagation, and that they had virtually
equal amplitude. In contrast, (De had an amplitude close
to zero. Both (Di and Vm for fiber B maintained constant
resting values everywhere.

Equal extracellular conductance (11),
in space
Active fiber B
With equal extracellular conductances (Fig. 8), wave-

forms were quite different. In fiber A, (Di now had a

*iak

Vmak

*ib_

.. ... .. . . . .... ... . . . . ....4ia
/Vma..,

50inV

Vmb
-ib

0.0 0.5 1.0 1.5

distance (cm)

FIGURE 7 For large extracellular conductance, the transmembrane,
intracellular, and extracellular potentials vs. distance for the paired
fiber problem are shown. 4(ia: intracellular potential for fiber A; Vma:
transmembrane potential for fiber A; e: extracellular potential; Vmb:
transmembrane potential for fiber B; 4ib: intracellular potential for
fiber B. Each waveform is plotted using the same vertical calibration.
For visibility on the figure, plots are displaced vertically to the point
shown by the tic mark on the left axis for each waveform. Note that the
mark identifies the zero-level, which is usually not the resting level.

distance (cm)

FIGURE 8 For extracellular conductance equal to intracellular, the
same spatial plots as those of Fig. 6 are shown. Now 4(e is significantly
larger than zero, and action potentials are induced in fiber B.

reduced amplitude and different waveshape from Vm in
the same fiber. (e, plotted on the same amplitude scale,
was no longer near zero. The action potentials V1m and (Di
in fiber B, shown in the bottom part of Fig. 8, were
dissimilar to each other and to the corresponding plots
for fiberA.

Because the structural change from Fig. 7 to Fig. 8
was the different extracellular conductance pattern, it
was clear that the large differences must have arisen
from that source, either directly or indirectly. The
interacting spatial and temporal events were so compli-
cated, however, that it was difficult to separate cause
from effect. Therefore, we also looked at the spatial
distribution with fiberB passive.

Passive fiber B
With fiber B kept passive for 3.301 ms, the spatial
distribution was plotted at 3.3 ms (Fig. 9). In fiberA, (Di
and Vm continued to differ, but the difference was not as
much (as in Fig. 8). (De was still significantly nonzero,
although with a smoother waveshape. In fiber B, moving
from the resting region into the excited region (right to
left), Vm was first hyperpolarized by 11.8 mV (fight) and
then depolarized by 8.6 mV (left) over a distance of 2

mm centered at 0.6 cm. There was a concave shape of (Di
versus distance, with a minimum near the center.
With fiber B passive, it constituted a modest passive

RC load to fiberA (rather than an active load), and the
relationship between 4Xia, ea, and Vma (lower case

signifies deviation from resting values) was close to that
expected in a bounded isolated fiber described by the
linear core-conductor model. That is, 4jia riVma/
(r i + re) and ¢ea 2 -reVma/(ri + re) (31, p. 111), if the
intracellular path of fiber B was included in determining
re.
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FIGURE 9 For extracellular conductance equal to intracellular, but
fiber B's membrane not allowed to become excited (i.e., held with its
resting properties), the same spatial plots as those of Fig. 6 are shown.
Note that the presence of extracellular potentials induces marked
deviations from baseline values in both Vmb and +b.

Fiber B after release
Inspection of the shape of the (i curve for fiber B
suggests how current flows within fiber B. Fiber A
induced a concave spatial distribution of (i in fiber B.
The concave waveshape caused intracellular current to
flow toward the voltage minimum of (i. The resulting
outward membrane current might be considered a

stimulus. Inspection of the curve for Vm shows how fiber
B becomes excited. FiberA induced a depolarization of
sufficient magnitude (8.6 mV) to initiate activation once

fiber B was allowed to respond, with a significant latency
because the voltage change was near threshold. The
action potentials in fiber B, beginning just after 3.3 ms,
were the result.
The evolution of fiber B through passive and active

phases can be seen by plotting Vm versus distance along
the fiber at several instants (Fig. 10). Activation in fiber
A at 2.4 ms induced Vm in B, as shown by the line labeled
2.4. From 2.4 to 3.3 ms, fiber B was passive, as activation
progressed along fiber A. Accordingly, the distribution
of Vm in fiber B at 3.3 ms is similar to that at 2.4 ms,
translated to the right. Fiber B became active just after
3.3 ms, and by 5.3 ms the potential distribution had an

entirely different shape, with the most positive poten-
tials (near 0.6 cm) well above threshold. These poten-
tials grew more positive rapidly, as seen by the distribu-
tion at 5.5 ms.

