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ABSTRACT A unified model is presented for protein-protein association processes that are under the influences of electrostatic interac-
tion and diffusion (e.g., protein oligomerization, enzyme catalysis, electron and energy transfer). The proteins are modeled as spheres
that bear point charges and undergo translational and rotational Brownian motion. Before association can occur the two spheres have to
be aligned properly to form a reaction complex via diffusion. The reaction complex can either go on to form the product or it can
dissociate into the separate reactants through diffusion. The electrostatic interaction, like diffusion, influences every step except the one
that brings the reaction complex into the product. The interaction potential is obtained by extending the Kirkwood-Tanford protein model
(Tanford, C., and J. G. Kirkwood. 1957. J. Am. Chem. Soc. 79:5333-5339) to two charge-embedded spheres and solving the
consequent equations under a particular basis set. The time-dependent association rate coefficient is then obtained through Brownian
dynamics simulations according an algorithm developed earlier (Zhou, H.-X. 1990. J. Phys. Chem. 94:8794-8800). This method is
applied to a model system of the cytochrome c and cytochrome c peroxidase association process and the results confirm the experimen-
tal dependence of the association rate constant on the solution ionic strength. An important conclusion drawn from this study is that
when the product is formed by very specific alignment of the reactants, as is often the case, the effect of the interaction potential is
simply to scale the association rate constant by a Boltzmann factor. This explains why mutations in the interface of the reaction complex
have strong influences on the association rate constant whereas those away from the interface have minimal effects. It comes about
because the former mutations change the interaction potential of the reaction complex significantly and the latter ones do not.

INTRODUCTION
In this paper we present a unified model for protein-pro-
tein association processes that are under the influences
of electrostatic interaction and diffusion (e.g., protein
oligomerization, enzyme catalysis, electron and energy

transfer). The proteins are modeled as spheres that bear
point charges and undergo translational and rotational
Brownian motion.

Electrostatic interaction plays a prominent role in dif-
fusion-influenced reactions. After the classical work of
Smoluchowski (1) that calculated the association rate
constant of two isotropically reactive spheres, the next
significant step came when Debye (2) included the effect
of the electrostatic interaction between the spheres on

the association rate constant. Debye considered the sim-
ple charge-charge Coulombic interaction and the inter-
action discussed earlier by Debye and Huckel (3) be-
tween a test charge and a sphere bearing a central charge
in ionic solutions. Recent advancement was made by
Sharp et al. (4), who first put the electrostatic field calcu-
lated numerically from the Poisson-Boltzmann equa-

tion into the newly developed algorithm of Northrup et
al. (5) for calculating diffusion-influenced reaction rates
through Brownian dynamics simulations. The method
of solving the Poisson-Boltzmann equation originates
from the work of Warwicker and Watson (6), who ap-

plied finite differences to the problem of electrostatics
around an irregular cavity. Developments along this line
are summarized in the review ofDavis and McCammon
(7). Among the most sophisticated in these develop-
ments is the work ofNorthrup et al. (8), who studied the
diffusional association of electron-transfer proteins cy-

tochrome c and cytochrome c peroxidase. It should be

noted that even in this work cytochrome c was treated
differently from cytochrome c peroxidase, i.e., as a col-
lection of test charges rather than a low dielectric region
that excludes ions. This treatment of cytochrome c

changes the interaction potential significantly, as will be
seen later in this paper.

In this paper we treat the associating proteins on equal
footing. The first such treatment was perhaps that of
Scatchard and Kirkwood (9). They worked out the first
few terms of the expansion of the electrostatic potential
in spherical harmonics and their contributions to the
free energy for a simple model. The model consists of
two symmetric spheres bearing central charges im-
mersed in an ionic solution. Kirkwood later abandoned
this approach because of the mathematical complexity
involved. Instead he ( 10) went on to treat a single sphere
bearing an arbitrary distribution of point charges. This
method was later applied to proteins to determine pro-
tein titration curves by Tanford and Kirkwood ( 11 ).
More recent extensions of the Tanford-Kirkwood pro-

tein model include an ad hoc method introduced by
Shire et al. ( 12) for accounting the irregular shape ofthe
protein using a scaling factor that depends on the solvent
accessibility of each charged residue. Developments
along this line are reviewed by Matthew ( 13 ). We note
again that even in cases involving two proteins calcula-
tions were based on a single charge-bearing sphere ( 14).
A single sphere is inadequate in modeling a protein-

protein complex, and even more so in studying the asso-

ciation process. In this process most of the time the two
proteins are far apart and separated by the solvent. Con-
sequently in this paper we take up the original Scatchard
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and Kirkwood (9) approach and model the two proteins
as separate charge-bearing spheres. As a result we obtain
an infinite set of linear equations. We solve them by
truncating at appropriate orders. Their solution provides
the interaction potential between the two proteins. We
then put this interaction potential into the algorithm de-
veloped earlier ( 15 ) for calculating the time-dependent
rate coefficient of diffusion-influenced reactions using
Brownian dynamics simulations. This combination
yields the following model for diffusion-influenced pro-

tein-protein association. The charge-bearing spheres
modeling the proteins undergo translational and rota-
tional Brownian motion. Before association can occur,
the two spheres have to be aligned properly to form a

reaction complex via diffusion. The reaction complex
can either go on to form the product or it can dissociate
into the separate reactants through diffusion. The electro-
static interaction, like diffusion, influences every step ex-
cept the one that brings the reaction complex into the
product. We will apply this method to a model system of
the cytochrome c and cytochrome c peroxidase associa-
tion process and compare the results with the experimen-
tal dependence of the association rate constant on the
solution ionic strength.
The rest of the paper is organized as follows. First we

introduce our protein-protein association model under
a simpler situation where the interaction potential is cen-
trosymmetric and the reaction complex is formed only
when the spheres are at contact and the contact point is
within certain surface patches of the respective spheres.
This situation has further significance in that it is per-
haps the most general one for which an analytical solu-
tion of the time-dependent rate coefficient can be
achieved. This we obtain by using the constant-flux ap-
proximation introduced by Shoup et al. ( 16 ). Its simplifi-
cations in various cases are compared with earlier results
( 16-21 ). A remarkable result emerges from this deriva-
tion. When the reactive patches that lead to the reaction
complex on one or both spheres are small, the effect of
the interaction potential is simply to scale the association
rate constant by the Boltzmann factor ofthe contact po-
tential.
We then describe the method for calculating the inter-

action potential for two spheres bearing arbitrary distri-
butions ofpoint charges and immersed in a salt solution.
It is next applied to the diffusional association ofa model
system of cytochrome c and cytochrome c peroxidase
introduced by Northrup et al. (22). In this model each
protein bears three charges. Using Brownian dynamics
simulations we calculate the time-dependent rate coeffi-
cient ofthe system under three ionic strengths and in the
absence ofthe electrostatic potential. The dependence of
the steady-state association rate constant on the solution
ionic strength is compared with experiments (23), and
close agreement is obtained. Furthermore, when the asso-
ciation rate constant in the presence and absence of the
interaction potential are compared, a result similar to

what is in the case of a centrosymmetric potential is
found. In cases in which the reactive patches are small,
the effect ofthe interaction potential is to scale the associ-
ation rate constant by the Boltzmann factor averaged
over all the configurations ofthe reaction complex. This
result allows ready estimate of the association rate con-

stant when a different potential field is present.
The final section of the paper summarizes the results

ofthis study and discusses their consequences and impli-
cations. In particular, we show that charge mutations
near the reactive patches significantly change the contact
potential and consequently the association rate constant;
on the other hand mutations away from the reactive
patches have minimal effect.

