
The particular case �10 � 1�2 recovers the original Leibnitz triangle
itself (26) (see Fig. 2).

(ii) �N,0 � (�10)N�
(� 	 0; N � 1, 2, 3. . .). The � � 1 instance

corresponds to independent systems, i.e., �N,n � (�10)N�n (1 �
�10)n. If 0 � �10 � 1, then all 2N states have nonzero probability.
The � � 0 instance corresponds to �N,0 � �10, �N,n � 0 (n � 1, 2,
. . . , N � 1) and �N,N � 1 � �10. If 0 � �10 � 1, then only two among
the 2N states have nonzero probability, @N, namely the states
associated with �N,0 and �N,N.

We may relax the Leibnitz rule to some extent by considering
those cases where the rule is satisfied only asymptotically, i.e.,

lim
N3�

�N,n � �N,n
1

�N�1,n
� 1 �n � 0, 1, 2, . . . � . [4]

Such cases will be said to be not strictly but asymptotically scale-
invariant (or asymptotically scale-free). This is, for a variety of
reasons, the situation in which we are primarily interested. The main
reason is that what vast classes of natural and artificial systems
typically exhibit is not precisely power-laws, but behaviors which
only asymptotically become power-laws (once we have corrected, of
course, for any finite size effects). This is consistent with the fact
that within nonextensive statistical mechanics Sq is optimized by
q-exponential functions (see ref. 1 and references therein and refs.
27 and 28), which only asymptotically yield power-laws. It is
consistent also with a new central limit theorem that has been
recently conjectured (29) for specially correlated random variables.�

Let us now introduce a further concept, namely q-describability.
A model constituted by N equal and distinguishable subsystems will
be called q-describable if a value of q exists such as Sq(N) is extensive,
i.e., limN3� Sq(N)�N � �. If that special value of q equals unity, this
corresponds to the usual BG universality class. If that value of q
differs from unity, we will have nontrivial universality classes. If the
subsystems {Ai} are not necessarily equal, the system is q-
describable if an entropic index q exists such that limN3� [Sq(A1 

A2 
 . . . 
 AN)��i�1

N Sq(Ai)] � �. It should be clear that we could
equally well demand the extensivity of say S2�q [or even of SQ(q),
where Q(q) is some monotonically decreasing function of q satis-

fying Q(1) � 1] instead of that of Sq. This would of course have the
effect of having nontrivial solutions for q 
 1 whenever we had
solutions for q � 1 if the extensivity that was imposed was that of Sq.

Finally, let us point out that we might consider the subsystems of
a probabilistic system to be either strongly (or globally) correlated or
weakly (or ‘‘locally’’) correlated. The trivial case of independence, i.e.,
when the subsystems are uncorrelated, is of course a particular case
of weakly correlated. Let us make these notions more precise. A
system is weakly correlated if for every generic (different from zero
and from unity) joint probability �i1,i2, . . . ,iN

A1
A2
· · ·
AN a set of individual
probabilities {�ir

Ar} exists such that limN3� (�i1,i2, . . . ,iN
A1
A2
· · ·
AN)��r�1

N

�ir
Ar � 1. Otherwise, the system is said to be strongly correlated. The

particular case of independence corresponds to

� ir

Ar � �i1,i2, . . . ,ir�1,ir
1, . . . ,iN
� i1,i2, . . . ,iN

A1
A2
· · ·
AN �r � 1, 2, . . . , N�.

If the subsystems are equal and binary, this definition becomes as
follows: a system is weakly correlated if, for generic �N,n, a
probability p0 exists such that limN3
 �N,n�p0

N�n (1 � p0)n � 1.
Otherwise the system is said to be strongly correlated. The partic-
ular case of independence corresponds to p0 � �10. In the present
sense, weakly correlated systems could also be thought and referred
to as asymptotically uncorrelated. The interplay of scale-invariance,
q-describability, and global correlation is schematized in Fig. 3.

