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ABsTRACT We prove that, at the frequencies generally proposed for extracranial stimulation of the brain, it is not possible, using any
superposition of external current sources, to produce a three-dimensional local maximum of the electric field strength inside the brain.
The maximum always occurs on a boundary where the conductivity jumps in value. Nevertheless, it may be possible to achieve greater
two-dimensional focusing and shaping of the electric field than is currently available. Towards this goal we have used the reciprocity
theorem to present a uniform treatment of the electric field inside a conducting medium produced by a variety of sources: an external
magnetic dipole (current loop), an external electric dipole (linear antenna), and surface and depth electrodes. This formulation makes
use of the lead fields from magneto- and electroencephalography. For the special case of a system with spherically symmetric conductiv-
ity, we derive a simple analytic formula for the electric field due to an external magnetic dipole. This formula is independent of the
conductivity profile and therefore embraces spherical models with any number of shells. This explains the *‘insensitivity’ to the skull's
conductivity that has been described in numerical studies. We also present analytic formulas for the electric field due to an electric

dipole, and also surface and depth electrodes, for the case of a sphere of constant conductivity.

INTRODUCTION

During the past decade there has been increasing interest
in the possibility of stimulating the brain using extra-
cranial current sources (see, e.g., Cohen and Cuffin,
1991). Stimulation is an important new method for ex-
ploring brain function and could lead to the develop-
ment of neuroprosthetic devices. Relatively little is
known about how neurons respond to an electric field
nearby, however. For example, it is not clear what fea-
ture of this field is most important when trying to stimu-
late the neuron. Is it the strength of the field, its compo-
nent parallel with or transverse to the neuronal surface,
the parallel component of the gradient of the latter, or
some other quantity?

To facilitate the study of these questions, it is valuable
to be able to calculate the electric field distribution inside
a conducting medium produced by various external
sources. Numerical calculations have already been made
using magnetic stimulators in special geometries (Ueno
et al., 1988, 1990; Cohen and Cuffin, 1991; Roth et al.,
1991; Yunokuchi and Cohen, 1991). In this paper we
consider that particular problem as well as related ones
involving electric stimulators. Because the spatial varia-
tions of the electric fields from the various sources are
different, they may all be useful, separately or in combi-
nation, for stimulating different regions of the brain.

There is an intimate connection between the electric
field inside a conductor produced by an external source
and the field outside that is produced by an internal
source of current; this is a direct result of the reciprocity
theorem. Because the internal source problem has been
studied in cardiography and encephalography, we shall
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make use of the same mathematics. The essential ingre-
dient is the function (lead field ), depending only on the
head model, that relates the electric potential to the pri-
mary current.

After justifying in Section II that the quasistatic ap-
proximation is valid, we prove that, at the frequencies
generally considered for brain excitation, it is not possi-
ble, using any set of external current sources whatsoever,
to produce a three-dimensional local maximum of the
electric field strength inside any region of constant con-
ductivity.

In Section III we present an analytic formula for the
electric field inside any spherically symmetric conduc-
tor, due to an external current loop (magnetic dipole).
In Section IV we discuss the electric field inside a con-
ductor produced by an external linear antenna (electric
dipole). The mathematics is formulated for a general
head model, and an explicit formula is given for a sphere
with constant conductivity. In Section V we show that
for stimulation using either surface or depth electrodes,
the formula is similar to that for an electric dipole. In all
cases we show the simple averaging of the point source
formula that is needed if the size of the source is not
negligibly small.

Some qualitative features of these various electric
fields are discussed in Section VI, which also provides a
summary of the paper. The application of the reciprocity
theorem to a magnetic dipole source and to an electric
dipole source is presented in Appendix A. Some of the
mathematics needed for analyzing a layered head model,
namely, one in which the conductivity is a different con-
stant in different regions, is summarized in Appendix B.
Explicit formulas are given there for a uniform sphere
and also for three concentric spherical shells.
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Il. LOW FREQUENCY (QUASISTATIC)
APPROXIMATION

An approximate treatment of Maxwell’s equations at
low frequencies is presented in Plonsey (1969), in terms
of the scalar and vector potentials; here we do it directly
in terms of the electric field. There are two related points
that govern the solution of these equations. The first is
the fact that at low frequency they contain two small
parameters (Plonsey, 1969); and the second is that the
equations depend upon the frequency in an analytic
manner. As a consequence, expansion of the field in
powers of the frequency converges rapidly, and the first
nonvanishing term provides a good approximation.
The first small parameter follows from the conserva-
tion of electric charge,
dp _

V- J+—=0,

3 (2.1)

where J is the electric current density and p is the electric
charge density. It is useful to decompose J into two
parts,

J=Jf+oE, (2.2)

where J? is referred to as the primary current and oE is
the conduction or return current; o is the electrical con-
ductivity. For a dielectric material there is also a polariza-
tion current, which is generally negligible relative to ¢E.
In encephalography J? is the current inside the neurons,
whereas in the stimulation problem it is the current in
the stimulating device; in both problems ¢E is the
current that flows in the conducting material of the
brain, skull, and scalp. J? can therefore be thought of as
the driving current in both problems.