MODEL UNDER A CENTROSYMMETRIC
INTERACTION POTENTIAL

In this section we describe and solve our general protein-
protein diffusional association model under a simpler
situation. The simplification is twofold. The interaction
potential depends only on the interprotein distance and
not on the orientations ofthe two spheres or the orienta-
tion of their displacement vector. Additionally, rather
than having an arbitrary configuration space, the reac-
tion complex is formed when the spheres are at contact
and the contact point is within axially symmetric
patches covering a portion of their surfaces. It should be
emphasized that despite these two restrictions this model
extends even the general model of Solc and Stockmayer
( 17) by allowing for a centrosymmetric interaction po-
tential. Below we obtain an analytical solution for the
time-dependent rate coefficient of this model. This is
accomplished by using the constant-flux approximation
introduced by Shoup et al. ( 16).
The configuration ofthe system is specified by the dis-

placement vector r = re between the two spheres and the
unit vectors el and e2 along the symmetry axes of their
reactive patches (Fig. 1). The distribution function in
this space at time t, P( re, e,, e2, t), satisfies the diffusion
equation

U(r)

e

FIGURE 1 The system oftwo patched spheres under the influence ofa
centrosymmetric interaction potential.
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De-U(r) O eU(r)p= KUI(eY,)U2(Y2)P, r = a. (3)Olr

Lr= DV. e-U(r) Ve U(r) + DDigt Qi
i=,

D 2
= DC(r) + r2- (e) + z DiX(ei). (lb)

In the above equation D is the relative translational dif-
fusion constant, i.e., the sum of the translational diffu-
sion constants ofthe two spheres, and D, is the rotational
diffusion constant of the ith sphere. V = 0/Or is the gra-
dient operator, and Qi = ej x O/0ej are angular gradient
operators. The radial part of the translational diffusion
operator is

L(r) =: r2e-U() eU(r) (2a)

where ,3 = (kBT)'- is the inverse ofthe product ofBoltz-
mann's constant and the absolute temperature, and
U(r) is the interaction potential. The rotational diffu-
sion operators as well as the angular part of the transla-
tional diffusion operator are

1 aaio+ I1 02
sinO=O~ 0in 0 in2002r

In the above u,(,y,) is some step function that is 1 over
certain range of y, and zero elsewhere, whereas Iy and Y2
are the angles between the contact point and the vectors
e, and e2, respectively. They are given by

cos Pyl = cos 0 cos 01 + sin 0 sin 01 cos (4)- X1), (4a)
COS (r - Y2) = COS 0 COS 02 + sin 0 sin 02 COS (O - 4)2). (4b)

The above prescription extends the general model of
Solc and Stockmayer ( 17) by including a centrosymmet-
ric interaction potential U(r). The time-dependent rate
coefficient ofthis model is the total flux across the bound-
ary r = a,

k(t) = Da2 ('H de de, de2 [e-U(r) eU(r)
L Or

X P(re, el, e2, t)]
.r=a

= Ka2 j'f de de, de2u1('Y)u2(Y2)
X P(ae, el, e2, t).

(2b)

where (0, 0) expresses e (similarly fore1 and e2) in spheri-
cal coordinates. When the two spheres are at contact,
i.e., when r = a, + a2= a (a,: radius of the ith sphere),
the distribution function P(re, e,, e2, t) satisfies the fol-
lowing radiation-type boundary condition:

(5a)

(5b)

Its Laplace transform, k(s), can be obtained by using the
constant-flux approximation. In this approximation the
flux is assumed to be a constant when the contact point is
in the reactive patches and this constant is determined
by requiring the radiation boundary condition to be satis-
fied on the average. The details of the derivation are
given in Appendix A; the final result is

sk(s) =

Da2Ke U(a) [c1(O)c2(o)]2
skrD~t(O)s)=0)-K z fi[a A1'(s) [C,(l,)C2(12)]2

In the above jUL12(s) = [(D,11(11 + 1) + D212(12 + 1) +
s)/D]1/2 and f1(r; ,u) are the regular solutions of the

equations
Some general properties ofk(t) can be easily obtained

from the expression of its Laplace transform, Eq. 6. Its
initial value is

k(O) = 47rKa2FlF2e-U(a), (10){L+(r) - e[2+ ( )

-( r2 dr r2"e U(r) dr
_
[ 2 + (r2 )])J = °, (7)

c,( 1) are the expansion coefficients of ui( yi) in terms of
the Legendre polynomials PI,(cos yi),

ci(li) = 2w u(Qyi)P ,(cos zi) sin 'y d'yi,

and C11,12 are expressions made of 3-j symbols,

(21 + 1)(212+ 1)(21+ ) (11 12 1 2
ClII12 =

4wr 0 0 0)

where F, = ci(0 )/44r. This is an expected result; it is just
the reactivity K multiplied by the fractional reactive sur-
face area 4ra2FI F2 and the Boltzmann factor ofthe con-
tact potential. With Eq. 10 we can write k(s) in the fol-
lowing form:

(8) sk(s)- k(O)skD(s)
k(O) + skD(s)

(11)

where kD(s) is the Laplace transform of k(t) when the
reaction is diffusion controlled, i.e., when the reactivity K

(9) is infinite. In fact Eq. 11 is a general relationship between
the rate coefficient under finite and infinite reactivities.

Zhou Brownian dynamics study of protein-protein association kinetics

OP= L£rpi
Ot (la)

(6)
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The long-time asymptotic behavior of k(t) can be
found from the expansion of k(s) around s = 0. We first
observe that in expandingf1[a; t1, 2(s)]/fI[a; 1112(s)],
next to the sO order only the 111/2 = 000 term contributes
to the s1/2 order; the rest ofthe terms start their contribu-
tions at the s order. This s I/2-order contribution from
the 1112 = 000 term can be found from the work ofSzabo
and Zhou (24, 25); one has

-a2e-OU(a)f'[a; y~oo(s)]/fo[a; Aw0(s)]
=efd(I1 + aefshD + * ,( 12a)

rrdrad= LJ eU(r)J (12b)

Consequently,

[sk(s)]-1 = k(oo)- /47rD + ** , (13)
and

k(t) = k(oo)( 1 + k(o)/4rD+t) (14)

The steady-state rate constant k(oo) is given by Eq. 6

with s = 0. Eq. 14 belongs to a general form of the
asymptotic behavior of k(t).
The case where the interaction potential U(r) = 0 has

attracted special attention (18, 20, 21). The functions
](r; /uIt2(s)) in this case can be solved explicitly. They
are just the modified Bessel functions of the third kind,

fjr; ul12(s)] = K,+,12[AL,12(s)r]. (15)

Several approximations for the steady-state rate constant
ofthis case have been obtained previously. Eq. 6 with s =
0 andf1[r; j1,12(s)] given by Eq. 15 is equivalent to the
result ofTemkin and Yakobson (20) using a completely
different approach. They obtained kD(oo ) by finding the
mean total residence time ofthe reaction complex before
diffusion brings it apart, calculated from the Green func-
tion of the system in the absence of reaction. This ap-
proach was originated by Wilemski and Fixman (26)
and developed further by Doi (27).