We have verified that all systems illustrated in i and ii above
belong to the q � 1 class (see examples in Fig. 4). We next address
Supporting Text                                                                                                    �

A Strictly Scale-Invariant Discrete Model. In dealing with our first q �
1 discrete example, we start with two equal and distinguishable
binary subsystems A and B (N � 2). The associated joint proba-
bilities are, with all generality, indicated in Fig.  9, where � is the

�On the basis of what we have called here the Leibnitz rule, L. G. Moyano, C. T., and M. G.-M.
(unpublished work) obtained interesting preliminary numerical results based on the so
called q-product (30, 31) and its relation to the possible q-generalization of the central limit
theorem. More precisely, imposing the Leibnitz rule with �N,0 � p � q p � q . . . � q p �

p�[N � (N � 1)p1 � q]1/(1 � q) (with �N,0 � pN for q � 1) one verifies that, for p � 1�2 and
as N increases, the distribution probability appears to approach a q-generalized Gaussian
P(n, N). The centered and rescaled distribution P(n, N)N�2 gradually becomes (say for even
N) proportional to (1 � x2)1/(1 � qexp), where x � [n � (N�2)]�(N�2). Numerically, the
exponent appears to satisfy qexp � 2 � (1�q). This relation is obtained by applying the
q 3 (2 � q) transformation onto the q 3 1�q transformation (notice that this relation
can be rewritten as q � 1�(2 � qexp), which is the application of the same two transfor-
mations in the other possible order). The combinations of these two transformations
define an interesting mathematical structure which might well be at the basis of the
q-triplet conjectured in (32) and recently confirmed (33) with data received from the
spacecraft Voyager 1 in the distant heliosphere. The q-triplet observed in the solar wind is
given by qsen � � 0.6 � 0.2, qrel � 3.8 � 0.3, and qstat � 1.75 � 0.06 (33). These values
are consistent with qrel � (1�qsen) � 2 and qstat � (1�qrel) � 2, hence 1 � qsen � [1 �

qstat]�[3 � 2qstat]. Therefore, we expect only one q of the triplet to be independent. The most
precisely determined value in ref. 33 is qstat � 1.75 � 7�4. It immediately follows that qsen �

�1�2 (neatly consistent with �0.6 � 0.2) and qrel � 4 (neatly consistent with 3.8 � 0.3).

Fig. 2. The left numbers within the parentheses correspond to Pascal
triangle. The right numbers correspond to the Leibnitz harmonic triangle
(d � N).

Fig. 3. Scheme representing the systems that are q-describable, globally
correlated, asymptotically scale-free (ASF), and strictly scale-free (SSF). The
q � 1 region corresponds to ‘‘locally’’ correlated systems. The Leibnitz rule is
strictly satisfied for SSF, but only asymptotically satisfied for ASF. Below
(above) the continuous red line we have the ASF (non ASF) systems. The SSF
systems (below the dashed red line) constitute a subset of the ASF subset. The
red spots correspond to the four families of discrete systems illustrated in the
present paper: q 
 1 non ASF (upper spot; Eqs. 12 and 14); q 
 1 ASF but non
SSF (middle spot; Eqs. 17 and 24); q 
 1 SSF (right bottom spot; Eq. 8); q � 1
SSF (left bottom spot; examples i and ii in the text).

Fig. 1. Most general sets of joint probabilities for N equal and distinguish-
able binary subsystems.
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correlation* between A and B. Let us now impose (1, 2)
additivity of Sq.† In other words, we choose �(p) such that Sq(2) �
2Sq(1), where (for W � 2) Sq(1) � 1 � pq � (1 � p)q�q � 1, and
(for W � 4) Sq(2) � 1 � (p2 
 �)q � 2[p(1 � p) � �]q � [(1 � p)2 

�]q�q � 1. We focus on the solutions �q(p) for 0 � q � 1 indicated
in Fig. 10.‡

With the convenient notation

�10 � r10 � p1
A � p

�11 � r01 � p2
A � �1 � p�

�20 � r20 � p11
A
B � p2 � � [19]

�21 � r11 � p12
A
B � p21

A
B � p�1 � p� � �

�22 � r02 � p22
A
B � �1 � p�2 � �,

we can verify

r20 � 2r11 � r02 � 1,

r20 � r11 � r10 � p, [20]

r11 � r02 � r01 � 1 � p.

Let us now address the case of three equal and distinguishable
binary subsystems, A, B, and C (N � 3). We present in Fig. 11
probabilities that are not the most general ones, but rather general
ones for which we have strict scale invariance, in the sense that all
the associated marginal probability sets exactly reproduce the above
N � 2 case. Notice how strongly this construction reminds us of the
one that occurs in the renormalization group procedures widely
used in quantum field theory, the study of critical phenomena, and
elsewhere (6–9).

