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ABSTRACT Several laboratories have measured lateral diffusion of single particles on the cell surface, and these measurements may
reveal an otherwise inaccessible level of submicroscopic organization of cell membranes. Pitfalls in the interpretation of these experi-
ments are analyzed. Random walks in unobstructed systems show structure that could be interpreted as free diffusion, obstructed
diffusion, directed motion, or trapping in finite domains. To interpret observed trajectories correctly, one must consider not only the
trajectories themselves but also the probabilities of occurrence of various trajectories. Measures of the asymmetry of obstructed and
unobstructed random walks are calculated, and probabilities are evaluated for random trajectories that resemble either directed motion
or diffusion in a bounded region.

INTRODUCTION

New techniques of microscopy have made it possible to
observe the motion of individual proteins or small clus-
ters of lipids on the cell surface (2, 9, 11, 18, 19, 25, 28,
43). These techniques provide a powerful tool to charac-
terize submicroscopic domain structure in biological
membranes. In these experiments, proteins or lipids are
labeled with a highly fluorescent label or with colloidal
gold microspheres. Computer-enhanced video micros-
copy is used to track the trajectory ofindividual particles
as they move on the cell surface. The time resolution is
typically 1/30 s and the spatial resolution is 5-50 nm.
The shape ofthe trajectories suggests various biologically
important processes, such as binding to immobile spe-
cies, free diffusion, hindered diffusion, directed trans-
port, and trapping of particles in bounded microdo-
mains. Transitions between these types of motion are
observed.

Unfortunately these trajectories can also occur, with
distressingly high probability, in random walks in an un-
obstructed system. To interpret the observed trajecto-
ries, one must consider not only the trajectories them-
selves but also the probability of occurrence of various
trajectories in obstructed and unobstructed systems. It is
necessary to use the proper control (5, 6): a two-dimen-
sional unobstructed random walk. This problem has
been recognized in the literature, but there have been few
tools available to solve it. The general problem is compli-
cated, so this paper will focus on two special cases, di-
rected transport, and trapping in bounded domains.
These special cases are biologically significant. Identi-

fying directed motion is essential in studies ofthe mecha-
nism of cellular locomotion (25) and the interaction of
membrane proteins with the cytoskeleton (31). Trap-
ping in domains may have a major influence on reaction
kinetics (23, 26, 27), and equilibrium (48). Diffusion
may be restricted by gel-phase lipids (49), the cytoskele-
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ton (2, 9, 47), the membrane skeleton (41 ), or the extra-
cellular matrix ( 5 1 ); any of these obstacles could trap
mobile species in domains. Domain structure in mem-
branes was recently reviewed ( 10, 22).

Little work has appeared in the biophysics literature
on the theory of single-particle diffusion measurements,
except for the recent paper by Qian et al. (35), empha-
sizing the statistical accuracy of the measurements.
Some work on the shape of random walks has appeared
in the physics literature, often emphasizing random
walks in high dimensions (38). Much work has ap-
peared in the polymer literature on random walks and
self-avoiding walks as models of polymer conformation
(4, 17, 44, 45). Little, if any, of this work has included
the effects of obstructions. The work presented here is
inspired in part by the work ofBookstein (5, 6) pointing
out that one-dimensional random walks are the proper
control for time sequences of morphological change in
evolution. The theory ofrandom walks was reviewed by
Weiss and Rubin (50).
The paper is organized as follows. First, some exam-

ples of unobstructed random walks are given, to show
that there is in fact a problem. Next, the displacement of
a diffusing particle is characterized by histograms of the
displacement at fixed times. Then, two parameters are
used to show the asymmetry of random walks. Finally,
methods are proposed to determine whether an observed
trajectory is a result of directed motion or diffusion, and
whether a diffusing particle is in a bounded region. Both
unobstructed and obstructed random walks are consid-
ered. The obstacles consist of random points, cluster-
cluster aggregates, and point obstacles arranged to pro-
duce a bounded domain, usually hexagonal.

METHODS
Diffusion calculations are carried out as described earlier (39, 42). A
256 X 256 triangular lattice is used, with periodic boundary conditions.
Point obstacles are placed on the lattice at random. A tracer is placed at
a random unblocked point on the lattice, and carries out a random
walk on unobstructed lattice sites. The calculation is repeated for
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given configuration of obstacles, and different random
configurations of obstacles at the prescribed area frac-
tion. This averaging yields the mean-square displace-
ment Kr2> as a function of t. In the usual Monte Carlo
calculations ( 12, 34, 39, 40, 42), the diffusion coefficient
is obtained from the mean-square displacement, but
here we focus on individual trajectories and the probabil-
ity of their occurrence.