Originally Solc and Stockmayer ( 18) proposed a qua-
sichemical scheme for this case. To understand this
scheme let us first look at the situation where one sphere
is uniformly reactive [u2(Y2) = 1 and F2 = 1]. Eq. 6 gives

k(oo) =
(Ka/D)- +2 F-' I

lo0

4irDaF,
(1 + 1/2)[cl(l)/27r]2

jijaKI+312(,uja)1Kj12(Ala) - 1

where /ij = [(Dil(l + 1 ))/D] l/2. Eq. 16 is the same as the
results of Solc and Stockmayer ( 18) and Szabo and co-
workers ( 16, 19). Fig. 2 illustrates the quasichemical
scheme for this situation. Translational diffusion (rate
constant k,) brings originally separated proteins 1 and
2+ ("+" signifies the uniform reactivity of protein 2)
together to form a pair 12 +. Depending on whether the
reactive part ofprotein 1 is in contact with protein 2, two
kinds of pairs, 1+2 + and 1-2+, are formed, the former
with rate constant Fk, and the latter (1 - F, )k,. They
can convert [rate constants k, and k', k, /k' = F, I( -

F,) J by means ofrotational diffusion. Only the favorably
oriented pairs 1+2 + can go on to form the product P( rate
constant kr). The rate constant k(oo ) for forming the
product is obtained by assuming that the intermediate
species 1+2 + and 1-2 + are under steady-state conditions.
The result is

kkxoo)= Af,k~o=(kr/k')' + A, (1a

where

F,+ k;/(k, +kV)lkJl(k, +k',) (1b

Eq. 1 7a is equivalent to Eq. 16 if one makes the identifi-
cations

and

I F 0' (1+ 1 12)[cl(l)I2 7]2
A = 2 F1 1 aK1+312(jija)/KI+,12(Ca) - 1

When protein 2 is also nonuniformly reactive, it can
be either 2 + or 2 -, resulting in four intermediate species.
The quasichemical scheme gives

k(oo)-= kFF2
(k~/kf'- + AA2 ,' (19a)

where

,=(1- A,)-'(1 - A2)' +(1 - A,)-'(A2 -F2)'

+ (1 -A2)'(A, -Fl)- . (19b)

Fk,Jtkt

(%P
,ki

(1 -FI)kt I

kt
( 1 8a) FIGURE 2 The quasichemical scheme when one protein is uniformly
( 18b) reactive.
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Solc and Stockmayer ( 18) suggested combining Eqs. 19
with the identifications of Eqs. 18 (similarly for A2) to
find the steady-state rate constant. Berg (21 ) further sim-
plified this approach of calculating k(oo) through ap-
proximating the sum in Eq. 18c (similarly for A2) by
elementary functions. If the reactive patch on the ith
protein is the region between -y, = 0 and y, = 6,, then
ci(1)/27r = [P_1.(cos 6,) - PI+I (cos bi) ] /(21 + 1). Berg
found that . 18c can be approximated by [t, =
(1 +Dia2/D)/2]:

A/F-= {i + cot (6,/2)
{, + sin (6i/2) cos (6,/2) -

(20)

To assess the validity of the quasichemical scheme, in
Fig. 3 we compare its steady-state rate-constant, given by
Eqs. 19 with Ai either from Eq. 18c or from Eq. 20, and
k(oo) of the constant-flux approximation, given by Eq.
6. The special functions involved were evaluated using
the codes provided in the book ofPress et al. (28). It can
be seen that the quasichemical scheme using both forms
of Ai is satisfactory. Thus, Eqs. 19-20 provide a simple
analytical formula for calculating the steady-state rate
constant when the interaction potential is zero.

It is interesting to look at the patch size dependence of
the rate coefficient in this case when both reactive
patches are very small. We see from Eq. 10 that the ini-
tial value k(0) is proportional to the fractional reactive
surface area 47ra2F1F2 = 4wra2 sin2 (6,/2) sin2 (62/2),
thus scales as 64, where 61I 62 ' 6. This is not the
behavior of the long-time steady-state rate constant. For
small patches Eqs. 19-20 give in the diffusion-controlled
limit

kD(oo)/47rDa = F102tan(62/2) + F241 tan (61/2). (21)
Consequently kD(ao) scales as 63. The rate constant is
much larger than what would be naively guessed from a
geometrical argument.
A potential for which the functions f1(r; A) can be

solved explicitly is the one arising from the Coulomb
interaction, AU(r) = Qir, under the condition t = 0.
This condition is satisfied when one considers the
steady-state situation ofa uniformly reactive protein dif-
fusing around an immobile nonuniformly reactive pro-
tein. The solution can be accomplished by making the
variable changesf1(r; 0) = explj3U(r)/2]g1(r)/rand r =
IQ I/2x. The results are

f1(r; 0) = eQ/2rf8I I QI rII+1,2(I QI/2r), (22)

where (7r/2x)"/2Il+l12(x) are the modified spherical

1

0.8
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8
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0
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0.8

i 0.6

9

0.4

0.2
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FIGURE 3 Comparison ofthe steady-state rate constant from the con-
stant-flux approximation (Eq. 6; solid curve) with the quasichemical
approximation ofSolc and Stockmayer (Eqs. 19 and 18c; dotted curve)
and Berg's further simplification (Eqs. 19 and 20; dashed curve). The
translational and rotational diffusion coefficients were calculated using
the Stokes-Einstein expressions, thus Da2/D = (3/4)(a2/a,)(l +
a2/al) and similarly for D2a2/D. (a) al/a2 = 1, (b) al/a2 = 10. The
two spheres have equal patches, 61 = 62 = 6, and the diffusion-con-
trolled limit is considered.

Bessel functions of the first kind. The steady-state rate
constant ofa uniformly reactive protein diffusing toward
an immobile nonuniformly reactive protein is [q =
Q/2a = f3U(a)/2]

(23)

Zhou Brownian dynamics study of protam-protein association kinetics

47rDaFie-Q/a
a/D)- + I F' [P1..(cos 61) - P,+1(cos 61)]2/(21 + 1)

'

4 1-0 IqI+3/2(lqI)/I,+1/2(lqI)+q+l+ 1
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This result in the diffusion-controlled limit (K -* oo)

has recently been tested (29). Eq. 23 also provides
insight to the effect of the interaction potential
when the reactive patch is small (6, < 1). In this limit
[P,_1(cos 61) - P1+1(cos 61)]2/(21 + 1) increases with 1

and terms with large 1 have more and more weight in
the summation over 1. For these terms the potential
has less and less effect. Consequently the denominator
of Eq. 23 becomes independent of the potential and the
rate constant with the potential is simply that without
the potential multiplied by the Boltzmann factor
exp [- #3U(a)]. To see this effect clearly we plot in Fig. 4
exp[#lU(a)]kD(oo)/47rDa against the patch size 6, at
contact potentials of 3U(a) = 4, 2, 0, -2, -4. For small
patch sizes all the curves coincide.
The above argument about the effect ofthe interaction

potential when the reactive patches are small is expected
to be a general one. Thus, for small patches, we have the
following formula for the steady-state rate constant
under an arbitrary centrosymmetric interaction poten-
tial U(r):

e6U(a)k(oo )/47rDa

[F1t2 tan (62/2) + F241 tan (bj/2)]F1F2Ka/D
Ft2 tan (62/2) + F2t, tan (65/2) + F1F2Ka/D

For larger patches the full summation of Eq. 6 will have
to be calculated. Reference 29 contains a simple method
for numerically finding the functionsf1[r; iq,112(s)I under
an arbitrary potential.
The reactivity in this section has been represented by a

radiation boundary condition, given in Eq. 3. It can be
represented in a different but equivalent manner (26).

0.2

8

0

10
43, (degree)

In this representation the boundary is completely reflect-
ing,

De-U(r) eU(r)P = 0, r = a.
or

(25)

Instead a sink term is added to the translational-rota-
tional diffusion equation,
op 2

a = DV. e-U(r)Ve#U(r)P + D - QiP

-KUI(y1)u2(Y2)6(r - a)P. (26)
The equivalence ofthe two representations can be easily
checked by integrating both sides ofEq. 26 over r from a
to a + e and letting -e 0. Ifwe represent the delta-func-
tion by the following step-function,

6(r - a) = I/e, a < r < a +ce;

0, a>a+e, (27)
the sink term in Eq. 26 has a simple interpretation.
When the interprotein distance is in the region [a, a + e]
and the prospective contact point is in both reactive
patches, i.e., when a reactive complex is formed, the pair
has a lifetime of K/cE. In the general protein-protein dif-
fusional association model to be discussed in the follow-
ing sections, both the restriction that the interaction po-
tential depends only on the interprotein distance and the
restriction that the reactive complex is formed only
when the spheres are at contact will be lifted.