With the convenient notation �30 � r30 � p111
A
B
C; �31 � r21 �

p112
A
B
C � p121

A
B
C � p211
A
B
C � p211

A
B
C; �32 � r12 � p221
A
B
C �

p212
A
B
C � p122

A
B
C; �33 � r03 � p222
A
B
C, and so on, we can verify

r30 � 3r21 � 3r12 � r03 � 1,

r30 � r21 � r20 � p2 � �q�p�,

r21 � r12 � r11 � p�1 � p� � �q�p�,
[21]

r12 � r03 � r02 � �1 � p�2 � �q�p�,

and so on.
Let us complete this example by considering the generic case

(arbitrary N). The results are presented in Fig. 12, where we have
merged the Pascal triangle and the present Leibnitz-like triangle
(10).  For the left elements, we have the usual Pascal rule, i.e., every
element of the Nth line equals the sum of its ‘‘north-west’’ plus its
‘‘north-east’’ elements. For the right elements we have the property
that every element of the Nth line equals the sum of its ‘‘south-west’’
plus its ‘‘south-east’’ elements. In other words, for (N � 1, 2, 3, . . . ;
n � 0, 1, 2, . . . , N), we have that rN�n,n 
 rN�n�1,n
1 � rN�n�1,n, and
also that �n�0

N N!�(N � n)!n! rN�n,n � 1 (N � 0, 1, 2, . . .). These
two equations admit the following solution:  

 *Assuming that the states 1 and 2 of subsystems A and B correspond to the values a1 and
a2 of the random variable, we have that the covariance equals (a1 � a2)�, and the
correlation coefficient equals ��[p(1 � p)].  

 †As previously mentioned, it is as a simple illustration that we imposed Sq(2) � 2Sq(1) instead
of say S2�q(2) � 2S2�q(1). The results would then obviously be the same with (1 � q)7 (q �

1). Consequently, we would have additivity for 1 � q � 2, instead of 0 � q � 1. 

 ‡The (1 � q)7 (q � 1) ‘‘duality’’ appears naturally in nonextensive statistical mech-
anics (see, for instance, refs. 3 and 4). J. Marsh and S. Earl (see ref. 5) noticed and
kindly communicated to us that, for the present �-model, there were also � 
 0 solutions,
and also that the additivity of the q 
 1 entropy Sq(N) was limited to values of N that only
achieved infinity for p � 1.

Fig. 4. Sq(N) for the Leibnitz triangle [the explicit expression �N,n � 1�(N �

1) (N � n)!n!�N! has been used to calculate Sq(N)] (a) � � 1 (i.e., independent
subsystems) with �10 � 1�2 [the explicit expression �N,n � (�10)N � n (1 � �10)n

has been used to calculate Sq(N) (b) and � � 1�2 with �10 � 1�2 [the recursive
relation 3 has been used to calculated Sq(N)] (c). Only for q � 1 we have a finite
value for limN3 � Sq(N)�N; it vanishes (diverges) for q � 1 (q � 1).
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rN,0 � pN � �q�p�
�N�1 � p� � �pN � 1�	

�1 � p�2 ,

rN�1,1 � pN�1�1 � p� � �q�p�
1 � pN�1

1 � p
, [22]

rN�n,n � pN�n�1 � p�n�1 �
�q�p�

�1 � p�2��2 � n � N�.

Summarizing, as long as rN,0 	 0, this interesting structure
takes automatically into account (i) the standard constraints of
the theory of probabilities (nonnegativity and normalization of
probabilities), and (ii) the scale-invariant structure which guar-
antees that all the possible sets of marginal probabilities derived
from the joint probabilities of N subsystems reproduce the corre-
sponding sets of joint probabilities of N � 1 subsystems. Consis-
tently Sq is strictly additive for all N � Nmax, where Nmax depends
on (p, q). In this way, the correlation �q(p) that we introduced
between two subsystems will itself be preserved for all N � Nmax.