At low concentrations of obstacles, the mean-square

displacement is

(r2> = 4Dt. (1)
t

FIGURE 1 Mean-square displacement <r2> as a function oftime t for
different types of motion (40). This is based in part on a figure of
Sheetz et al. (43). The protein diffusion coefficient is taken to be Do =
3 x 10"- cm2/s, and the velocity v = 20 nm/s, as in reference 43. For a
sampling time T = 33 ms, then, e = 20 nm from Eq. 3c. In dimensional
units, the range of the x-axis is 33 s and that of the y-axis, 0.040 Am'.
(Curve a) Random walk on a triangular lattice with no obstructions.
(Curve b) Random walk with an area fraction ofrandom point obsta-
cles of C = 0.3. (Curve c) Random walk with an area fraction of ran-
dom point obstacles ofC = 0.65, above the percolation threshold of0.5
for a triangular lattice. (Curve d) Directed motion, for which
(r2> = V2t2.

various starting positions of the tracer within a given configuration of
obstacles, and various configurations of obstacles at the same concen-

tration. Typically 100 different configurations of obstacles were used,
and 1000 different tracers within each configuration of obstacles. At
each time step, the position of the tracer is obtained, and the sums

required for the radius of gyration tensor are recorded. At prescribed
times, histograms ofthe displacement and the largest displacement are

compiled, the radius ofgyration tensor is diagonalized, and histograms
of the asymmetry parameters are compiled. Error limits for the histo-
grams are discussed in the captions. For values of the diffusion coeffi-
cient D*, independent runs gave results reproducible to 1.5% in the
worst case, and 0.2-0.5% typically.

Cluster-cluster aggregates are constructed by standard methods (24,
30), as described in detail elsewhere (42). Initially, particles are placed
on randomly chosen sites at a prescribed concentration. Adjacent par-
ticles are assumed to form clusters, and isolated particles form clusters
ofunit mass. The clusters then carry out a random walk. Whenever two
clusters become adjacent, they are merged into a rigid cluster irrevers-
ibly, with probability one. They move as a unit thereafter, with a trans-
lational diffusion coefficient inversely proportional to mass. The ran-

dom walk continues until only one cluster remains, the final cluster-
cluster aggregate.

The observed diffusion coefficient D is written in terms
ofthe diffusion coefficient DO in the absence of obstacles
and a dimensionless, concentration-dependent diffusion
coefficient D*(C):

D = DOD*(C)9 (2)

with D*(O) = 1. The Monte Carlo calculations are

carried out in dimensionless units

r* = rle,

t* = tl-r,
(3a)

(3b)

where e is the lattice spacing and r is the jump time,
related by

P = 4DoT. (3c)

The dimensionless mean-square displacement is then

r-*2>= D*(C)t*. (4)

To simplify the notation, the asterisks are dropped un-

less it is necessary to distinguish the dimensional and
dimensionless variables.
The usual way of analyzing a random walk is to plot

the mean-square displacement as a function of time, to
obtain curves as shown in Fig. 1. These are averaged over
.5000 trajectories. Unobstructed diffusion yields a

straight line ofunit slope, giving D* = 1 (curve a). Diffu-
sion in the presence of low concentrations of random
point obstacles gives, at large times, a straight line of
slope < 1, corresponding to D* < 1 (curve b). At high
concentrations of random point obstacles, the system is
above the percolation threshold, so that there are no

long-range paths for diffusion. The diffusing particles are
RESULTS

Trajectories of random walks
We consider trajectories obtained from Monte Carlo cal-
culations. In these calculations, lattice sites are blocked
at random, and the obstacle concentration is given as an
area fraction C, equal to the fraction of blocked sites. A
point tracer carries out a random walk on unblocked
sites of the lattice, and its displacement from its starting
position is recorded at prescribed times, yielding the dis-
placement r2 as a function of time t. Displacements are
averaged over different random starting points within a

TABLE 1 Diffusion coefficients as a function of obstacle
concentration

C D*

Obstacles 0.0 0.999
0.1 0.819
0.2 0.629
0.3 0.425
0.4 0.210

Cluster-cluster aggregates 0.1 0.316
0.3 0.0840
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FIGURE 2 Displacement r' as a function oftime t (in dimensionless units) for a sequence of 10 random walks on an unobstructed triangular lattice.
To save space, scales are not shown. The x-axis corresponds to 1024 time steps; major divisions are 256 units. The y-axis corresponds to r2 = 3072;
major divisions are 1024 units. The straight line is < r2> = t, the mean-square displacement in dimensionless units averaged over a large number of
random walks. For each random walk, a map of the distinct sites visited by the tracer is shown, along with the center of mass of the random walk
(filled circle), the ellipse of gyration, and the asymmetry parameters a2 and A2, all discussed later.

trapped in bounded domains, so that Kr2> levels off at
large values of t, and the limiting value r2(oo)> is a
measure ofthe size ofthe domains (curve c). In directed
transport, the observed species is attached to mobile cyto-
skeletal elements or is carried along in a bulk membrane
flow. The tracer moves in a nondiffusive manner accord-
ing to r = vt, where v is velocity (curve d).
Data analysis requires a value of D. To interpret

Monte Carlo data, dimensionless variables are used
(Eqs. 1-4). Table 1 gives values of D* obtained from
Monte Carlo calculations and Eq. 1 for various concen-
trations of obstacles. To interpret experimental data, di-
mensional variables are used. The value ofD used ought
to be an average value, obtained from fluorescence pho-
tobleaching recovery measurements, or from single-par-
ticle diffusion measurements averaged over a large num-
ber of trajectories.

Fig. 1 shows averages over a large number of trajecto-
ries; Fig. 2 shows a sequence of 10 individual random
walks. In Fig. 2, r2 is given as a function of time t; the
irregular blobs are maps of the sites visited by the tracer.