INTERACTION POTENTIAL
We now describe the method for obtaining the interac-
tion potential between two spheres bearing point charges
and immersed in a salt solution. As the Poisson equation
governing the interiors ofthe spheres is linear and we will
restrict to the linearized Poisson-Boltzmann equation
governing the outside ofthe spheres S, and S2, the elec-
trostatic potential at any point is the sum of the contri-
butions of all the charges. So first we will deal with a
single point charge q inside the first sphere (see Fig. 5).
We will first derive from Green's theorem some integral
equations satisfied by the electrostatic potential V and
solve them under a particular basis set. The contribu-
tions from all the charges are then summed and the free
energy of the system is obtained from the electrostatic
potential. The interaction potential U between the two
spheres is just the free energy of the system relative to a
particular standard state.
From Green's theorem it is simple to show that the

electrostatic potential Vi = V(ri) inside the surface Si,
i = 1 or 2, satisfies the integral equation (30)

4rVi =
4irq(2 - i)
fi ri -rq

+ e,dS lI r ,I ng,-fn,-Vsi Ir r )' (28a)

Biophysic. Joum. Volume 64 June 1993

FIGURE 4 The rate constant, scaled by the contact potential, ofa uni-
formly reactive sphere diffusing toward an immobile patched sphere in
the Coulombic potential as a function ofthe patch size. The magnitude
of the contact potential, #U(a), is shown above the curves.
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FIGURE 5 The geometry oftwo charge-bearing spheres used in calcu-
lating their free energy.

Ai = V(r,,), g, = 'Eini VsiV(r.,i), (28b, c)

where ni is the unit vector along the normal ofthe surface
Si, and f,,, is the interior dielectric constant. The factor
2 - i is designed to give 1 for the first sphere and 0 for the
second sphere. When the position ri is moved onto the
surface S,, r, = ri,, we have the following self-consistent
relation forf:

27rf~ 47rq(2 -i)
Ein 1r i-r\I

+ rdS( <- ib flint - Si (29)d

Similarly, the electrostatic potential V0 = V(r0) outside
of S, + S2 satisfies the integral equation

2 e-Iro-errsiI)
--47V - dS(i -r5jg f~n~.V r -~° .As oto oi iMn s Iro - r, I)

(30)

where fou is the outside dielectric constant and X is the
Debye-Huckel screening length. The boundary condi-
tions for the electrostatic potential have been built into
Eq. 30. When the position ro is moved onto the surfaces
Sio, ro = 4j, we have two other self-consistent relations for
fi and g,:

2 r e rSi e~l/ erS-ril--27rf- = 2 f dS -; finig27rfj,f, J5dS OU rs" - rs, IAg in Vsi rs'i - rsi
(31)

A development similar to Eqs. 30 and 31 has appeared in
the context of colloidal particles (31 ). Eqs. 29 and 31
determine the surface potentials i; and their normal
derivatives gi. Once they are determined, Eqs. 28a can be
used to determine the potential in the interiors and Eq.
30 can be used to determine the potential in the outside.
To solve for Ji and gi, we expand them in terms of

spherical harmonics

(32)fi = film Yim(OiI(,i ),
I'm

and similarly for gi, where (tI,, (oi) express ni in spherical
coordinates. When they are inserted into Eqs. 29 and 31,
one obtains an infinite set of linear equations for the
expansion coefficients,

film - 2: AitmAj,,tm,, = Bim,
I,

(33)

where i' = 2 when i = 1 and i' = 1 when i = 2. The
constants are

(34a)

(34b)

(34c)

We have defined x, = ai/X,

him= (pq/a,)'Y* ,(tqpq), (35a)fo gal M

and

ci1i m = sin dti dpi1Y*,( , (pi)Yim(0i, (pi)

X K,1+1,2(Ri/X)/ i/X, (35b)

where (Pq,pAq, 'Pq) is the position ofcharge q in spherical
coordinates, R, = Yr2 + a? - 2raj cos i,, and cos 0, =
(r - a, cos 6i)/Ri. Note that Blum are the solutions that
Kirkwood (10) found for a single charge-bearing sphere,
as should be the case when the second sphere is absent.
When both spheres are present there are no analytical
solutions anymore. We obtainedfi, by truncating Eqs.
33 at appropriate orders and inverting the matrix in-
volved by LU decomposition (28). The coefficients
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Ai11m l1+1,2(xi)[( 1 + 1 + lEin1/Eou)K,+,12(xi) + XiKI-112(Xi)]

B. = KI+1/2(XI)hlm
Bum (1 + 1 + lEin/Eu)K,+112(x1) + XIKI-1.2(XI) '

B I C21+l+lm/I+,12(x2)h+(m

2l I+1/2(X2)[(l1 + I + l'EinlAOU)Kl+112(X2) + X2KI-112(X2)]
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Cillm in general could not be found in closed form and
were evaluated numerically. Some particular elements,
however, can be found analytically, e.g.,

Cio = f(21 + 1 )i7r/2I,+1/2(xi)KI+1/2(r/X)/ xir/X. (36)

They serve as checks of the numerical evaluations.
In terms offim, the potentials inside the spheres are

V(r1; q) = e - rqI

inr -i(ai/p )2rqI + ,(ri;q), (37a)

iI(r1; q) = A (pj/ai))'fmY1m(i,, (pi), (37b)
Im

where (pi, Oi, (pi) are the positions of ri in spherical coor-

dinates.
Suppose that there are Ni charges inside the ith sphere,

then aside from a constant, the total electrostatic poten-
tial at position r, is

2 N,

st'(r,) = z 0V(ri; q,). (38)

The free energy of the system is (10)

1 2 Ni
W = 2

,,
qn,4(rn,) (39)2i=Inj= I

The interaction potential U is the free energy of the sys-
tem relative to the state that the two spheres are at infi-
nite separation. In that state the free energy ofthe system
is the sum ofthe free energies W, ofthe two spheres; each
is the problem solved analytically by Kirkwood (refer-
ence 10; also see Eqs. 34b). Thus

U= W- WI - W2. (40)

ASSOCIATION RATE: THE CASE OF
CYTOCHROME c AND CYTOCHROME c
PEROXIDASE
In this section we continue the development of our pro-
tein-protein diffusional association model by letting the
proteins diffuse and react in the potential field calculated
in the last section. In the model there is some particular
subspace r in the configuration space of the system
where the system, termed reaction complex, can disap-
pear by conversion to the product, unless it is rescued by
diffusing out. Of course diffusion also plays the reverse
role by moving the system into that region.
The time-dependent rate coefficient k(t) ofthis model

is then found through Brownian dynamics simulations
by using the algorithm developed earlier by us ( 15 ). Orig-
inally this algorithm dealt only with the case of a uni-
formly reactive protein diffusing toward an immobile
nonuniformly reactive protein. According to this algo-
rithm, Brownian dynamics trajectories ofthe uniformly

reactive protein are launched from the reaction region r
and propagated. Every time it gets into the reaction re-
gion it has a certain lifetime T. If it stays longerthan T, its
trajectory is terminated. All the trajectories have a cutoff
time interval T,., to be propagated. When all the trajec-
tories are finished, the survival fraction of all the trajec-
tory at any time t < Tat gives k(t)/k(O), and k(O) can be
found analytically.