When Egs. 2.1 and 2.2, including the polarization
current, are combined with Gauss’s law it is seen that
inside any region of constant conductivity the charge
density must fall off with time like exp(—wyt) at all
points where V- J? = 0 (Nunez, 1981). Thus, it is only
at the surfaces where ¢ jumps in value that charge can
appear. The characteristic frequency w, is given by

~la

W , (2.3)
and the decay time is short even in the skull. We are not
aware of a measurement of the dielectric constant e = ke,
for the skull; assuming x ~ 1, we obtain from Nunez
(1981)

wg! ~ 1.8 X 107s. (2.4)

We shall only consider frequencies such that w/w, < 1.

The second small parameter in these problems is the
ratio of the size of the conductor, D, to the skin depth, §,
of the medium, where

(2.5)

This follows from the equation satisfied by the electric
field in any region where there is no electric charge den-
sity

V2E = —(ipgow + pgew?)E. (2.6)

The most stringent requirement now comes from the
brain region where o = 0.4/Q-m (Nunez, 1981), leading
to

6= 2 = 4.0 X 10° cm?

Hoow

(2.7)

for w = 10° Hz; consequently, with D =20 cm, (D/§)* <
1. Since the driving current J? depends upon the fre-
quency w in an analytic way, the solution of Eq. 2.6 will
also. We have now shown, therefore, that an expansion
of E in powers of w will converge rapidly to the actual
solution. This is the essence of the quasistatic approxi-
mation.

Inserting this expansion of E into Eq. 2.6 and equating
the two sides term by term establishes that

VZE=0 (2.8)
to first order in the frequency. This follows from the fact
that a static electric field cannot penetrate into a con-
ductor.

Eq. 2.8 has important consequences for electromag-
netic stimulation. It shows that to first order in the fre-
quency no component of the electric field can have a
three-dimensional local maximum inside any region of
constant conductivity. The same is clearly true for a spa-
tial derivative of any component and also for the magni-
tude of the electric field. Furthermore, because Eq. 2.8 is
linear in E, no superposition of external sources having
different frequencies or different locations can alter the
conclusion. The maxima for all such quantities must be
found on a boundary where the conductivity jumps in
value.

It may be possible, nevertheless, to achieve greater
two-dimensional focusing and shaping of the electric
field than is currently available. This is a necessary re-
quirement if extracranial stimulation is to become useful
for probing fine details of brain function. For stimula-
tion of the cortex, for example, a major issue is how
confined is the field in directions tangent to the surface
and how rapidly does it fall off with depth. To provide
the necessary tools for pursuing this matter, in the next
three sections we will examine the electric field due to
three different kinds of current sources.

Ili. MAGNETIC DIPOLE SOURCE

There is more than one way to solve for the electric field
inside a conductor due to a prescribed current on the
outside. One method makes use of a reciprocity
theorem. An early application of this theorem is given in
Rush and Driscoll (1969); but for our purpose the nicest
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statement of the theorem is given in Lorrain and Corson
(1970) and Plonsey (1972), as a relation between the
electric fields that are produced by two different currents
of the same frequency. It is shown in Appendix A that,
for the particular case in which J? is a current dipole p at
position r, inside a conductor, and J£ is a small current
loop having magnetic moment m located at position r,
outside the conductor, the reciprocity theorem leads to

p: E(r)) = iom- B(r,). (3.1)

Eq. 3.1 provides a simple, direct relation between the
solutions to two different problems, one arising in mag-
netoencephalography and the other in electromagnetic
stimulation of the brain. For the former problem one
needs to calculate the magnetic field B(r,) outside a con-
ductor, due to a current dipole p inside and its associated
return current. If that problem has already been solved,
then Eq. 3.1 determines the electric field E(r,) that re-
sults from a magnetic moment m at position r,. See Fig.
1. An oscillating magnetic moment will, of course, in-
duce electric charge on the conductor, and the contribu-
tion to the field E from that charge is fully taken into
account in Eq. 3.1.