Note the apparent structure. Fig. 2 i and the first part of
Fig. 2 a suggest free diffusion, at much different rates;
Fig. 2, b, c, and g suggests trapping in a bounded region;
Fig. 2 d suggests diffusion in a bounded region followed
by a period of rapid motion, perhaps directed transport.
Yet all these are purely random walks, with no obstacles
whatsoever, and no mechanism for directed motion.
Note the frequency of random walks with apparent
structure. This is not a pathological set ofrandom walks
selected to show extremes, but a typical sequence gener-
ated by the Monte Carlo program.
A random walk has no characteristic time scale, and

the fluctuations seen in Fig. 2 appear on all time scales
(16). Fig. 3 shows a single random walk on an unob-
structed lattice at three different time scales. The ran-
dom walk is self-similar; there is no change in appear-

ance as the random walk is magnified, until individual
steps on the lattice can be seen. Self-similarity was noted
by Perrin in measurements of Brownian motion pub-
lished in 1909 (see reference 29). But if there are obsta-
cles with structure on some length scale, the random
walk will show structure on the corresponding time
scale.

Distribution of displacements
One method of analyzing single-particle diffusion mea-
surements uses histograms of the displacement at
various fixed times (2). The solution of the diffusion
equation in two dimensions for an instantaneous point
source at the origin at a time t = 0 is (reference 8, p. 258)

C(r, t) = exp(-r2/4Dt),
47rDt

(5)

where C( r, t) is the concentration and D is the diffusion
coefficient. The probability density is

P(r, t)dr = 2irrdrC(r, t),

and the mean-square displacement is

Kr2(t)> = 2wr drC(r, t)r2 = 4Dt,

(6)

(7)

so that

P(r, t)dr Kr(t exp[r/<r(t)>I.
The p obablity hat partice sdif dadit

(8)

The probability that a particle has diffused a distance ro
or greater at a time t is

Pr(r 2 ro) = P(r, t) dr = exp[-r2/<r2(t)>]. (9)

This equation provides one test for directed motion.
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of D*, Eq. 8 describes the Monte Carlo results well. At
moderate concentrations, random point obstacles de-
crease the rate of diffusion but do not change the shape
of the probability distribution. But if the tracers are ob-
structed by a cluster-cluster aggregate at the same area
fraction, Eq. 8 does not fit the data well, because the
positions of the obstacles are correlated, not random
(42). Fig. 4 c shows Monte Carlo results for the aggre-
gate, and curves from Eq. 8 with D* from Table 1.
When long-range diffusion is blocked, the behavior of

the curves changes. At C = 0.5, the percolation threshold
4 for the triangular lattice, Eq. 8 is not applicable. Monte

Carlo results are shown in Fig. 4 d. At this concentration
of obstacles, some tracers are on percolating clusters and
have long-range diffusion paths open to them; the proba-
bility distribution for these tracers follows a generaliza-
tion of Eq. 8 (21). Other tracers are trapped in finite
clusters, and yield a different probability distribution.
The observed P( r, t) is an average ofthese distributions.
The persistent peak at low R is due to trapped tracers. At
C = 0.6, all the tracers are trapped in finite clusters, and
the probability density reaches a limiting value with
time, as shown in Fig. 4 e. Similarly, for tracers trapped
in a hexagon ofradius 15, the probability density reaches
a limiting value, as shown in Fig. 4f, but the shape ofthe
limiting distribution is different, reflecting the different
sizes and shapes of the domains.

1.0

0.75

cxJ
CtT-

CL

0.50 _

0.25

0.0
0 64

FIGURE 3 Displacement r2 as a fun(
(in dimensionless units) on an unol
time scales. The boxes in a and b shc
enlarged in the next graph. Both sca
enlargement.

c Asymmetry of random walks
The average behavior of a diffusing particle is symmet-
ric: a Gaussian distribution growing shorter and wider
with time (Eq. 5). But the random walks making up that
average tend to be highly asymmetric, simply because
there are many more asymmetric conformations than
symmetric ones (37). In this section we consider two
parameters that characterize the asymmetry of random
walks, and use them to show that asymmetry is the rule,

128 192 25 16 not the exception. These measures of asymmetry are
useful in recognizing directed motion, because directed
motion produces a very elongated trajectory. The asym-

ction of time for one random walk metry of random walks was reviewed by Rudnick and

bstructed lattice at three different Gaspari (38).
)w the portion of the random walk For a random walk of n steps, the two-dimensional
les change by a factor of 4 in each radius of gyration tensor is (38, 45)

In Fig. 4, Monte Carlo results are compared with Eq.
8. Consider the results when long-range diffusion is al-
lowed. Fig. 4 a shows P(r, t)dr for unobstructed diffu-
sion from Eq. 8, and two sets of data points from Monte
Carlo calculations. Agreement is good, with deviations
resulting from statistical noise, binning, and the discrete
structure of the lattice. Fig. 4 b shows similar curves and
Monte Carlo data for random point obstacles at an area

fraction C = 0.3, with D* from Table 1. With this value

(x>< >x>V xy)>-x (10)

where the averages are over all n steps in the random
walk: Kx> = ( 1/ n) I in xi, and so forth. This tensor can
be diagonalized by a rotation through an angle

2 ( r- T7 ) (1

The principal radii of gyration are the eigenvalues of the
tensor T,
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R2, R2 = '/2[(T,x+ Tyy) ± X(T-TB)2 + 4Ty], (12)

and the radius of gyration is

R 2 = R2 + R2.(13)

One way to illustrate the asymmetry of the trajectory is
the ellipse of gyration, an ellipse of semiaxes R, and R2,
oriented at an angle X, and centered on the center of
mass of the trajectory. Examples are given in Fig. 2.
One measure of asymmetry is the ratio of the smaller

to the larger principal radius of gyration ( 15 ),

a2 = R2IR2 ( 14)