Extension of this algorithm to deal with the general
protein-protein diffusional association model is straight-
forward. The only complication is that, in addition to
the translational Brownian motion of the interprotein
displacement vector, the rotational Brownian motion of
the two proteins has to be included. This completes the
description of our protein-protein diffusional associa-
tion model and the calculation of its time-dependent
rate coefficient through Brownian dynamic simulations.
We now apply this method to the diffusional associa-

tion ofa model system ofcytochrome c and cytochrome
c peroxidase introduced by Northrup et al. (22). In this
system the proteins were axisymmetric spheres with
three charges on their symmetry axes and 100 reactive
patches around them. The radii of cytochrome c and
cytochrome c peroxidase were 14 and 21 A, respectively.
These and other relevant parameters of the system are
listed in Table 1. We make one change from the model of
Northrup et al. They put the noncentral charges 1.0 A
beneath the protein surfaces. These charges are shifted
further to the protein centers to moderate somewhat the
effects ofthe surface charges, now 9.3 and 6.2 A, respec-
tively, beneath the surfaces of cytochrome c and cy-
tochrome c peroxidase.

TABLE 1 Parameters of the charge-bearing sphere model of
the cytochrome c and cytochrome c peroxidase system

Cytochrome c
Parameters peroxidase Cytochrome c

Protein radii ai, A 21 14
Translational diffusion

constant D* 2.58 x 10-2 A/ps
Rotational diffusion

constants Di*, ps-1 1.76 x 10-5 5.9 X IO'
Central charges, e -12 +8
Surface charges, et T2.21 ±2.29
Depth of surface

charges, A 9.3 6.2
Reaction region

thickness e 0.35 A
Reactive patch

sizes 6,, deg 10 10
Lifetime of

reaction complex X 47.5 ps

* All the diffusion constants were calculated using the Stokes-Einstein
expressions with the temperature at 250C and a viscosity of 1.0 cP.
* The surface charges of each protein are located on the symmetry axis
of the protein, on opposite sides ofthe center, and have equal distance
to the center. The first sign refers to the charge at the front of the
reactive patch, the second sign refers to the charge at the back.
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Northrup et al. (22) treated the electrostatics of the
system by the Coulomb-type charge-charge interac-
tions, each modified by a Debye-Huckel screening.
With the method ofthe last section we can treat the elec-
trostatics of this system realistically, taking into account
the low dielectric constant of both protein interiors and
the screening of the salt. For the protein interiors we
choose a dielectric constant fsi = 4.0; for the solvent we
choose EOU = 78.5. Fig. 6 shows a plot of the interaction
potential as a function ofthe interprotein distance when
the protein axes are lined with the interprotein displace-
ment vector at ionic strength I = 0. 16m, corresponding
to a Debye screening length X = 3.04I-12 = 7.6 A. The
contact potential is -3.9kBT, about -2.3 kcal/mol at
room temperature.

Besides the treatment of the electrostatic interaction,
our method for studying the diffusional association of
this model system of cytochrome c and cytochrome c

peroxidase has a difference in the reaction criterion.
While Northrup et al. (22) used an absorbing boundary
condition (K oo limit ofthe radiation boundary condi-
tion) in treating the reaction, as described in the begin-
ning of this section we use a finite region in which the
reaction complex has a finite lifetime T. This method is
more general in the sense that by making the reaction
region thinner and thinner as to collapse to the boundary
r = a and reducing the lifetime r accordingly, we get the
radiation and the absorbing boundary conditions. It can
deal with precisely the bond-formation criterion of pro-
tein-protein association recently proposed by Northup
and Erickson (32). Specifically, we choose the following
reaction region

0

Z)-2

le 2. e -.29e

4

40 50 60
r (A)

r: rE(a,a+E), yiE(O,6i). (41)

The thickness e of the region is assigned to be 102a =

0.35 A, and the sizes bi ofboth patches are assigned to be
100. As for the lifetime of the reaction complex, it is
chosen to be T = 47.5 ps. This would give Ka = Ea/r 10
times the diffusion constant D. This choice of the reac-

tion region, combined with the above choice of the sites
ofthe surface charges, gives roughly the same diffusional
association rate constant as found in experiments (23) at
the ionic strength I = 0.16 m (see below).
The diffusion-reaction equation of the model system

now can be written down. This system differs from the
one described by Eq. 26 in two respects. First, the inter-
action potential U now depends not only on the magni-
tude r of the interprotein displacement but also on its
orientation e and the orientations el and e2 ofthe spheres
as well. Second, the reaction region r now has a finite
thickness. Taking both factors into account, we obtain

ap = DV.e-UVe'UP
O9t

2

+ Di Qi * e-9UeieuP -T -1UrP, (42)
i=

where Ur is a step-function that is 1 when the system is in
the reaction region r and 0 otherwise. If we use x to
denote the configuration (r, e,, e2) and dx = drde, de2
to denote its volume element, the time-dependent rate
coefficient of this system is (24)

k(t) = Tr f1 dxP(x, t).
c=r

(43)

Its initial value is readily obtained, as at t = 0, P starts
from the equilibrium distribution Peq(x) = (47r)-2 x

exp [-fU(x)] (see Appendix A); thus,

k(O) = f-1 dxPq(x)
xer

= T-1 dx(4,x)-2e-fu(x). (44)
xE-r

However, the whole time dependence of k(t) is not so

simple. It can be found by expressing k(t) in terms of
survival probabilities, which are obtainable through
Brownian dynamics simulations. Reference 15 contains
the details of this procedure when one protein is immo-
bile and the other is uniformly reactive. Here we do this
for the more general situation.
The procedure evolves around the Green function

G(x, t xO, 0) of Eq. 42. It satisfies the initial condition

G(x, OIxo, 0) = 6(x - xo) (45)

and the detailed balance condition (33)

G(x, tIxo, O)Peq(xo) = G(xo, tIx, O)P~e(x). (46)

Brownian dynamics study of protein-protein association kinetics 1719

FIGURE 6 The interaction potential in the model system of cy-
tochrome c and cytochrome c peroxidase as a function ofthe interpro-
tein separation when the proteins have their axes lined along the dis-
placement vector (as shown in the inset). The ionic strength is I = 0.16
m.
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The distribution function P(x, t) is obtained from the

The distribution function P(x, t) is obtained from the
Green function through

P(x, t) = dxoG(x, tIxO, O)Piq(xo). (47)

The survival probability S(t xO) of the system starting
from the configuration xO is just the integration of
G(x, t xO, 0) over the configuration space,

S(tUxO) = dxG(x, tIxo, 0). (48)

Comparing Eqs. 46-48, one finds

P(xO, t) = S(tIxO)Peq(xO). (49)

Consequently we can express k(t) in terms of survival
probabilities,

k(t)/k(O)= dxoS(tIxo)p(xo), (50a)
xoer

where the normalized distribution p(xo) is

P(XO) = Peq(xo) dxoPeq(xo)

= e-u(XO) dxoeu(xo). (50b)

Eq. 50a has a simple interpretation. If one starts trajec-
tories from the distribution p(xo) and propagates them,
the survival fraction at any time t gives k(t)/k(O).
We now deal with the propagation of the Brownian

dynamics trajectories. Appendix B derives algorithms
for picking configurations from the short-time Green
function GO(x, At xO, 0) in the absence of reaction (i.e.,
X -4 0o). They are

r = ro- (fVU)DAt + CF2DAt, (51a)

e1=eio-[2e10- 2eiO + Aau _eoi -aU )eioJDiAt

+ (1- oeiO)Cif22DiAt, (51b)

where 1 is the unit matrix and C and Ci are vectors of
Gaussian random numbers with the following properties