Let us now address the following question: how deformed, and in
what manner, is the occupation of the phase space (N-dimensional
‘‘hypercube’’, in the same sense that the N � 2 phase space may be
seen as a ‘‘square’’, and the N � 3 one as a ‘‘cube’’) in the presence
of the scale-invariant correlation �q(p) determined once and for all
(see Fig. 10)? The most natural comparison is with the case of
independence (which corresponds to � � 0, hence to q � 1). It is
then convenient to define the relative discrepancy �N�n,n � {rN�n,n�

[pN�n (1 � p)n]} � 1 (naturally, other definitions for discrepancy can
be used as well, but the present one is particularly simple). Since n �
0, 1, 2, . . . , N, we may expect in principle to have N 
 1 different
discrepancies. It is not so! Quite remarkably there are only three
different ones, namely �N,0, �N�1,1, and all the others, which
therefore coincide with �0,N. They are given by

�N,0 �
�q�p�

�1 � p�2 �1 �
N�1 � p� � 1

pN � � 0,

�N�1,1 �
�q�p�

�1 � p�2 	1 �
1

pN�1
 	 0, and [9]

�N�n,n �
�q�p�

�1 � p�2 � 0 �2 � n � N�,

where the inequalities hold for 0 � q � 1, for which �q(p) � 0. Of
course, the equalities in Eq. 9 correspond to q � 1 (i.e., � � 0) (see
Fig. 6). We see that, for arbitrary N 	 2, only three different types
of vertices emerge in the N-dimensional hypercube. These can be
characterized by the (1, 1, . . . , 1) corner, the N sites along each
cartesian axis emerging from this corner, and all the others. As N
increases, the middle type predominates more and more, with
increasingly uneven occupation of phase space.

The present example corresponds to �N,0 � rN,0 as given in Eq.
8. It is important to notice in this case that, for fixed (p, q) such that
p � 1 and q � 1, there is a maximal value of N, noted Nmax(p, q),
for which the analytical expression for rN0 in Eq. 8 is nonnegative.
For N 
 Nmax, we are obliged to consider rN,0 � 0, which, through
application of the Leibnitz rule, leads to violations of the nonnega-
tivity of all rN�n,n. When this happens, of course the additivity of the
entropy, i.e., Sq(N) � NSq(1), does not hold any more. Unless we
have the trivial situation q � 1 (for which entropic additivity holds
for all 0 � p � 1), the thermodynamic limit N3 � imposes p � 1
for 0 � q � 1. Indeed Nmax(1, q)3� @q � [0, 1]. For all other values
of p � 1 and q � 1, Nmax(p, q) is finite.

A Discrete Model That Is Not Asymptotically Scale-Invariant. Let us
consider the probabilistic structure indicated in Fig. 10, where, for
given N, only the d 
 1 first elements are different from zero, with
d � 0, 1, 2, . . . , N.

Fig. 7. Scale-invariant joint probabilities pijk
A � B � C (i, j, k � 1, 2): the

quantities without and within square brackets correspond to states 1 and 2,
respectively, of subsystem C.

Fig. 5. Joint probabilities. (Left) Joint and marginal probabilities for two binary subsystems A and B. Correlation � and probability p are such that 0 � p2 �

�, p(1 � p) � �, (1 � p)2 � � � 1 (� � 0 corresponds to independence, for which case entropy additivity implies q � 1). (Right) One of the two (equivalent)
solutions for the particular case for which entropy additivity implies q � 0.

Fig. 6. Curves �(p) that, for typical values of q, imply additivity of Sq. For
�1�4 � � � 0 we have ��� � p � 1 � ���. For 0 � � � 1�4 we have (1 �
�1 � 4�)�2 � p � (1 
 �1 � 4�)�2.
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rN,0 � pN � �q�p�
�N�1 � p� � �pN � 1�	

�1 � p�2 ,

rN�1,1 � pN�1�1 � p� � �q�p�
1 � pN�1

1 � p
, [8]

rN�n,n � pN�n�1 � p�n�1 �
�q�p�

�1 � p�2��2 � n � N�.

Summarizing, as long as rN,0 	 0, this interesting structure
takes automatically into account (i) the standard constraints of
the theory of probabilities (nonnegativity and normalization of
probabilities), and (ii) the scale-invariant structure which guar-
antees that all the possible sets of marginal probabilities derived
from the joint probabilities of N subsystems reproduce the corre-
sponding sets of joint probabilities of N � 1 subsystems. Consis-
tently Sq is strictly additive for all N � Nmax, where Nmax depends
on (p, q). In this way, the correlation �q(p) that we introduced
between two subsystems will itself be preserved for all N � Nmax.