Linear trajectories have a2 = 0; circularly symmetric tra-
jectories have a2 = 1. Note that the averages in T are
sums over the position at each time point, and are proper-
ties of a trajectory, not of the distinct sites visited. Con-
sider three unblocked points forming an equilateral trian-
gle, A at (0, 0), B at ( 1, 0), and C at( 1/2, i/2), with all
adjacent points blocked. Two different trajectories with
the same points visited and the same endpoints, say
ABCABC and AAAABC, have different values of <x>,
<Y>, * * * and therefore different asymmetry parameters,
here a2 = 1 and a2 = 1/2, respectively.
The eigenvalue ratio a2 is useful in distinguishing di-

rected motion from diffusion, but not in resolving the
structure of different types of obstacles. Fig. 5 shows his-
tograms of a2. For unobstructed diffusion and diffusion
with random point obstacles below the percolation
threshold, the curve rapidly converges to a time-indepen-
dent value, as shown in Fig. 5 a. Both R2 and R2 increase
with time, but their ratio quickly becomes time indepen-
dent. Below the percolation threshold, the curve is inde-
pendent of obstacle concentration, as shown in Fig. 5 b
for C = 0.0-0.4. But, as the concentration of obstacles
approaches the percolation threshold, the shape of the
curve changes, as shown in Fig. 5 b for C = 0.5. (Changes
in shape are apparent at the peak of the curve for C =

0.45 but not for C = 0.40.) For diffusion in a finite re-
gion, the curve is strongly time dependent, as shown in
Fig. 5 c for a hexagonal domain of radius 7. Initially the
probability distribution resembles the curve for an unob-
structed random walk, but as time increases the curve
shifts to a form reflecting the shape ofthe domain. Fig. 5

d compares the histograms for diffusion in the presence
of random point obstacles and cluster-cluster aggregates
at an area fraction of0.3. The aggregates are much more
effective obstacles than random points are (42); the dif-
fusion coefficients are D* = 0.425 for random points
and D* = 0.0840 for aggregates. Despite this difference
in D*, the histograms are similar, indicating that a2 is not
a sensitive probe of obstacle structure.
What this parameter shows is that asymmetry is com-

mon. There are few linear or circularly symmetric trajec-
tories. For diffusion in the presence of random point
obstacles below the percolation threshold, the average
value is <a2> = 0.28, corresponding to R2/R, = 0.53,

and the most probable value is a2 = 0. 12, corresponding
to R2/RI = 0.35. Random walks are less symmetric than
percolation clusters, for which <a2> = 0.4 (15).
Another measure of asymmetry is the parameter (36,

38)

(R2 -R2)2
2 - (R2 + R2)2 ' (15)

The numerator measures the deviation from circularity;
the denominator normalizes the deviation by the radius
of gyration. This parameter is equal to 0 for circularly
symmetric trajectories and 1 for linear trajectories. Rud-
nick and Gaspari (38) emphasize one average, <(RI -

R 2)2>1(R 12+ R2)2>, for which they obtain an analytic
form for high dimensions, but they consider KA2> to be
the better parameter to characterize a random walk.

Histograms of A2 show little time dependence when
the obstacle concentration is below the percolation
threshold. Below the threshold, the histogram is again
independent of the obstacle concentration, as shown in
Fig. 6. (Again, concentration dependence is apparent at
C = 0.45 but not at C = 0.40.) As C increases, the frac-
tion of points with A2 = 1 increases; these result from
tracers trapped on isolated points and pairs of points.
Although a2 and A2 are trivially related for any individ-
ual trajectory, their averages over a set of trajectories
are not.
The histograms ofA2 are in excellent agreement with

those obtained for a random polymer by Brownian dy-
namics calculations for a ball and spring model (4). The
curve is constant for small A2> 0, and falls off as A2
approaches 1, implying that random walks are unlikely
to form extended structures. For C = 0.0-0.4, at large
times, <A2> = 0.397.

In Fig. 2, asymmetry parameters and ellipses of gyra-
tion are shown for the trajectories. These quantities are
properties ofthe trajectory, not ofthe set of sites visited,
so that different trajectories over the same set of points
would yield different values of these quantities.

What is the probability of a fast
trajectory?
To determine whether an observed trajectory is the re-
sult of directed transport or random motion, one can
evaluate a2 orA2, and compare the measured values with
the calculated probabilities. It is more convenient to do
this using the cumulative probability curves of Fig. 7,
calculated from the data in Figs. 5 and 6. These curves
give the fraction of trajectories with an asymmetry pa-
rameter at or below a given value. For random point
obstacles with C 0.4, the cumulative curves show very
little dependence on concentration (Fig. 7 a) or time
(Fig. 7 b). The curves are smooth; most of the noise is
averaged out. Recall that an extended trajectory corre-
sponds to a2 and A2 1. Numerical values ofthe
cumulative probability for small a2 and large A2 are
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calculated for Ar = 0.0 1. (a) Unobstructed diffusion, C = 0.0. Lines, from Eq. 8 for times t = 128, 256,. . , 4096. Crosses, Monte Carlo results for
t = 512 and 4096. (b) Diffusion in presence of random point obstacles at an area fraction C = 0.3. Lines, from Eq. 8 for times t = 128, 256,...