<C> = 0, (52a)

KCCT> =I. (52b)

At short times the Green functions in the presence and
absence of reaction are related by (34)

G(x, At xO, 0) = e-I[ur(x)+ur(xo)J/2 Go(x, At I xO, 0). (53)

Thus reaction is taken into account by terminating a
fraction 1 - exp{-At[ur(x) + ur(xo)]/2T} of the
nonreacting trajectories at each step. Specifically, at each
step a new configuration x = (r, el, e2) is generated using
Eqs. 51. Then a random number ]l uniformly distrib-

uted between 0 and 1 is generated. The new configura-
tion is accepted and the trajectory is propagated forward
if JR < exp{ - At[u1(x) + uAxO)]/2T} ; otherwise the tra-
jectory is terminated.
The derivatives OU/Ox in Eqs. 51 have components

along x = (r, el, e2) involving OU/IR, 9U/O cos -yi, and
OU/c4912, 012 = 02 - 01. We broke r between a and 2a
into 10 segments, cosyibetween -1 and 1 into 20 pieces,
and 112 between 0 and 2w into 20 pieces. This results in
8 x 104 cells. At the center of each cell, we calculated
OUIOR, OUId cos y,, and OU/c9112 using central differ-
ences. Subsequently, the components of OU/Ox along
x = (r, el, e2) were stored as a table. Tabulating the
derivatives dU/lx in the 8 X I04 cells took 10 h on a
Convex C240 computer. In the course of the Brownian
dynamics simulations, the cell corresponding to the con-
figuration at each step was located and the components
of OU/Ox at the cell center were looked up. When multi-
plied by the unit vectors e and e,, they gave the deriva-
tives OU/Nx at that step. The derivatives beyond r = 2a
were assumed to be 0. This does not pose a severe ap-
proximation for two reasons. First, because of the salt
screening the interaction potential at an interprotein sep-
aration of r = 2a is reduced dramatically (see Fig. 6).
Furthermore, within the cutofftime interval Tagthe tra-

jectories, started near r = a, rarely venture as far as
r = 2a.
To find the time-dependent rate coefficient of the cy-

tochrome c and cytochrome c peroxidase model system,
we started J = 4000 configurations with r at a, cos yi
uniformly distributed between cos bi and 1, and k12 uni-
formly distributed between 0 and 2X. The average Boltz-
mann factor

Ke-U(xo))a = dxoe-u(xO)b(rO - a)

dxob(ro - a) (54)xEer
of these configurations is 145.9, 46.4, and 18.8, respec-
tively, at ionic strengths of I = 0.1, 0.16, and 0.25 m.
Another 4000 configurations were started at r = a + e.

Their average Boltzmann factor <e-U(XO) >a+e is 129.9,
41.9, and 17.2, respectively, for these ionic strengths.
These configurations were then propagated using the fol-
lowing time steps:

Att=2.37X 10-2ps, a<r<a+e;
2.37 x 10-2 ps + [(r-e)/a-112 X 23.7 ps,

r > a + e.

For comparison, trajectories when the interaction poten-
tial was turned off (i.e., I oc) were also generated
using the above protocol, with the exception that the
coefficient ofthe distance-dependent part ofthe step size
increased from 23.7 to 237 ps. The boundary r = a was
reflecting and was treated in the following manner.
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Whenever a configuration led to collision, i.e., r < a, that
configuration was accepted as the new one and propaga-
tion was started from there again.

All trajectories were terminated either when they were
stopped due to reaction or when they reached a cutoff
time interval T,,, = 187 ps. 4000 trajectories in the pres-
ence ofthe interaction potential took -4 h on a Convex
C240 computer. In the absence ofthe interaction poten-
tial they took - 20 min. The weighted survival fractions
of these trajectories are

I J

Sb(t) =- 2 u(tj- t)e 6U(XO)/Ke-fU(xo))b
b= a or a+ E, (55)

where x0j and tj are, respectively, the initial configuration
and the lifetime of the jth trajectory, and u(tj - t) is a

step function that is 1 when 0 < t < tj and 0 otherwise.
Comparing Eqs. 50 and 55, one finds that the time-de-
pendent rate coefficient of the cytochrome c and cy-
tochrome c peroxidase model system is

k(t)/k(O)

Ke-fU(x0)>aSa(t) + (1 + c/a)2Kee u(Xo))a+,Sa+,(t) (56)

Ke #U(XO) >a +(1 + E /a )2Ke-U(XO) >a+,

Its initial value is

k(O) = 47rKa2 sin2 (6l/2) sin2 (62/2)
X [Ke- u(Xo) )a + ( I + E/a)2Ke- U(x)X>a+J]2, (57)

where K = C/T. The initial rate coefficient is 5.6 X 108,

1.8 X 108, 7.3 X 107, and 4.0 X 106 M-'s-, respectively,
at ionic strengths of 0.1, 0.16, and 0.25 m and infinity.
The time-dependent rate coefficient scaled by its ini-

tial value at these ionic strengths is plotted in Fig. 7. Also
plotted in this figure is the radiation boundary limit (i.e.,
e -* 0 but K = I/T constant) of k(t)/k(O) in the absence
of the interaction potential. This was obtained by La-
place inverting Eq. 6 using the algorithm of Stehfest
(35). The slight difference between k(t)/k(O) under e =
10 -2a and the radiation boundary limit shows the effect
of the thickness of the reaction region. One striking fea-
ture of this plot is that even though k(O) changes by two
orders of magnitudes due to the change of the Boltz-
mann factor during this range of ionic strengths, k(t)/
k(O) changes very little in the entire time interval simu-
lated. This is reminiscent of what was found previously
for a centrosymmetric potential. When the reactive
patches that lead to the reaction complex are small, the
effect of the interaction potential is simply to scale the
association rate coefficient by the Boltzmann factor
averaged over the configurations of the reactive com-
plex.
To find the steady-state rate constant k(oo ), we fit the

long-time tail ofk(t)/ k(O) to a function ofthe form (see
reference 15 and Eq. 14)

0.9
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FIGURE 7 The time-dependent rate coefficient, scaled by its initial
value, at four ionic strengths. The dashed curve shows the rate coeffi-
cient in the radiation boundary limit when the ionic strength is infinite.

k(t)/k(O) = a, + a2(a2/Dt) 1/2 (58)

The intercept a, of this fit gives k(oo )/k(O). The results
are, at ionic strengths of 0. 1, 0. 16, and 0.25 m and infin-
ity, k(oo)/k(O) = 0.63, 0.64, 0.66, and 0.73, respec-

tively. The last number in the radiation boundary limit is
0.71 according to Eq. 6. Consequently, the steady-state
rate constants at the three finite ionic strengths are 3.5 X
108, 1.2 X 108, and 4.8 X 107 M -1s-. They are com-

pared with the experimental results ofKang et al. (23) in
Fig. 8. Our calculations are closer to the experimental
results than the studies ofNorthrup et al. using either the
charge-embedded sphere model (22) or their more so-

phisticated model (8). The experimental ionic strength
dependence of the steady-state rate constant is essen-

tially reproduced. Compared with the rate constant
2.9 X 106 M-'s-' in the absence of the potential, the
electrostatic interaction between cytochrome c and cy-
tochrome c peroxidase enhances the rate by one to two
orders of magnitude at these ionic strengths.