Two important results follow from Eq. 3.1. Because p
can be chosen to have any orientation, all components of
E can be determined. Furthermore, to obtain E to first
order in the frequency, it is sufficient to know B only to
zeroth order. The static B is given by the Biot-Savart law,

_1

r—r'|’
which can be further decomposed into primary and re-
turn current contributions using Eq. 2.2. For any head

model in which the electric conductivity is a different
constant in different regions, the contribution to B from

B(r)— fd’ 'J(r)X Vv (3.2)

FIGURE | The geometry associated with Eq. 3.1. p is a current dipole
at position r, inside a conductor, and m is a magnetic dipole (current
loop) at position r, outside.

the return current can be converted to a surface integral
(Geselowitz, 1970), giving

B(r)=%[va. - Z_(aj‘+aj+)

Ir—r|

de’V(r)n(r)XV' (3.3)

1
[r—r|
In Eq. 3.3 0;7(0;") is the value of the conductivity just
inside (outside) the jth surface, V'is the electric potential
on that surface, and the sum runs over all the surfaces of
discontinuity of o.

In Section IV we discuss the general procedure for ob-
taining V in such a head model, but here we take up the
case in which the conductivity is any spherically symmet-
ric function; that is, ¢ depends only on the distance from
the origin. A clever solution for the magnetic field out-
side due to a static current dipole p inside is given by
(Sarvas, 1987)

V pXr -r,

B(r;) = E

[Fp X1 —(p Xr1-1,)V,F], (3.4)

4F2

where the function F of the two independent variablesr,
and r, is defined as

F=a(r,a+r,-a) (3.5)
and
(3.6)

a=r,—r,.

To obtain the formula for E(r;) from Eq. 3.1 one
needs m- B, and the first line of Eq. 3.4 gives it as

Xryer
m.];(,-ﬁ:%(m.vz)%
_ Mo . . r Xr,

—47rp (m-V,) 7 (3.7)

Comparison with Eq. 3.1 immediately yields the result
for the electric field,

r,><r2

E(r,) = tw——(m v,)

= lw [FryXm— (m-V,F)r, Xr,]. (3.8)

Mo
47 F?
The gradient operator in these equations, V,, is with re-

spect to r,, and the explicit formula for V, F is (Sarvas,
1987)

2 .
V,F = (“— +2a+2r, + 2 a)rz
r a

- (a +2r, + rzaa)rl. (3.9)

Heller and van Hulsteyn

Electromagnetic Stimulation of the Brain 131



Eq. 3.8 is an explicit formula for the electric field, due
to an external magnetic moment m of frequency w, in-
side a conductor with any spherically symmetric conduc-
tivity profile. We have also verified this expression for E
by solving the problem directly rather than by using the
reciprocity theorem.

One of the consequences of Eq. 3.8 was already fore-
seen (Cohen and Cuffin, 1991) directly from the reci-
procity theorem. Since it is known that a radially ori-
ented current dipole in a spherically symmetric conduc-
tor produces no magnetic field outside, it must follow
that no current loop on the outside can produce a radial
component of electric field on the inside. This is con-
firmed here because the righthand side of Eq. 3.8 is or-
thogonal to r,. We note that this property of the electric
field is not shared by an electric dipole source, to be
discussed in the next section.

Branston and Tofts (1991) gave a direct proof that the
vanishing of the radial component of E on the surface of
a sphere of constant conductivity guarantees that it is
zero throughout the volume. Their restriction to a spe-
cial (linearly increasing) time course for the current in
the coil is not necessary, however; we have seen that the
result is valid to first order in the frequency. The proof
provided by Saypol et al. (1991) is flawed, but can be
easily corrected (B. J. Roth, personal communication).

Another special case of Eq. 3.8 is that in which m is in
the direction r,, i.e., a radial magnetic dipole. Because
the radial component of the magnetic field due to any
current dipole is correctly given by just applying the
Biot-Savart law to the current dipole itself, the expres-
sion for the electric field in this case becomes (after some
algebra) correspondingly simple,

Mo @ Xm

E(r) = io g2 =5

(m radial). (3.10)

We emphasize the fact that Eq. 3.8 is completely inde-
pendent of the conductivity profile, so long as it is spheri-
cally symmetric. This explains why a numerical solution
of a three-shell model (Roth et al., 1991) finds the elec-
tric field to be “insensitive” to the skull conductivity; in
fact, it is also independent of the brain and scalp conduc-
tivities, as well as of the radii of all the surfaces! The same
conclusion was reached in Saypol et al. (1991) as a con-
sequence of the vanishing of the radial component of E
in any spherical shell having constant conductivity (but
see the discussion above), and continuity of the tangen-
tial component of E.