4096. Crosses, Monte Carlo results for t = 512 and 4096. Monte Carlo results for two independent runs for C = 0.0 and two independent runs for
C = 0.3 were almost indistinguishable on the scale ofthe figure. (c) Crosses, Monte Carlo results for a cluster-cluster aggregate for t = 512 and 4096

at an area fraction C = 0.3. Lines, from Eq. 8. (d) Monte Carlo results for random point obstacles at an area fraction C = 0.5, the percolation
threshold for site percolation on the triangular lattice, for t = 128, 256, and 16,384. (e) Monte Carlo results for random point obstacles at an area

fraction C = 0.6, above the percolation threshold, for times t = 128, 256, and 16,384. (f) Monte Carlo results for a bounded region, a hexagon of
radius 15, for times t = 128, 256, 512, and 16,384.

given in Table 2 (from two independent runs for C =

0.0, t = 16,384).
Purely linear trajectories are not a useful example of

directed motion because a2 = 0 and A2 = 1, regardless of

length. This is a limitation of the lattice model. Instead,
consider a zigzag trajectory, as shown in the inset of Fig.
7 c. It is simple to calculate a2 for a series ofthese trajec-
tories; the fraction of random-walk trajectories at least
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aggregates (dashed line) at an obstacle concentration C = 0.3 and t = 16,384.

that elongated can then be found from Fig. 7 a. Values of
a2 and Pr(a2) (interpolated from Table 2) are shown in
Fig. 7 c, along with the probabilities from Eq. 9. Both
probabilities decrease very rapidly with length. Forexam-
ple, a zigzag trajectory of X-displacement 12 has a2 =

0.0144, and the probability that a trajectory so elongated
will occur by chance in an unobstructed random walk is
0.0025 from Pr(r 2 ro) and 0.00 15 from Pr(a2).

In testing whether an observed trajectory is likely to
occur in a random walk, assume that the trajectory is
random. An unobstructed random walk has no memory,
so the origin oftime can be chosen at will. Take t = 0 to
be the start of the trajectory segment in question, calcu-
late a2 for that segment, and then determine from Fig. 7
how probable that shape of segment is in an unob-
structed random walk.

What is the probability that a random
walk will stay within a bounded region?
Fig. 2 shows several random walks in an unobstructed
system where the tracer remains in a small region for a
long time, giving the appearance that the tracer is

trapped in a finite domain. To determine whether such a
trajectory really indicates trapping, we need the probabil-
ity I(R, t) that an unobstructed random walk remains
within a region of radius R for all times < t. This proba-
bility is derived in Appendix A.

Fig. 8 a shows probability distributions from Eq. A3
and Monte Carlo results for unobstructed diffusion. Fig.
8 b shows similar results for diffusion in the presence of
random point obstacles at an area fraction of 0.3. The
small difference between the Monte Carlo results and the
theoretical curves is presumably the result of lattice
structure and binning into histograms. When the appro-
priate diffusion coefficient D* is used, Eq. A3 can be
used for C < 0.3, but as C approaches the percolation
threshold, Eq. A3 no longer applies.

In Fig. 8 c, for a particle trapped in a hexagon ofradius
7, the cumulative probability reaches a time-indepen-
dent value by t = 1024. Fig. 8 d shows Monte Carlo
results for a cluster-cluster aggregate at C = 0.3, and
curves from Eq. A3 for random point obstacles at the
same concentration. The two sets of curves are similar
initially, but around t = 256, the curve for aggregates
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starts to lag the curve for random point obstacles signifi-
cantly. It was observed earlier that the difference be-
tween these two types of obstacles is shown most clearly
in long-range diffusion measurements (42).
Suppose that a particle is observed to remain in a re-

gion R C 10. Assume C = 0.0, so D* = 1, and Fig. 8 a
applies. If the particle has been observed for 64 time
steps, the probability that it has remained within the re-
gion R 10 is 0.63, and one cannot tell whether the
particle is trapped or not. If it remains there for t = 256,
the probability is 0.04, suggesting trapping. If it remains
there for t = 512, the probability is 0.0010, and trapping
is likely. Ifrandom point obstacles are present at an area
fraction C = 0.3, Fig. 8 b applies, and a similar argument
holds, but one must observe the particle longer to con-
clude that it is trapped. If the particle is trapped in a
hexagonal region of radius 7, Fig. 8 c shows that the
probability is 0.25, even at long times.

This analysis can be simplified by plotting I(R, t) as a
function of t at fixed values ofR, to give the probability
that a diffusing particle stays in a region R as a function
oftime, as shown in Fig. 9 a. But, according to Eq. A3,

is a function ofDt/R2 alone (or, in dimensionless vari-
ables, D*t*/4R*2). So this family ofcurves can be plot-
ted as a function ofDt/R2 and reduced to a single curve,
as shown in Fig. 9 b. For Dt/R2 > 0.1, this curve is a
straight line:

log = 0.2048 - 2.5117(Dt/R2). (16)

So, in the example of the particle in the region R* <
10, if D* = 1 and t* = 64, D*t*/4R*2 = 0.16, and the
probability = 0.63 can be obtained from Fig. 9 b. Ifwe
assume, as in the caption to Fig. 1, that e = 20 nm, so =
1/30 s, and D = 3 X 10-1" cm2/s, then the radius ofthe

c

0

ts

cx-

C)