It is interesting to observe that the site of earliest
activation ( 6 mm) was further down the fiber than the
site of most positive transmembrane potential when
fiber B became active at 3.3 ms ( 4 mm). This spatial
shift appeared to be the consequence of continued

-70.-

0.0 0.2 0.4 0.6

distance (cm)

1

0.8 1.00

FIGURE10 Evolution of activation in fiber B. A series of spatial
distributions of Vm in fiber B (only) is shown. Each line portrays Vm vs.
distance along the fiber, for one time. The number beside each line is
the time in milliseconds (measured from the start of the stimulus) for
that line.

propagation in fiber A occurring concurrently with the
time required for the active changes in the membrane of
fiberB to produce an action potential.

Propagation velocity
The propagation velocity in fiberA away from the ends
was measured from the simulated wave forms for three
cases (Table 3). Cases 1 and 2 were the same as
described above. For case 2, the velocity measurement
was obtained when fiber B was passive. Case 3 used the
same intracellular and extracellular conductance pat-
tern as case 2. In case 3 both fiberA and fiber B were
stimulated simultaneously, and thereafter excitation
proceeded identically in both fibers. Column C of Table
3 gives the simulated velocity in each case. The results
showed a substantial decrease in conduction velocity
between cases 1 and 2, reflecting the diminished extracel-
lular conductance. A further substantial decrease oc-
curred between cases 2 and 3, even though there was no
further reduction in the extracellular conductance.

TABLE 3 Propagation velocities

A Case B Condition C Velocity D re/ri

mm/ns
I A active 2.84 =0.02

II A active, B passive 2.28 = 0.65
III A and B stimulated 1.66 = 2.0

Column D:
velocities.

Case 1, as in simulation. Cases II, III from relative
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Linear core-conductor theory (31, p. 117) associates
changes in velocity with changes in resistivity. That
theory states that

02 [r +r (8)
0l [ri + rel2'

where ri and re are the intracellular and extracellular
resistances per unit length, and the subscripts identify
the cases compared. We used this relationship and the
ratio of re/lr for case 1 to predict a value for re/ri for cases
2 and 3, with the results given in Table 3, column D.
These results show that the linear core-conductor model
predicts the velocity in case 2 if the extracellular resis-
tance per unit length is a little greater than would be
provided by the parallel combination of both extracellu-
lar pathways of Fig. 2 plus the intracellular pathway
along fiber B. The velocity observed in case 3 is pre-
dicted correctly if the extracellular volume is conceptu-
ally divided into two parts, with half associated with fiber
A.

DISCUSSION

Model limits
It is important to keep in mind that all of the results
presented here arise from a model, so that this study
shows directly only the properties of the model itself,
rather than those of any real tissue that the model might
appear to approximate. Further, the focus in model
construction was on a clean and relatively simple struc-
ture for examining interactions in the absence of geomet-
ric complications. As a result, the model is not a detailed
representation of the structure of any real tissue, nerve
or muscle. At the same time, the modeling of fibers as
cylinders has become so common, and the results often
so useful, that further insight into the properties of the
model is interesting in its own right and possibly useful
in suggesting explanations for measurements from real
tissue.
When extracellular space is sufficiently reduced in

volume to permit ephaptic effects between two fibers,
the possibility also exists of other interactions, such as
accumulation of potassium. Such effects might be partic-
ularly notable if the rate or rhythm of excitation changed
or if it differed markedly from one fiber to the other.
Only electrical interactions were included in this study,
however, mainly because understanding electrotonic
interaction in the absence of other changes was consid-
ered the primary goal. An important corollary benefit of
limiting the goals in this way was that a less complex
series of calculations had to be completed.