It was shown in Section II that there is no maximum of
the electric field strength inside any region of constant
conductivity, for the frequencies under consideration;
the maximum must occur on a boundary where the con-
ductivity jumps in value. For a sphere of constant con-
ductivity this is the surface of the sphere. With spherical
symmetry the maximum will still occur there even if ¢
jumps in value at some interior radius, because the elec-

tric field is independent of the conductivity profile. One
can also verify directly from Eq. 3.8 that V2E vanishes.

Finally, if the current loop is not sufficiently small that
it can be treated as a point magnetic dipole, it is only
necessary to average the expression for E(r,) given in
Eq. 3.8 over r, (the position of the source). This is a
simple numerical integration, and is discussed further in
Appendix A. Note that it is not necessary to solve La-
place’s equation numerically. We performed this averag-
ing over circular loops, and initial results have been pre-
sented (Heller et al., 1991). A paper is in preparation
that examines the field resulting from a more general
superposition of sources.

IV. AN ELECTRIC DIPOLE SOURCE

We now take up the problem of the electric field inside a
conductor due to an external electric dipole; this is pro-
vided, for example, by a short, center-fed, linear an-
tenna. Such a source has been used at higher frequencies
to study energy deposition in the torso (Stuchly et al.,
1986), but we are not aware of its use for brain stimula-
tion. Because the electric field that it produces has a very
different shape than that from a magnetic dipole, includ-
ing a radial component, it may prove to be useful in the
future.

Although the electric field can be obtained directly, we
again follow the procedure from Section III, using the
reciprocity theorem as given in Appendix A. This time,
however, we need the electric field outside a conductor
due to a current dipole inside, rather than the magnetic
field, because the integral on the right-hand side of Eq.
A.3 runs over a line segment (the antenna), rather than a
closed loop.

For a sufficiently short antenna at position r, having
an electric dipole moment d, it is shown in Appendix A
that the reciprocity theorem becomes

p- E,(r)) = —iwd - E,(r,). (4.1)
The factor —iwd is equal to the volume integral of the
current in the antenna (see Eq. A.10), and p is again a
current dipole at position r, inside the conductor. It, to-
gether with its associated return current, produces the
electric field E,. The antenna, together with the current
it induces in the conductor, produces the electric field
E,. Eq. 4.1 is the electric dipole analog of Eq. 3.1 for a
magnetic dipole source, and, as in that problem, to ob-
tain E, to first order in the frequency it is sufficient to
know E, to zeroth order. We now show how to ob-
tain E,.

For a static problem the electric field is determined by
a scalar potential, E, = —VV, and when this is combined
with Egs. 2.1 and 2.2 it gives

V-(aVV)=V-J> (4.2)
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Because Eq. 4.2 for V is linear, the solution must have
the form

V(r)= —f d*rH(r, r")V'- J?(r'), (4.3)
where the lead field (Green’s function ) H depends on the
head model, i.e., the geometry and the conductivity dis-
tribution, but not on the source function. After solving
for the function H once, the potential produced by any
assumed source can be found by just carrying out the
integration in Eq. 4.3.

With J” again specified to be a current dipole p at

position r,, Eq. 4.3 becomes
V(r)=p-V,H(r,1)). (4.4)
Once the function H has been found for a given head
model, the corresponding electric field is given by
E((r)=—(p-V)VH(r, 1)), (4.5)
and inserting this into Eq. 4.1 yields the expression for
the electric field at an interior point r, due to an external
electric dipole d at position r,,
E(r)) = iowV,(d - V,)H(r,, 1y). (4.6)
We have dropped the subscript 2 on E in Eq. 4.6 because
it is no longer needed.

Eq. 4.6 for the electric field inside a conductor due to a
linear antenna on the outside is valid for any conductor,
provided one knows the function H(r,, r,) for that con-
ductor. For the special case of a sphere of constant con-
ductivity, ¢, it does not seem to be generally known that
the answer can be written in closed form. It is shown in
Appendix B that

_ 1 [2 1 rnratna

H(ry, ) = 4M[a Py In 27 ] (4.7)

where a = r, — r,. From this we find that

1 a b
V,H(rz,r,)—m(2?+7), (4.8)
where
LP)

b=a+a-—=, (4.9)

r

and F is the function defined in Eq. 3.5.
The V, operation that is called for in Eq. 4.6 can be
done analytically, giving

|
E = jy ———
(ry) = iw 4ro

where

(d-Vz)b=(l +-‘1)d+(13—‘“';rz
r ra

)rz, (4.11)

and V,F is given in Eq. 3.9. Eq. 4.10 gives the electric
field inside a sphere of constant conductivity ¢ due to an
electric dipole d at position r, outside the sphere. Note
that this formula is independent of the radius of the
sphere. It is not as general a result as Eq. 3.8, which gives
the electric field due to a magnetic dipole; in that prob-
lem the electric field is completely independent of the
conductivity profile in the spherically symmetric case.
We have also verified Eq. 4.10 by solving the uniform
sphere problem directly rather than going through the
reciprocity theorem.