DISCUSSION
We have presented a unified model for protein-protein
association processes that are under the influences of
electrostatic interaction and diffusion. The proteins are
modeled as spheres that bear point charges and undergo
translational and rotational Brownian motion. Before as-
sociation can occur the two spheres have to be aligned
properly to form a reaction complex via diffusion. The
reaction complex can either go on to form the product or
it can dissociate into the separate reactants through dif-
fusion. The electrostatic interaction, like diffusion, influ-
ences every step except the one that brings the reaction
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FIGURE 8 Comparison of the simulated (circles
(squares) ionic strength dependence ofthe diffusio
constant between cytochrome c and cytochrome c

complex into the product. The interact
obtained by extending the Kirkwood-'

charge mutation the average Boltzmann factor decreases
from 44.6 to 4.84 at I = 0.16 m. This would result in a

factor of9.2 decrease in the association rate constant. On
the other hand, for the back charge mutation the average
Boltzmann factor changes to 40.2, virtually the same as

for the native system. This explains why mutations in the
interface of the reaction complex have strong influences
on the association rate constant, whereas those away
from the interface have minimal effects, as found experi-
mentally by Kang et al. (23) and by Corin et al. (36). It
comes about because the former mutations change the
interaction potential of the reaction complex signifi-
cantly and the latter ones do not.

After introducing the charge-embedded sphere model
for the cytochrome c and cytochrome c peroxidase sys-

Lww...L..I, tem, Northrup et al. (8) considered a much more sophis-
0.5 0.6 ticated model. In this model the electrostatic potential

around the irregularly shaped cytochrome c peroxidase
was calculated, taking into account solvent ionic screen-

ing. However, cytochrome c was treated as a collection of
and experimental test charges. In reality it is a low dielectric region that

)nal association rate

peroxidase. excludes ions. To see the effect ofthis approximation, let

us compare the interaction potential in the charge-em-
bedded sphere model when treating cytochrome c either
as a charge-bearing sphere with low dielectric constant or
simply as three test charges. For example, the interaction

ion potential is energy between sphere 1 bearing charge q in Fig. 5 and a

?anford protein test charge qt on the e axis and a distance r away is
model to two charge-embedded spheres and solving the
consequent equations under a particular basis set. The
time-dependent association rate coefficient is then ob-
tained through Brownian dynamics simulations. This
modeling method is applied to the cytochrome c and
cytochrome c peroxidase association process and the re-

sults reproduce the experimental dependence ofthe asso-

ciation rate constant on the solution ionic strength.
Through both simulations of the cytochrome c and

cytochrome c peroxidase system and analytical deriva-
tions in the case that the interaction potential is centro-
symmetric, we obtain the following remarkable result.
When the reactive patches that lead to the reaction com-
plex are small, the effect of the interaction potential is
simply to scale the association rate constant by the Boltz-
mann factor averaged over the configuration space r of
the reaction complex, <e)U.>r This result allows ready
estimate ofthe association rate constant when a different
potential field is present. In particular, we can use it to
assess the effect of charge mutations in the proteins.
Kang et al. (23) and recently Corin et al. (36) used enzy-
matic assays to study this effect in the cytochrome c and
cytochrome c peroxidase association process. In the ex-

periments of Corin et al. aspartic acid residues at three
locations of cytochrome c peroxidase were indepen-
dently mutated into lysines. To model these mutations
we increased the two surface charges in the cytochrome c

peroxidase sphere model at the front and the back ofthe
reactive patch by two proton charges. For the front

qtq K1+2(r/X)
foual l-0 F;l;-

X (21+ 1)(Pqlal)'PI(cos Oq)
( 1 + 1 + lEi1/'EO)K1+112(xl) + X1K.-I.2(XI) (59)

This is a result of Kirkwood (10) and can be obtained
from the equations of the section on interaction poten-
tial by making the test charge as a charge-embedded
sphere with radius approaching zero. In Fig. 9 we com-

pare the interaction energy using this treatment of cy-
tochrome c with that of Fig. 6, where cytochrome c is
treated realistically. Significant deviation is seen. In this
context, we note that the mere presence ofsphere modi-

fies the selfenergy ofthe test charge. The contribution to
the interaction energy due to this modification is

2

Usm =2e r

(21 + 1)[K1+112(r/X)]2
0

X[( 1 - fi/'E.)lI1+1/2(x1) + X1II+312(X1)]
1=0 (1 + 1 + 1in/ ou)KI+1/2(Xi) + XIKI-112(X))

For example, for an ion that bears unit charge e and has a
radius of 1.5 A in contact with a protein that has a radius
of 30 A, this contribution is 0.62kBT at I = 0. 16 m. This
is comparable to the interaction energy between the ion
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FIGURE 9 Comparison of the interaction potential when cytochrome
c is treated as a region of low dielectric constant and excluding ions
(solid curve) or as three test charges (dashed curve). The solid curve is
the same as in Fig. 6.

and a central charge of 1Oe in the protein, which is
0.37kBT from Eq. 59. For smaller ions or ions that bear
more charges Usm is even larger. The consequence of
neglecting this contribution in studying ionic ligand
binding to proteins (e.g., in reference 4) has to be as-

sessed.
It is interesting to make a connection between our ap-

proach to the protein-protein diffusional association
rate constant and the approach ofDoi (27) and Temkin
and Yakobson (20). Both approaches can be cast into
the following simple chemical scheme

4k
separate reactants k4 reaction complex -- product. (61)

The association rate constant of the scheme is easily ob-

tained by making the steady-state approximation for the
reaction complex,

k(ao) = k + T-1 (62)

Noting that k,/kk1 = fXer dxPeq(x) = Ke-U>rvr where
r = (47r)2 fx-r dx is the volume of the reaction region
r, we can rearrange Eq. 62 into the form

the interaction potential is absent. In our approach we
simulate the frequent interconversion between the sepa-
rate reactants and the reaction complex and the occa-
sional conversion of the reaction complex to the prod-
uct. The association rate constant is obtained from the
distribution of the lifetimes of the reactants. A unique
feature ofour approach is that not only is the steady-state
rate constant found, so is the whole time dependence of
the association rate coefficient.
According to the chemical scheme, if k-1 > r-1 we

obtain k(oo ) Ke-"U>rvr -l= k(O), a quantity that is

proportional to the average Boltzmann factor <e-U>,
but independent ofdiffusion. On the other hand, ifk-1 <
-Iwe obtain k(oo ) < e-U>rvIrk-I, the diffusion-con-

trolled rate constant kD(oo). Ifwe still want k(oo) to be
proportional to the average Boltzmann factor Ke-U>r,
kL1 has to be insensitive to the presence ofthe interaction
potential. Specific calculations verify that this is indeed
the case when the reaction region r is small (see, e.g., Eq.
23). In the context of the dimer assembly ofhuman he-
moglobin, Mrabet et al. (37) proposed a chemical
scheme somewhat different from Eq. 61, but arrived
at the same conclusion about the scaling of k(oo)
with Ke-U>r.
Up to this point we have considered only the situation

that the conversion from the reaction complex to the
product is irreversible. However, reversibility can be eas-

ily taken into account in our model. Suppose that the
product [P] is converted into the reaction complex with
a rate constant (rp) 1; then the rate equation (38)

dtl] k(t)
dt {-k(0)[1] [2] + -r'1[P]}I (64)

describes the reversible situation to a good approxima-
tion. As usual we have assumed that the concentration
2 ] ofone protein is much higher than the concentration

[1 ] of the other. Hence, once we obtain the time-depen-
dent rate coefficient k(t) forthe irreversible situation, we
can put it into Eq. 64 to study the effect of reversibility.
The main shortcoming of our protein-protein diffu-

sional association model is in the use ofspheres to repre-

sent irregularly shaped proteins. This is necessitated by
the ability to solve the Poisson-Boltzmann equation.
Despite this shortcoming it has produced fruitful results,
as summarized above. The consequence ofputting realis-
tic charge distributions rather than three representative
charges in the model will be studied and the possibility of
using nonspherical models will be explored in the future.

k(o) = <e-U>r rkI+VrT I (63)

The inverse of k_, in the chemical scheme of Eq. 61
can be identified as the mean total residence time of the
reaction complex against diffusion. This is exactly the
quantity introduced by Doi (27) and calculated by Tem-
kin and Yakobson (20) for two patched spheres when

APPENDIX A
In this appendix we use the constant-flux approximation to derive the
time-dependent rate coefficient oftwo patched spheres that are under-
going translational and rotational diffusion under the influence of a
centrosymmetric interaction potential.
The relevant problem to solve is Eqs. 1-2 subject to the boundary

condition of Eq. 3 on the spherical surface r = a. Initially the distribu-
tion function P = P(re, el, e2, t) takes the equilibrium distribution
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P(t = 0) = Peq = (47)-2e-U(r).