CW

0

Cu

0

0~

Asymmetry parameter

Asymmetry parameter

X displacement

FIGURE 7 Cumulative probability curves for asymmetry parameters
a2 and A2. (a) Concentration dependence. Curves are shown for ran-
dom point obstacles at concentrations C = 0.0, 0.1, 0.2, 0.3, and 0.4,
for a time t = 16,384. (b) Time dependence. Curves are shown for
unobstructed diffusion, C = 0.0, fort = 16 and t = 16,384; intermediate
times give intermediate curves. (c) Example. Logarithm of a2 (solid
line) and the probabilities Pr(a2) (dotted line) from b and Pr(r 2 ro)
(dashed line) from Eq. 9 for zigzag trajectories of various lengths. The
inset shows a zigzag trajectory with an Xdisplacement of4. The particle
is assumed to move from left to right, moving one lattice constant at
each time step, without retracing any ofits path. For each trajectory, a2
is calculated from Eqs. 10-14, and the probability ofthat value of a2 is
found from the cumulative probability curve in b for C = 0.0, t=
16,384.
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TABLE 2 Cumulative probabilities of asymmetry parameters

a2 Pr(a2) A2 Pr(A2)

0.01 0.00027 0.80 0.95865
0.02 0.00320 0.81 0.96497
0.03 0.01079 0.82 0.97067
0.04 0.02428 0.83 0.97563
0.05 0.04286 0.84 0.98027
0.06 0.06462 0.85 0.98438
0.07 0.08924 0.86 0.98794
0.08 0.11607 0.87 0.99080
0.09 0.14382 0.88 0.99316
0.10 0.17293 0.89 0.99523
0.11 0.20167 0.90 0.99682
0.12 0.23037 0.91 0.99809
0.13 0.25833 0.92 0.99889
0.14 0.28612 0.93 0.99952
0.15 0.31323 0.94 0.99981
0.16 0.33963 0.95 0.99995
0.17 0.36543 0.96 0.99999
0.18 0.39088 0.97 1.00000
0.19 0.41514 0.98 1.00000
0.20 0.43871 0.99 1.00000

region is 200 nm, t* = 64 corresponds to 2.1 s, and Dt/
R2 = 0.16.

How long does a particle require to
explore a bounded domain?
When a diffusing particle is trapped in a finite region, the
mean-square displacement increases with time to a limit-
ing value (Fig. IO a)

Kr2(oo)> = 2R , (17)

where R2 is the radius of gyration of the region (32).
This relation holds for both lattice and continuum diffu-
sion.

It is more informative to show the time dependence of
the mean-square displacement as a log-log plot (Fig. 10

b). The initial curved region then yields a straight line,
and the curved transitional region is small. The initial
part of the curve is given by the generalization of Eq. 1,

(r2> oC t2/dw, (18)

where dw is the anomalous diffusion exponent (20). For
unobstructed diffusion in a bounded region, d, = 2, and
the initial part ofthe curve is of slope 1, just as for unob-
structed diffusion (Eq. 1). For random point obstacles
above the percolation threshold, however, the initial
slope is < 1, and dw > 2. This is anomalous diffusion, in
which diffusion is slowed by the presence of "dangling
ends, bottlenecks, and backbends" (3). Nagle (33) dis-
cusses the use ofa logarithmic time scale to examine the
effect of long-time tails in measurements of lateral diffu-
sion by fluorescence photobleaching recovery.

If a diffusing particle is trapped in a circular region of
radius a, the mean-square displacement Kr2(t)> can be

obtained from the solution to the diffusion equation, as

shown in Appendix B. In dimensionless form, this is

r2>/Kr2(o)> = 1 + F(t/ro), (19)

where Kr2(oo)> is given by Eq. 17, To = Kr2(oo)>/D,
and the function F is defined by Eq. B14. Values of
r2(0o ) >for some simple domain shapes are given in

Eqs. B18.
This equation shows that the Monte Carlo results for

unobstructed diffusion in circular regions can be re-
duced to a common curve by replotting the results in
terms of < r2>/Kr2(oo ) > and t/To, as shown in a log-log
plot in Fig. 10 c. As expected, the points for diffusion in
hexagonal regions follow Eq. 18 closely, as do the points
for elongated hexagons of moderate elongation. For
these regions D* = 1, and Kr2(Co)) was obtained from
the appropriate radius of gyration of the accessible re-
gion of the lattice. For diffusion in a hexagonal region
containing random point obstacles, Eq. 18 is followed
for C < 0.2, and deviations appear for C = 0.3 and 0.4.
Here D* < 1 was the value for a large system ofrandom
point obstacles at the prescribed concentration (Ta-
ble 1).
The results for random point obstacles above the per-

colation threshold do not fall on the common curve.
This simple scaling treatment does not apply to random
point obstacles above the percolation threshold, where
there is a distribution ofirregularly shaped domains with
irregular boundaries. The curves for r2( t)> are ofa dif-
ferent form (7, 20), and this case is beyond the scope of
this paper.
For particles trapped in compact regions with smooth

boundaries, then, Eq. 19 can be used to estimate the
observation time required for a tracer to see the bound-
aries of a domain of given size. The break point is at
t/To = 1, and the curve levels off at t/r0 = 4. At moder-

ate concentrations of obstacles, a diffusing particle in a

finite domain reaches its limiting displacement at a time

(20)

An estimate of t = <r2>14D based on Eq. 1 is signifi-
cantly low, even for compact regions. If the domain is
very elongated, the characteristic time is greater (7).