If the antenna is not sufficiently short that it can be
treated as a point electric dipole, it is only necessary to
average the expression for E(r,) given in Eq. 4.10 over
the length of the antenna, as described in Appendix A.

V. SURFACE AND DEPTH ELECTRODES

We want to find the electric field inside a conductor
when electrodes carrying a current are placed on the sur-
face or inside the material. The difference between this
problem and those studied in the previous sections is the
following. Because the stimulating current is in actual
contact with the conductor, there is an electric field in-
side the conductor even at zero frequency, so it is simpler
to solve for E directly without going through the reciproc-
ity theorem.

The continuity condition in Eq. 4.2 and the expres-
sion of linearity in Eq. 4.3 are unchanged. With J? con-
sisting of current  entering the conductor at positionr,,
and exiting at position r,, Eq. 4.3 becomes

(5.1)

The function H is the same one that is discussed in Sec-
tion IV and Appendix B, and for the present application
r is assumed to be inside the volume.

The electric field is obtained from E(r) = —VV(r),
but before taking the gradient we make use of the sym-
metry of H. It is shown in Appendix B that

V(l') = I[H(l', l',-) - H(l’, ro)]'

H(r,r;)=H(r,r) (5.2)

for r and r; inside or on the boundary, and it follows
from Egs. 5.1 and 5.2 that

E(r) = I[VH(r,, t) — VH(r,, 1)]. (5.3)

Eq. 5.3 for the electric field due to a pair of electrodes is
just a finite difference version of Eq. 4.6 for a short linear
antenna. This connection is made explicit in Appendix

d- .V .. . ey
<[ ( _(13 3 5a)a + 1 (d-V,)b— d 22F b| (4.10) A where the antenna is given a length that is not negligi
a a F F bly small.
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For a uniform sphere, Eq. 4.8 can be used to evaluate
the two gradients in Eq. 5.3 by making the appropriate
substitutions. For example, VH(r,, r) can be obtained
by making the replacements r, = r, and r; = r in the
definitions of a, F, and b, Egs. 3.6, 3.5, and 4.9, respec-
tively.

VI. DISCUSSION AND SUMMARY

We now want to discuss some qualitative features of the
formulas that we have obtained for the electric field in-
side a conductor due to different kinds of stimulators.
One important result is common to all the extracranial
current sources considered, including any superposition
of such sources. At the frequencies under consideration,
it is not possible to produce a three-dimensional maxi-
mum of the magnitude of E, nor of any component of E,
at any point where the conductivity is constant. This
means that the maximum must occur on one of the
boundaries where ¢ jumps in value. The exception in the
case of depth electrodes results from the fact that they
actually introduce electric charge inside the conductor,
and it is precisely at the point where they do that the
maximum occurs.

- Furthermore, it was shown in Section III that for a
magnetic dipole, i.e., current loop (or a superposition of
loops) outside a spherically symmetric conductor, the
maximum must occur on the outermost surface even if
there are inner surfaces on which ¢ is discontinuous. It is
likely that this result is more general; it probably applies
to any head model and also to the electric dipole sources
considered in Section IV. It is clearly true for surface
electrodes.

For small distances away from any point current
source, the strength of the electric field falls off with
some power of the distance that is characteristic of that
source. Examination of Eqs. 3.8, 4.10, and 5.3 shows
that this power is two for a magnetic dipole and also for
each individual electrode of an electrode pair, and it is
three for an electric dipole, i.e., linear antenna. For either
kind of dipole, however, using a superposition of sources
or a single large source produces a major modification of
the dependence on distance, so these simple power laws
are not very informative.

For electrodes, the fact that they occur in pairs and,
furthermore, are of opposite sign, leads to the same con-
clusion. The most prominent feature of the field due to
electrodes is the obvious fact that there are singular
points; this is one of the motivations for using extracra-
nial current sources. Saypol et al. (1991) present a theo-
retical comparison of the electric fields produced by a
current loop and by surface electrodes.

The fact that the electric field due to current loops
outside a spherically symmetric conductor has no radial
component follows immediately from the analytic for-

mula presented in Eq. 3.8. This feature is not shared by
the other current sources and suggests that different
sources may be more suitable for exciting different neuro-
nal populations.