Passive and active responses
In the two-fiber model with fiberA active, a division can
be found between events in fiber B due to its passive
properties, and its subsequent active response. As shown
by Fig. 6 (voltage vs. time), with equal extracellular
conductance the coupling through the extracellular
space induced in fiber B first a hyperpolarization and
then a depolarization, with a positive voltage change of

20 mV in < 1 ms. These voltages were induced
because of biophysical properties of the second fiber as a
part of the volume conductor surrounding fiber A. As
such, their magnitude and time course was a conse-
quence of extracellular and intracellular resistances and
the membrane capacitance but was not controlled by the
active responses of the membrane model. The fact that
passive interaction must take place has been recognized
for some time, and the work of Markin (25) and Clark
and Plonsey (4) in the early 1970s showed possible ways
modeling this interaction.
With the Hodgkin-Huxley model used, fiber B re-

sponded to the induced currents by initiating action
potentials in fiber B. Because the induced transmem-
brane stimulus involved hyperpolarization and then
depolarization, the spatial change in the intracellular
potential of - 20 mV was considerably greater than the
depolarization from the resting level, about half that
much. Our results provide no direct information about
the nature of the responses that quite different models,
such as those of Drouhard and Roberge (6) or Di-
Francesco and Noble (5) for cardiac tissue, might
produce. At the same time, the similar nature of the
sodium current in all these models, as well as the
magnitude of the transmembrane voltages induced,
makes it likely that some kind of active response would
be present. It is clear that the details of the response will
depend on the interaction of depolarizing and repolariz-
ing responses near the resting voltage.

It also was evident from the results that the presence
of fiberB changed the time course of events in fiberA, in
part through the changes in the passive properties of
fiberA 's extracellular volume. The most visible changes
occurred when fiber B's action potentials generated the
same changes inA that fiberA had earlier generated in
B; only the relatively refractory state ofA prevented a
reactivation of A and a possibly oscillating sequence
from being established.

Electrotonic interactions
So little has been established on a quantitative basis
about extracellular coupling that there is as yet no sound
basis for delineating those in vivo contexts where it
might play a significant role. A number of disorders
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involving the interaction of nerves, such as hemifacial
spasm (38) and trigeminal neuralgia (12), have been
discussed in terms of ephaptic transmission, and such
transmission has been demonstrated experimentally in
the squid giant axon (34) and cardiac ventricular cells in
vitro (43). Present-day understanding suggests that most
if not all normal action potential propagation is by
means of other mechanisms.
On the other hand, a substantial body of work has

shown that electrotonic interaction between active cells
can have a substantial modulating effect on function. In
cardiac electrophysiology, for example, recent work by
Roberge et al. (35) showed the importance of electro-
tonic interactions for near-threshold stimuli, Tan and
Joyner (45) examined electrotonic influences on action
potentials in ventricular cells, and Joyner et al. (17)
examined effects of tissue geometry on cardiac action
potential initiation. The magnitudes of the interactions
through interstitial couplings shown here are well be-
yond the magnitudes shown to have an effect.
An example of the strong electrotonic interaction is in

the velocity data presented in Table 3. Both case 2 (fiber
A active) and case 3 (fibers A and B simultaneously
active) have the same pattern of conductance, and fiber
A is excited in the same way, yet fiberA shows markedly
different conduction velocities. In case 2, fiber A's
velocity is that to be expected if extracellular current
from fiberA uses all extracellular paths and, to a lesser
degree, fiber B's intracellular path. In contrast, in case 3
fiber B has "taken back" its own intracellular path and
half the extracellular path, so that fiber A 's velocity is
markedly diminished.

Magnitude of Interaction
One of the most informative aspects of the simulation is
that it provides a detailed, quantitative example of the
magnitudes of the induced effects for a particular degree
of extracellular coupling. Loosely stated, when the
extracellular resistivity was equal to the intracellular
resistivity of either fiber, the induced passive voltage
changes were in the range of 10 mV hyperpolarization
and 10 mV depolarization, although there was a compli-
cated temporal and spatial distribution. These magni-
tudes declined to almost zero, as expected, when the
extracellular conductivity was large. Conversely, even
larger voltages would be induced if the fraction of the
total volume that was intracellular increased beyond
half. Such higher packing fractions are suggested by the
high extracellular voltages reported by several investiga-
tors, making plausible the induction of changes in vivo of
even greater extent.

The authors appreciate the extensive help of Alexandra Papazoglou in
completing the figures for this paper.

This work was supported in part by US Public Health Service grant
HL-11307 and a grant of computer time from the North Carolina
Supercomputing Center.

Received for publication 11 October 1991 and in final form 13
January 1992.

REFERENCES

1. Arvanitaki, A. 1942. Effects evoked in an axon by the activity of a
contiguous one. J. Neurophysiol. (Bethesda). 5:89-108.

2. Barr, R. C., and R. Plonsey. 1984. Propagation of excitation in
idealized anisotropic two-dimensional tissue. Biophys. J. 45:1191-
1202.