At infinite separation, P stays at its initial value,

P (r = oo ) = (4wr) 2.

(Al)
= K de de, de2u1('y)u2(y2)P(r = a). (A8)

To make use of Eqs. A7 and A8, we need to express ui(-yi) in terms of
(A2) spherical harmonics of e, el, and e2. They are (39)

It can be easily checked that P~, is a particular solution that satisfies
both the initial condition (Eq. Al) and the outer boundary condition
(Eq. A2). By making

p = Peq + PI, (A3)

we have in P1 a solution that has zero initial and outer boundary values.
The inner boundary condition (Eq. 3) is ofcourse satisfied by Pe, + PI.
To proceed we make the ansatz

PI = e- PU(r) z A(r, t; 1m11m112m2)
1m11m112m2

X YIm(O, ()YiimI(Ol, Il)Yl2m2(02, 02)- (A4)

Inserting this into Eqs. 1-2 and taking the Laplace transform, we ob-

tain

ui(yi) = (-l)i-'I'Ci(li)Yzm,(O, O)Yjm,(Oji, Xi), (A9)Mimi~~~~~~j
where

ci(11) = 2w u,(ey)P15(cos yi) sin yidyi. (A10)

Now, multiplying both sides of Eq. A7 by Y* (O, 4) x

Y1m1(0I )Ym*2m2(02,' 2) and integrating over e, el, and e2 by using Eq.
A9, we find

ais_(- )2Q(S)l(11)C2(2) Bl*mllMll12M2- sDfz[a; gll2(s)] lMll12M2' (Al 1)

The B coefficients are

- (/4212(S) + 1(1 + I O

where 1,1,2(s) = [(D111(l + 1) + D212(12 + 1) + s)/D]"/2. Let4[r;
ll,12(s) ] be the regular solution ofEq. A5; then the Laplace transform of

P1 can be written as

PI = e-U z alml,,mI,2m2Ji[r; A1,12(s)]
1m11m112m2

X Yim(O, 4)YijmI(Oi, (i)Yi2m2(02, 02) (A6)

The crucial step to determine the remaining set of constants is to
approximate the radiation boundary condition in Eq. 3 by requiring
that the flux is a constant over the reactive patch,

De-U1 [ d e ()PI = u1('Y)u2(y2)e-U(a) Q(), (A7)
r-a

and that the radiation boundary condition is satisfied on the average,

I de de, de2u1(y )u2(Y2)e-U(a) Q(S)
J JJ S

BiMdmui2m2 = deYim(6, 0)YimI(0, 0k)Yi2m2(O, 4), (A12)

or, in terms of 3-] symbols (39),

r(21,+ 1)(212+ 1)(21+ l)]1/2
R = .-+BlmllMl 2M2 41w

(0 0 0)(Ml M2 m) A3

On the other hand, Eq. A8 can be evaluated to give

47rQ(s)cl(O)c2(0) = - c1(O)c2(O)
4wr

+ KS z aimiimui2m2tf[a; It1112(s)]
1m11m112m2

X (-l)l2Ci(li)C2(12)BImIImIi2m2M (A14)

From Eqs. Al and A 14, we obtain

Q(s) = DKC1(O)c2(0)/47r
f,[l~ma;g[,1II12(S5) ][ cl( Al)C2(12 ) ]2 ~mIm1 247rDc,(0)c2(0) K 2: fIa B mimuiMI2M2l

fm~1m f'[a; ul, 12(s)]
The sums over m, mi, and M2 can be evaluated, leading to

Q(s) = DKC1(0)c2(0)/4w
4wDc1 (0)c2(0) - K z f1 [a; /i/h2(5)] [C1 (lI )c2(12)]2C1112

where
C1112 (214 + 1)(212 + 1)(21+ 1) (1 12 102

As the time-dependent rate coefficient is just the total flux across the
boundary r = a, this finally gives the expression in Eq. 6.

described by Eq. 42 with the sink term absent, consists oftwo spheres
undergoing translational and rotational diffusion that have an inter-
sphere displacement r and have unit vectors el and e2 attached. The
system is under the influence of an interaction potential that depends
on r, el, and e2-
To propagate the system in x = (r, el, e2) space in small time steps,

one needs to pick configurations from the short-time Green function of
the equation

at (Bla)
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(A5)

(A15)

(A16)

APPENDIX B
In this appendix we derive formulas for propagating a Brownian system
in its configuration space x = (r, el, e2) in small time steps. The system,
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2

Ltr =DV*e-lUV efu+ z Di1i*e-,uQieau. (Bib)
i=1

To this end we note that the short-time Green function of the general
equation of the form

a9G0 a aa4aGo =-_-7 . A(x)GO + d d :B(x)Go (B2)

is (40)

Go(x, At I xo, 0)

=[1- sA(xo)At

+
a a

:B(xo)At + O(At2)J6(x - xO) (B3a)

exp[- + * A(xo)At

+ -9a :B(xo)At 6(x - xO). (B3b)ax ax]

If the inverse ofthe matrix B(xo) exists, Eq. B3b reduces to (N: dimen-
sion of x)

Go(x, AtIxo, 0) = (47r/At)-NI2{det [B(xo)] } 1/2

x exp{-[x - xo - A(Xo)At]T. [B(xo)]-'
X [x -xo- A(xo)At]/(4At)}. (B4)

To order At all the three distributions of Eqs. B3a-4 are produced by
generating x by

x = xo + A(xo)At +C1i, (B5)
where C is a vector of Gaussian random numbers with the following
properties:

<C> = 0, (B6a)

(CCT> = B(xo). (B6b)

Note that Eqs. B5-6b propagate the system described by Eq. B2 even
when the inverse of B(xo) does not exist.
The operator L,r of Eq. B Ib can be cast into the form in Eq. B2,

£ Ir - d(Df VU) +
a

dy D1

+
T
[Di

a

* (e..ei)o- - e
au

ei + 2ei
= aej c ei e~ aei)

+ Di
a a- :[(ei- ei)1 - e1ej], (B7)

where 1 is the unit matrix. Consequently, the formulas for generating r
and ei are

r = rO- (VU)DAt + CF/2DAt, (B8a)

aut au~
ei = eo - [2eio + 3 a _ (e,o0 a ) ejo Di2At

+ (1 - eiOeiO)Ci2DiAt, (B8b)

where C and Ci are C of Eqs. B6 with B(xo) identified with the unit
matrix. To ensure unity of e_, they have to be normalized after each
step. Eq. B8a for translational diffusion has been derived previously by

Ermak and McCammon (41) . The rotational diffusion algorithm, Eq.
B8b, appears to be new. It has been used without derivation in studying
the dielectric properties of a Brownian dipole lattice just recently (42).

I thank Attila Szabo and Robert Zwanzig for helpful discussions.
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