It is also interesting to compare the overall strengths of
the electric fields due to magnetic and electric dipoles.
For this purpose we compare the point dipole formulas
given in Egs. 3.8 and 4.10. At a common distance (a)
from two such sources the ratio of the strengths is of
order

wuem/ a’ La
ML (nyow)dalL ~ 55

io.d/aS
o

(6.1)

where we have expressed the magnetic moment m as the
product of the current and the area A of the loop, and
have used Eq. A.17, which gives the electric dipole mo-
ment d in terms of the length L of the antenna; we have
assumed that the current strength is the same for the two
sources. For the final version of Eq. 6.1 we have also
assumed that the dimensions of the two sources are com-
parable and have made use of the definition of the skin
depth 6 from Eq. 2.7. For the conductivity of the brain,
and with L = 10 cm, a = 2 cm, and w = 10* Hz, the ratio
of the strengths of the two electric fields is ~ 107>, Alter-
natively, one can say that a linear antenna only needs
1073 of the amount of current in a loop to produce the
same electric field strength. A technical difficulty is that
it requires a very large voltage to drive even this small
current into a short antenna at these frequencies; this
matter is being pursued further.

A summary of the main analytic formulas of the paper
follows. We have obtained the electric field E(r) inside a
conductor for three special cases: (i) a current loop out-
side a region with any spherically symmetric conductiv-
ity profile, Eq. 3.8; (ii) a linear antenna outside a sphere
of constant conductivity, Eq. 4.10; and (iii) electrodes
either on the surface or inside a sphere of constant con-
ductivity, Eq. 5.3. These three formulas are valid for po-
sitions r such that the distance to the source is large com-
pared to the size of the source. When this is not the case,
to average over the size of the source only requires a
simple numerical integration, as discussed in Appen-
dix A.

For a more realistic head model, all the formalism of
this paper can be used once the function H for that
model has been obtained. If the conductivity is a differ-
ent constant in different compartments of the head, then
the procedure for obtaining H(r, r,), with r and r, any-
where inside the head, is described in Appendix B.

We are now applying these results to various superpo-
sitions of current sources to see what can be achieved in
the way of shaping and focusing the electric field. A
paper on this work is in preparation.

134 Biophysical Journal

Volume 63 July 1992



APPENDIX A
THE RECIPROCITY THEOREM

This theorem relates the electric fields that are produced by two differ-
ent current sources, of the same frequency, in the presence of the same
set of conductors (Lorrain and Corson, 1970; Plonsey, 1972). With the
current written as in Eq. 2.2 as the sum of a primary current J? and the
conduction current ¢E, the theorem states that

fd’rJ{’- E, = fd’rJf- E,, (A.1)

where the integrations run over all space. E, is the total electric field
that is produced by the current J{ together with the current that it
induces in the conductor; E, has the same significance for the current
J%. Taking J? to be a point current dipole p inside the conductor at
position r,,

Ji(r) = pé(r—r)), (A.2)

Eq. A.1 becomes

p-Ex(r) = fdwg-E,. (A3)

1. A Current Loop (Magnetic Dipole)

Let us take J4 to be a current loop outside the conductor, carrying
current ; then the righthand side of Eq. A.3 becomes a line integral
around the loop, i.e.,

p-Ez(r|)=Ifdl-E,. (A4)

By Faraday’s law this line integral equals the negative time rate of
change of the magnetic flux & linking the loop in the right-handed
sense, i.e.,

p-E(r) = iwl®, (A.5)

where

<I>=den-B. (A.6)

The integration in Eq. A.6 is over the area of any surface bounded by
the loop, and n is the local normal to that surface. We have dropped the
subscript on E in Eq. A.5 because it is no longer needed; the factor i
appearing in this equation indicates that the electric field is out of phase
with the current.

For a very small loop located at position r,, ® is equal to its area 4
multiplied by the component of magnetic field that is normal to the
loop, and using the definition of the magnetic moment, Eq. A.5 be-
comes

p: E(r)) = iwum- B(r,). (A7)

Note that, if the current loop is not sufficiently small that it can be
treated as a point magnetic dipole, Egs. A.5 and A.6 provide the needed
generalization. If the loop lies in a single plane, which is the most
common situation, then it is only necessary to average the expression
for the electric field given in Eq. 3.8 over the source position r,, i.e.,

E(r,)—»%dezE(r,). (A.8)

The integration in Eq. A.8 is over the loop of area 4. The physical
significance of Eq. A.8 is that a large loop of current can be thought of
as being composed of many small loops, each carrying the full current
and having, therefore, a magnetic moment per unit area equaltom/A4.