DISCUSSION
The main point of this paper is that to interpret single-
particle diffusion measurements correctly, one must con-
sider the probability that an observed trajectory will oc-
cur, not just the trajectory itself. One must look at the
statistics ofrandom walks, just as one must use a statisti-
cal treatment to interpret single-channel conductance
measurements.
A comparison of analytical and Monte Carlo results

shows that for unobstructed diffusion, the analytical re-
sults apply, with D* = 1, and for random point obstacles

Saxton Lateral Diffusion of Single Particles
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FIGURE 8 Cumulative probability I(R, t) that a particle remains in a region r < R for all times < t, as a function of R for fixed times. (a)
Unobstructed diffusion. Lines, from Eq. A3 for t = 16, 32,..., 512. Crosses, Monte Carlo results for the same times. (b) Similar curves for diffusion
in the presence ofrandom point obstacles at an area fraction C = 0.3, for t = 16, 32,. .., 2048. (c) Monte Carlo curves for diffusion in a hexagonal
region of radius 7, for times t = 8, 16,. .., 512, and 16,384. (d) Similar curves for diffusion in the presence ofa cluster-cluster aggregate at an area
fraction of 0.3 for t = 16, 32,..., 2048. Lines, from Eq. A3, with D* from Table 1 for random point obstacles. Crosses, Monte Carlo results.

at moderate concentrations, the analytical results still
apply, but with D* < 1, as Qian et al. (35) suggested.
Random point obstacles simply reduce the rate of diffu-
sion, without changing the shape of the probability dis-
tributions. So the analytical results are likely to be appli-

cable to diffusion in most cell membranes, where the
area fraction of integral protein is typically below 0.3
(reference 40, Table 1).
We have considered two biologically important limit-

ing cases of particle motion, directed motion and trap-

0 100 200 300 400 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t Dt/R2
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___._.__. ping. These cases are fundamentally different. Directed
R = 7 motion can be distinguished from diffusion by the shape

of the trajectory, but trapping in a bounded region can-
not, because we do not know the distribution ofsizes and

C = 0.6 shapes of the regions. Trapping must be identified from
the time dependence of properties of the trajectories.

Plotting histograms of the observed displacement at
various times is a useful means ofanalysis, and the histo-
grams can be fit by the theoretical curve when the obsta-
cle concentration is below the percolation threshold. If
the distribution is time independent as the observation

15000 time is varied by a factor of two or more, the tracer is
likely to be trapped in a bounded domain.
For random point obstacles near or above the percola-

R - 7 tion threshold, trapping in finite regions becomes signifi-
cant, and the curves for unobstructed diffusion do not

C = 0.6 apply. Such deviations might occur in chloroplasts and
mitochondria.
To test for directed motion, one can use Eq. 9, or one

can calculate the asymmetry parameter a2 or A2 for the
observed trajectory, and evaluate the probability that it
will occur in an unobstructed or obstructed random

b walk from Figs. 5 and 6.
The asymmetry parameter is not very sensitive to ob-

4 ! stacle structure. Cluster-cluster aggregates have a much
greater effect on lateral diffusion than the same area frac-
tion of random point obstacles does, but the changes in
asymmetry parameter are small, and likely to be lost in
experimental noise.
To test whether a particle is trapped in a bounded re-

gion, the probability distribution of Appendix A can be
used, most simply from Eq. 16. Fig. 10 c can be used to
estimate the time required for the mean-square displace-
ment to reach its limiting value, provided that the bound-
aries are smooth (nonfractal) and the region is not too
elongated.

Log-log plots of the mean-square displacement as a
function of time are more informative than linear plots,

2 3 and might be useful for plots of experimental trajecto-
ries.

FIGURE 10 Mean-square displacement as a function oftime for tracers
in bounded regions. (a) Linear plot of K r2> as a function oftime t (in
dimensionless units), for diffusion in a hexagon of radius R = 7 and
random point obstacles at a concentration C = 0.6. This is above the
percolation threshold, so diffusing particles are trapped in various
bounded regions. (b) Log-log plot of <r2> as a function of t for the
same data. A line ofunit slope is also shown. The curve forR = 7 shows
normal diffusion (d4 = 2) and the curve for C = 0.6 shows anomalous
diffusion (d4 < 2). (c) Log-log plot of scaled variables: <r2>/<r2(oo )>
as a function of t1To. Solid line, Eq. 18. Dotted lines, a line of unit
slope, and the line < r2>/K<r2(oo)> = 1. Points, Monte Carlo results for
various bounded regions, identified as follows. +, unobstructed hexa-
gons of radius 15, 31, 63, and 127. 0, elongated hexagons of radius 7 X
14, 7 x 21,..., 7 x 49, 15 x 30, and 15 X 45. The elongated hexagons
consist of 3 to 13 overlapping hexagons of radius R, with centers R
lattice spacings apart along a straight line. X, hexagons of radius 15
containing random point obstacles at area fractions of 0.1 and 0.2. A,
random point obstacles at area fractions of0.55 and 0.80, with D* = 1.