Let us now address the following question: how deformed, and in
what manner, is the occupation of the phase space (N-dimensional
‘‘hypercube’’, in the same sense that the N � 2 phase space may be
seen as a ‘‘square’’, and the N � 3 one as a ‘‘cube’’) in the presence
of the scale-invariant correlation �q(p) determined once and for all
(see Fig. 6)? The most natural comparison is with the case of
independence (which corresponds to � � 0, hence to q � 1). It is
then convenient to define the relative discrepancy �N�n,n � {rN�n,n�

[pN�n (1 � p)n]} � 1 (naturally, other definitions for discrepancy can
be used as well, but the present one is particularly simple). Since n �
0, 1, 2, . . . , N, we may expect in principle to have N 
 1 different
discrepancies. It is not so! Quite remarkably there are only three
different ones, namely �N,0, �N�1,1, and all the others, which
therefore coincide with �0,N. They are given by

�N,0 �
�q�p�

�1 � p�2 �1 �
N�1 � p� � 1

pN � � 0,

�N�1,1 �
�q�p�

�1 � p�2 	1 �
1

pN�1
 	 0, and [23]

�N�n,n �
�q�p�

�1 � p�2 � 0 �2 � n � N�,

where the inequalities hold for 0 � q � 1, for which �q(p) � 0. Of
course, the equalities in Eq. 23 correspond to q � 1 (i.e.,� � 0) (see
Fig. 13). We see that, for arbitrary N 	 2, only three different types
of vertices emerge in the N-dimensional hypercube. These can be
characterized by the (1, 1, . . . , 1) corner, the N sites along each
cartesian axis emerging from this corner, and all the others. As N
increases, the middle type predominates more and more, with
increasingly uneven occupation of phase space.

The present example corresponds to �N,0 � rN,0 as given in Eq.
22. It is important to notice in this case that, for fixed (p, q) such that
p � 1 and q � 1, there is a maximal value of N, noted Nmax(p, q),
for which the analytical expression for rN0 in Eq. 22 is nonnegative.
For N 
 Nmax, we are obliged to consider rN,0 � 0, which, through
application of the Leibnitz rule, leads to violations of the nonnega-
tivity of all rN�n,n. When this happens, of course the additivity of the
entropy, i.e., Sq(N) � NSq(1), does not hold any more. Unless we
have the trivial situation q � 1 (for which entropic additivity holds
for all 0 � p � 1), the thermodynamic limit N3 � imposes p � 1
for 0 � q � 1. Indeed Nmax(1, q)3� @q � [0, 1]. For all other values
of p � 1 and q � 1, Nmax(p, q) is finite.

A Discrete Model That Is Not Asymptotically Scale-Invariant. Let us
consider the probabilistic structure indicated in Fig. 10, where, for
given N, only the d 
 1 first elements are different from zero, with
d � 0, 1, 2, . . . , N.

Fig. 7. Scale-invariant joint probabilities pijk
A � B � C (i, j, k � 1, 2): the

quantities without and within square brackets correspond to states 1 and 2,
respectively, of subsystem C.

Fig. 5. Joint probabilities. (Left) Joint and marginal probabilities for two binary subsystems A and B. Correlation � and probability p are such that 0 � p2 �

�, p(1 � p) � �, (1 � p)2 � � � 1 (� � 0 corresponds to independence, for which case entropy additivity implies q � 1). (Right) One of the two (equivalent)
solutions for the particular case for which entropy additivity implies q � 0.

Fig. 6. Curves �(p) that, for typical values of q, imply additivity of Sq. For
�1�4 � � � 0 we have ��� � p � 1 � ���. For 0 � � � 1�4 we have (1 �
�1 � 4�)�2 � p � (1 
 �1 � 4�)�2.
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pN,n �
1

�N � 1�

�N � n�!n!
N!

. [16]

We now define

�N,n
�d� � �pN,n � lN,n

�d� sN
�d� �n � d�

0 �n � d�
[17]

where the excess probability sN
(d) and the distribution ration lN,n

(d)

(with 0 � � � 1) are defined through

sN
�d� � �

k�d
1

N

pN,k �
N � d
N � 1

[18]

lN,n
�d� � 


1 � � �n � 0�

�1 � ���n
N,n
�d�

�N � n�!n!
N!

�0 � n � d�

�d
N,d
�d� �n � d�

[19]

with


N,n
�d� � �

k�1

n 1
Weff�N , d� � Weff�N , n � 1�

� �
k�1

n 1

�
k�n

d
�N!��N � n�!n!	