3. Beeler, G. W., and H. Reuter. 1977. Reconstruction of the action
potential of ventricular myocardial fibres. J. Physiol. (Lond.).
268:177-210.

4. Clark, J. W., Jr., and R. Plonsey. 1971. Fiber interaction in a nerve
trunk. Biophys. J. 11:281-294.

5. DiFrancesco, D., and D. Noble. 1985. A model of cardiac
electrical activity incorporating ionic pumps and concentration
changes. Philos. Trans. R. Soc. Lond. B Bio. Sci. 307:353-398.

6. Drouhard, J. P., and F. A. Foberge. 1987. Revised formulation of
the Hodgkin-Huxley representation of the Na+ current in
cardiac cells. Comput. Biomed. Res. 20:333-350.

7. Ebihara, L., and E. A. Johnson. 1981. Fast sodium current in
cardiac muscle. Biophys. J. 32:779-790.

8. Ebihara, L. N., N. Shigeto, M. Lieberman, and E. A. Johnson.
1980. The initial inward current in spherical clusters of chick
embryonic heart cells. J. Gen. Physiol. 75:437-456.

9. Eisenberg, R. S., V. Barcilon, and R. T. Mathias. 1979. Electrical
properties of spherical syncytia. Biophys. J. 25:151-180.

10. Faber, D. S., and H. Korn. 1989. Electrical field effects: their
relevance in central neural networks. Physiol. Rev. 69:821-863.

11. Geselowitz, D. B., and W. T. Miller III. 1983. A bidomain model
for anisotropic cardiac muscle. Ann. Biomed. Eng. 1 1:191-206.

12. Hakanson, S. 1981. Trigeminal neuralgia treated by the injection
of glycerol into the trigeminal cistern. Neurosurgery. 9:638-646.

13. Halter, J. A., and J. W. Clark, Jr. 1991. A distributed-parameter
model of the myelinated nerve fiber. J. Theor. Biol. 148:345-382.

14. Henriquez, C. S., and R. Plonsey. 1990. Simulation of propagation
along a cylindrical bundle of cardiac tissue. I. Mathematical
formulation. IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed.
Eng. 37:850-860.

15. Henriquez, C. S., and R. Plonsey. 1990. Simulation of propagation
along a cylindrical bundle of cardiac tissue. II. Results of
simulation. IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed.
Eng. 37:861-875.

16. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description
of membrane current and its application to conductance and
excitation in nerve. J. Physiol. (Lond.). 117:500-544.

17. Joyner, R. W., B. M. Ramza, R. C. Tan, J. Matsuda, and T. T. Do.
1989. Effects of tissue geometry on initiation of a cardiac action
potential. Am. J. Physiol. 256:H391-H403.

1174 Biophysical Journal Volume 61 May 1992



18. Katz, B., and 0. H. Schmitt. 1940. Electric interaction between
two adjacent nerve fibres. J. Physiol. (Lond.). 97:471-488.

19. Kleber, A. G., and C. B. Riegger. 1987. Electrical constants of
aterially perfused rabbit papillary muscle. J. PhysioL (Lond.).
385:307-324.

20. Knisley, S. B., T. Maruyama, and J. W. Buchanan, Jr. 1991.
Interstitial potential during propagation in bathed ventricular
muscle. Biophys. J. 59:509-515.

21. Leon, L. J., and F. A. Roberge. 1990. A new cable model
formulation based on Green's theorem. Ann. Biomed. Eng.
18:1-17.

22. Lewis, T., and M. A. Rothschild. 1915. The excitatory process in
the dog's heart. Part I. The auricles. Part II. The ventricles.
Philos. Trans. R. Soc. Lond. B Bio. Sci. 206:181-226.

23. Ling, G., and R. W. Gerhard. 1949. The normal membrane
potentials of frog sartorius fibres. J. Cell. Comp. Physiol. 34:383-
396.

24. Lorente de N6, R. 1947. Analysis of the distribution of the action
currents of nerves in volume conductors. Rockfeller Institute
Medical Research, New York. 132:384-497.

25. Markin, V. S. 1973. Electrical interaction of parallel non-
myelinated nerve fibers. III. Interaction in bundles. Biofizika.
18:314-321.