APPENDIX A

Here we obtain the probability I(R, t) that an unobstructed random
walk remains within a given region of radius R for all times < t. This
problem was solved for three-dimensional diffusion by Rubin et al.
(37). The analogous derivation for the two-dimensional case is out-
lined here. The solution to the diffusion equation for an instantaneous
source at t = 0, r = 0 in a cylindrical region of radius R with absorbing
boundaries is

When sets of data points do not fall on the common curve, they are
joined by a broken line. Deviations occur for random point obstacles,
and for the most elongated hexagons; a broken line is drawn for the 7 X
49 elongated hexagon. Points for a hexagon of radius 15 containing
random point obstacles at an area fraction of0.3 and 0.4 are not shown,
but deviate from the common curve at small tfro.
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CQr, t)
=

I JO(raj) exp(-a 2Dt), (Al)
rR)R2 JA(Ran) n

where Jo and J1 are Bessel functions and the an are defined by JO(On) =
0, n = Ran (reference 8, pp. 368-369). The fraction ofrandom walks
that remain in the region until time t is

(R
*(R, t) = J Cr, t)2,xr dr, (A2)

so that

I ra 2rs ra w~
Kr2(t)> = 2 fJ r dr dO r' dr' d6'[r2 + r'2

- 2rr' cos (6 - 0')]C(r, 6, r', 6', t). (B7)
The factor of 1/ira2 is required on account of the integration over r'
and 6'. We break the integral into three terms. First,

I, =i i2) JrdrJ doJo r' dr' J d6'[r2 + rt2

- 2rr' cos (6 - 6')] = a2. (B8)

*(R, t) = 2 z exp(-f3'Dt/R2). (A3)

The probability distribution function is p = d*/dR, so

p(R, t) = (1 /R)(4Dt/R2)

X z " exp(-f32 Dt/R2). (A4)
n= JI(i3n) n

APPENDIX B
Here we derive an expression for the mean-square displacement
K r2( t)> for a particle trapped in a circular domain of radius a.
The concentration at time t at a point (r, 0, z) due to an instanta-

neous point source at time 0 at (r', 6', 0) is (reference 8, pp. 376-378,
Eq. 7)

C(r, 6, r', 6', t) = exp(-Z2/4Dt)
7r27ra 2J47rD~t
.+00

X 1 + I cosn(6 - 6')f(r, r', t) , (Bl)n=-o
where

(a)2j(a)(r)f(r, r', t) = z exp(-a2Dt) (a) n( a)Jn(ar')
9 (B2)

Jn is the Bessel function oforder n, and the sum in f is over the positive
roots of

J'Y(aa) = 0. (B3)

Second,

/1\2Ca r2T ('a
I2= a2 rdr | d r' dr' d'[r2+ r'2]

X 2: cos n(O - ')f(r, r', t). (B9)
n=-co

The integral over is zero unless n = 0. The r-integral can be shown to
be

[2(aa)2JO(aa) + (aa)3Jl(aa) - 4(aa)J1(aa)]/a4

(reference 14, p. 333, Eq. 5; reference 13, p. 41, Eq. 72). As before, the
r'-integral is proportional to J. (aa) = 0, so that

I2 = 0. (B1O)

Finally,

I3 = ( 1/ra2)2

ra dr dO2 ra r 2
x Jr drJdJ r, dr, J fd[-2rr' cos (O - O')]

(Bll)
00

x 2: cos n(O - 0')f(r, r', t).n=-oo
The integration over and 6' yields 27r2(6b,,_ + 6n+ ) The integrals
over r and r' are equal:

fa

r2 drJ1(ar)= (a2/a)J2(aa) (B12)

The wall of the cylinder is assumed to be reflecting, so that the bound-
ary condition is OC/Or = 0 at r = a. This is for a point source; to obtain
the corresponding equation for a line source, we integrate over z, so
that

J+e

exp(-z2/4Dt) dz= Fgrt.
-00

(B4)

The concentration is normalized so that

rdrf dOC(r, 6, r',I', t) = 1. (B5)

To prove this, note that the integral over vanishes unless n = 0. The
integral over r of f is then proportional to (reference 1, p. 484, Eq.
11.3.20)

ra
J r drJO(ar) = (a/a)J(aa) (B6)

But when n = 0, Eq. B3 implies that JO(aa) = -J1 (aa) = 0, so the
integral over r ofthe series is zero, yielding Eq. B5. To find Kr2(t)>, we
must evaluate

(reference 1, p. 484, Eq. 11.3.20). Combining the expressions for II, I2,
and I3, we obtain

<r) = a I - 8 Z exp(-Da2t) )2 J2(a)]
a(aa) J2(aa)B3

(B13)

The only terms that contribute to the sum over n in I3 are n = ± 1, so

that from Eq. B3, the a are defined by J;(aa) = 0, or JO(aa) = J2(aa)
(reference 1, p. 361, Eq. 9.1.27). We use this to eliminate J2 from Eq.
B 13, and substitute ,B = aa to obtain

<r2(t)> =a I-8 2 exp(-flDt/a2 ) _1 J2(: )1

(B14)

where

JX(f3) = J'(ana) = 0. (B15)

This can be rewritten in terms of the normalized mean-square dis-
placement <r2>/<r2(oo)> and the normalized time t/ro, where
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To= <r2(oo)>/D, (B16)

and (r2(oo)> is found from Eq. Bl8b. Then Eq. B14 can be written as

Kr2>/Kr2(oo)> = 1 + F(t/To). (B17)

For continuum diffusion, for a rectangular region of dimensions
2a x 2b,

<r2(0o)> = 2/3(a2 + b2); (B18a)
for an ellipse with semi-axes a and b,

Kr2(0))> = 1/2(a2 + b2); (Bl8b)
and for a hexagonal region of radius a,

<r2(a))> = 5/6a2 (B18c)
from standard expressions for the radius of gyration (46).
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