2. A Linear Antenna (Electric Dipole)

We now take the primary current J% to be flowing inside a linear an-
tenna. For a sufficiently short antenna at position r, outside the con-
ductor, E, on the right side of Eq. A.3 can be taken out of the integral,
giving

b Ex(ry) = Ey(r)- [ & J8(r). (A9)

Using current conservation as in Section 9.2 of Jackson (1975), the
integral in Eq. A.9 is related to the electric dipole moment d of the
source, according to

fd’r.lf(r) = —jwd = —iw f d*rrp(r),  (A.10)

thereby giving

p- Ex(r)) = —iwd - E (r;). (A.11)

For the short antenna considered above, it was not necessary to know
the variation of the current density in the antenna, J%, along its length,
because only its volume integral (see Eq. A.9) was needed. We now
generalize the previous result when the length of the antenna is not
negligibly small compared with the distance to be head. The way to do
this is to think of the full antenna as being composed of many small
antennas, each contributing an electric dipole moment per unit length
proportional to the current strength at that point.

With the thickness of the antenna assumed to be much less than its
length, only the total current /( z) passing through any cross section of
the antenna is relevant. Setting up a coordinate system as in Fig. 2, with
the origin at the center of the antenna and the z-axis along its length,
the proper way to average Eq. 4.6 is

E(r,)—»—l-fdzl(z)E(r,). (A.12)
f dzI(z)
The total moment d is obtained from Eq. A.10 as
—iwd = ifdz](z), (A.13)

where Z is a unit vector in the direction of the antenna. Egs. A.12 and
A.13 are valid for any current distribution in the antenna.
In Section 9.2 of Jackson (1975) a linear approximation is made to

I(z),
1(z)=10(1 - 2'2'),

T (A.14)

where I is the total current fed into the antenna and L is its length; see
Fig. 2. Substituting Eq. A.14 and the point dipole formula given in Eq.
4.6 into A.12, and integrating by parts, this approximation leads to

E(r) = IV\[(H(=z,1)) = (H(+z,1))], (A.15)

where ( H) is the simple average of H, computed separately in each
half of the antenna, e.g.,

L/2

(H(+z, r,))E—i— dzH(z, ;). (A.16)
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FIGURE2 A center-fed linear antenna, showing the linear variation of current with distance given in Eq. A.14. The current flows in the same

direction in both halves of the antenna.

Inserting the linear approximation to the current into Eq. A.13, the
electric dipole moment becomes

L

iod = ~I, = (A.17)

For any other current distribution in the antenna, Eq. A.15 can still be
used, but the formula for ( H') in Eq. A.16 must be modified.

APPENDIX B
THE LAYERED HEAD MODEL

In Section IV the problem of finding the electric field inside a conduc-
tor at position r, due to an electric dipole source outside at position r,,
was reduced, by means of the reciprocity theorem, to solving for the
lead field H(r,, r,), a function that depends on the head model but not
on the source. The starting point is the continuity equation (4.2) for the
electric potential ¥ due to a static, internal, primary current distribu-
tion J?. In any geometry, provided the conductivity ¢ is a different
constant in different regions, Eq. 4.2 can be converted to an integral
equation for ¥ over all the surfaces at which ¢ jumps in value (Geselo-
witz, 1967). Using that equation we will first obtain H(r, r,) with r on
the outermost surface and then use that to get H(r,, r,) with r, outside.

Substituting Eq. 4.4 into the integral equation for V (Geselowitz,
1967) leads to the equation that H must satisfy

Uk- + 6k+ 1 1

S H(rn) = > (67 —a*)

4r|r — r,| " 4r K

I’ !’ ’ . "’ 1
deSjH(r,r,)n(r) A% —|r— g

(r on the kth surface) (B.1)

Eq. B.1 is actually a set of n coupled integral equations; ;™ (0;") is the
value of o just inside (outside) the jth surface.

Once Eq. B.1 has been solved for all r on the surfaces where ¢ jumps
in value, H(r, r;) can be obtained at any interior point where o is

constant by simply inserting that value of r on the righthand side of the
equation, and replacing the left side by ¢H(r, r,). Note that it may be
necessary to add a function f(r) that is independent of r, to the right-
hand side of Eq. B.1. From Eq. 4.3 it is seen that such an addition has
no effect on V' (r) provided no net primary current J? flows into the
conductor.