26. Miller, W. T., III, and D. B. Geselowitz. 1978. Simulation studies
of the electrocardiogram. Circ. Res. 43:301-315.

27. Muler, A. L., and V. S. Markin. 1978. Electrical properties of
anisotropic nerve-muscle syncytia. III. Steady form of the
excitation front. Biophysics. 22:699-704.

28. Nelson, P. G. 1966. Interaction between spinal motoneurons of the
cat. J. Neurophysiol. 29:275-287.

29. Plonsey, R., and R. C. Barr. 1984. Current flow patterns in
two-dimensional anisotropic bisyncytia with normal and extreme
conductivities. Biophys. J. 45:557-571.

30. Plonsey, R., and R. C. Barr. 1987. Interstitial potentials and their
change with depth into cardiac tissue. Biophys. J. 51:547-555.

31. Plonsey, R., and R. C. Barr. 1988. Bioelectricity, A Quantitative
Approach. Plenum Publishing Corp., New York.

32. Plonsey, R., C. S. Henriquez, N. Trayanova. 1988. Extracellular
(volume conductor) effect on adjoining cardiac muscle electro-
physiology. Med. Biol. Eng. Comput. 26:126-129.

33. Pollard, A. E., and R. C. Barr. 1991. Computer simulations of
activation in an anatomically based model of the human ventric-
ular conduction system. IEEE (Inst. Electr. Electron. Eng.) Trans.
Biomed. Eng. 38:982-996.

34. Ram6n, F., and J. W. Moore. 1978. Ephaptic transmission in squid
giant axons. Am. J. Physiol. 234:C162-C169.

35. Roberge, F. A., Boucher, L., and A. Vinet. 1989. Model study of
the spread of electrotonic potential in cardiac tissue. Med. Bio.
Eng. Comput. 27:405-415.

36. Roberts, D. E., L. T. Hersh, and A. M. Scher. 1979. Influence of
cardiac fiber orientation on wavefront voltage, conduction
velocity, and tissue resistivity in the dog. Circ. Res. 44:701-712.

37. Roth, B. J. 1988. The electrical potential produced by a strand of
cardiac muscle: a bidomain analysis. Ann. Biomed. Eng. 16:609-
37.

38. Sanders, D. B. 1989. Ephaptic transmission in hemifacial spasm: a
single fiber EMG study. Muscle Nerve. 12:690-694.

39. Schmitt, 0. 1969. Biological information processing using the
concept of interpenetrating domains. In Information Processing
in the Nervous System. K. N. Leibovic, editor. Springer-Verlag,
New York. 325-331.

40. Sepulveda, N. G., B. J. Roth, and J. P. Wikswo, Jr. 1989. Current
injection into a two-dimensional anisotropic bidomain. Biophys.
J. 55:987-999.

41. Spach, M. S., and R. C. Barr. 1975. Ventricular intramural and
epicardial potential distributions during ventricular activation
and repolarization in the intact dog. Circ. Res. 37:243-257.

42. Spach, M. S., W. T. Miller, III, D. B. Geselowitz, R. C. Barr, J.
Kootsey, and E. A. Johnson. 1981. The discontinuous nature of
propagation in normal canine cardiac muscle. Circ. Res. 48:39-
54.

43. Suenson, M. 1984. Ephaptic impulse transmission between ventric-
ular myocardial cells in vitro. Acta Physiol. Scand. 120:445-455.

44. Taccardi, B., L. S. Green, P. R. Ershler, and R. L. Lux. 1989.
Epicardial potential mapping: effects of conducting media.
Circulation. 80:II-134.

45. Tan, R. C., and R. W. Joyner. 1990. Electrotonic influences on
action potentials from isolated ventricular cells. Circ. Res.
67:1071-1081.

46. Tuang, L. 1978. A bi-domain model for describing ischemic
myocardial d-c potentials. Ph.D. dissertation. Massachusetts
Institute of Technology, Cambridge, MA.

47. Vander Ark, C. R., and E. W. Reynolds, Jr. 1970. An experimental
study of propagated electrical activity in the canine heart. Circ.
Res. 26:451-460.

48. Wikswo, J. P., Jr., T. A. Wisialowski, W. A. Altemeier, J. R. Balser,
H. A. Kopelman, and D. M. Roden. 1991. Virtual cathode
effects during stimulation of cardiac muscle. Two-dimensional in
vivo experiments. Circ. Res. 68:513-30.

Barr and Plonsey Initiation of Excitation by Means of Interaction Between Fibers 1175