Eq. B.1 can be written in a more compact notation by defining

g~ — ot
=, (B.2)
J J
and
- Lot
K(r.r) = =25 H(r, 1), (B3)
for r a point on the kth surface; Eq. B.1 then becomes
K(r r ) = —l__
UV 4xr -1y
1 1
o . g ’ eV —— 4
27l.g)\,de]K(r,r.)n(r) P (B.4)

For a general geometry, Eq. B.4 must be solved numerically. An
important case that can be solved analytically is a sphere in which s is a
different constant in different concentric shells. It follows from rota-
tional invariance that K(r, r,) can only depend on the magnitudes r
and r, and the angle © between r and r,. For r on the kth surface one
can expand K (or H) as

-

> K¥P/(cos 9)

1
K(rr) = 4o 3

! 1

=2 3 S KiYn(6 )Y 561, 90, (BS)

where P, is a Legendre polynomial and Y, is a spherical harmonic. If
the function f(r) referred to below Eq. B.1 is expanded in the same
way, all the coefficients /¥ vanish for / different from zero; for / = 0 the
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coefficients K% are not determined, but such additions to K that are
independent of r, are irrelevant.

Using the spherical harmonic expansions of the inhomogeneous
term and the normal derivative in Eq. B.4, for each value of / one
obtains a set of n coupled linear equations for the K¥. We now show
these equations for n = 1, i.e., a single sphere of constant conductivity,
and then state the result for n = 3.

1. A Uniform Sphere

For n = 1 there is only one surface with radius R, and X for that surface
is unity because the outside conductivity is zero. Setting dS’ = R*d(,
where d€ is the element of solid angle, leads to

rt 1

K=gei* o

K, (B.6)

As mentioned above, this relation is valid only for / > 0, K, being
completely arbitrary. Solving Eq. B.6 for K, and using B.3 gives

121+1
1= ;TR_’I“ ) (B.7)
and summing over / as in Eq. B.5 leads to
1 20+ 1 1}
H(r,r) = o El —7 RF P(cos®), (B.8)

for r on the surface, i.e., r = R. To obtain H when r is outside the sphere,
simply replace R in Eq. B.8 by r.

When the procedure described below Eq. B.1 is used to obtain
H(r, r,) for r inside the sphere, the result is

H(r,r,)=%G"(r,r,;R) (r<=R,r<R), (BY9)

where G¥ is the Neumann Green’s function for the inside of a sphere:

1

N, . =
G (r3rl,R) 47|'|r—|'||
1 [+1 (rry)!
ar 27T R P/(cos ©). (B.10)
This function satisfies the boundary condition
1
n(r)-ViGY(r,r;; R) = — —, (B.11)

where A = 4xR? is the area of the surface.
The series in Eq. B.10 can be summed analytically (Aerts and Heller,
1981), giving

1 1 Rr
N ‘ = —
Go(r,m; R) 41r[|r—r,l | R?r — r’r,|
1 R*—r-r,+ |R>—ru|/r
Rln( o ) . (B.12)

It is clear from Eq. B.10 that GV is symmetric under interchange
of r and r,, and it is straightforward to show that the quantity
| R’r — r’r, | /ris indeed symmetric. This leads to a symmetry property
for H:

H(r,r))=H(r,,r) (r<R,r, <R). (B.13)
This relation can be derived more generally for an arbitrary conductor;
it is a consequence of reciprocity. Eq. B.8 for 7 = R can also be summed

directly, or H can be obtained formally from B.9, B.10, and B.12 by
putting R = r; the result is

H(l‘,r,)=L 2 _lln"'(f“l'l)+r|r—r,|

dro||r—r,| r 2r?
(r=R,r <R).

(B.14)

2. Three Concentric Spherical Shells

With the function H(r, r,) expanded on each of the three spherical
surfaces as in Eq. B.5, B.1 becomes a set of three simultaneous linear
equations for the H¥ for each value of the integer /, with k = 1, 2, or 3
designating the surface. These equations can be solved in terms of deter-
minants of 3 X 3 matrices. The case of immediate interest is that in
which one of the arguments (r,) of the function H is inside the brain,
and the other (r) is on the surface of the scalp. The reciprocal problem
was studied by Rush and Driscoll (1969) in connection with stimula-
tion by surface electrodes; matching the solutions of Laplace’s equation
at each of the boundaries leads to five equations in five unknowns. Asa
result of the symmetry of the function H our answer looks just like
theirs with the roles of r and r, interchanged,

']
Hrr)=——3 A,% P(cos®),  (B.15)

270, =1

where A4, is the quantity defined in Eq. 25 of their paper, o, is the
conductivity of the scalp, and c is its outer radius. to find H when r is
outside the head it is only necessary to replace c in Eq. B.15 by r.
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