�n � 0� , [20]

where Weff(N, d) is given by Eq. 10.
We have verified for d � 1, 2, 3, 4 and N3 � a result that we

expect to be correct for all d � N�2, namely that 0 � �N,n
1 ��
�N,n � �N�1,n �� 1, hence

lim
N3�

�N�1,n
�d�

�N,n
�d� � �N,n
1

�d� � 1, [21]

lim
N3�

�N�1,d
�d�

�N,d
�d� � 0

� 1. [22]

In other words, the Leibnitz rule is asymptotically satisfied for the
entire probability set {�N,n}, i.e., this system has asymptotic scale
invariance. Its entropy is given by

Sq�N, d� �

1 � �
k�0

d
�N!��N � n�!n!	��N,k

�d� 	q

q � 1
, [23]

and we verify that a value of q exists such that limN3� Sq(N,d)�N
is finite. Our numerical results suggest that, for 0 � � � 1, (see
Fig. 13)

q �
d � 1
d � 1

. [24]

Continuous Model
Let us now address our last example, namely a continuous model.
It is known that classical mechanics violates the 3rd principle of
thermodynamics, whereas quantum mechanics conforms to it. In-
deed, in the latter we typically have limT30 limN3� S(N, T)�N � 0
(T being the absolute temperature), whereas in the former such a
limit is typically negative, and can even diverge to ��. Consistently,
the present continuous model is going to have, as we shall see,
difficulties of the same type. This, however, does not affect its
scaling properties with N, which constitutes the central scope of the
present paper. We shall therefore dedicate some effort to explore
such continuous cases. We consider the following probability
distribution.

p�x� �
2

���2 � a�
e�x2

�1 � ax2��a 	 0�. [24]

We can verify that ���
� dx p(x) � 1. This distribution is illustrated

in Fig. 14.

Fig. 10. Probabilistic models with d � 1 (Left) and d � 2 (Right).

Fig. 11. Uniform distribution model with d � 1 (Left) and d � 2 (Right).

Fig. 12. Leibnitz-triangle-based � � 0.5 probability sets: d � 1 (Left), and d � 2 (Right).

6 of 10 � www.pnas.org�cgi�doi�10.1073�pnas.0503807102 Tsallis et al.



The entropy corresponding to one subsystem (i.e., N � 1) is
given by

Sq�1� �

1 � �
��

�

dx�p�x�	q
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���2 � a�

�q�
��

�

dx e�q�x2
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�q� 2

���2 � a�
�q

I�a, q�

q � 1
[25]

with (11)
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dz e�z2	1 �
a
q
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q
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2
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2
� q , q

a
�

�a���q�

� 	 a
q


q
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� q

1
F1	�q ,

1
2

� q ,
q
a
 , [26]

� and 1F1 being respectively the Riemann’s � and the hypergeo-
metric functions. The a-dependence of Sq for typical values of q is
depicted in Fig. 15. As expected for continuous distributions,
negative values for Sq do emerge.

Let us now compose two such subsystems. If they are indepen-
dent (q � 1) we have

Fig. 13. Illustrations of the extensivity of Sq for the q 
 1 ASF model (with
� � 0.5): (a) d � 1; (b) d � 2; (c) d � 3. Notice that the minimal value of N
equals d � 1. (Insets) Included to improve the perception of the fact that
limN3 � Sq(N)�N vanishes (diverges) if q � d � 1�d � 1), whereas it is finite
for q � d � 1�d � 1.

Fig. 14. Distribution p(x) for typical values of a. The point shared by all
distributions is located at (�x�, p) � (1��2, 1��e�) � (0.707, 0.342).
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P1�x, y� � p�x�p�y� �
4

��2 � a�2 e��x2
y2��1 � a�x2 � y2� � a2x2y2	

[27]

Of course, ���
� ���

� dxdy P1(x, y) � 1. For the general case, we
propose the following simple generalization of p(x)p(y):

Pq�x, y� �
4

��4 � 4A � B�
e��x2
y2��1 � A�x2 � y2� � Bx2y2	,

[28]

which satisfies ���
� ���

� dxdy Pq(x, y) � 1. Of course, for q � 1, we
expect (A, B) � (a, a2). Let us now calculate the marginal
probability, i.e.,

�
��

�

dy Pq�x, y� �
2�2 � A�e�x2

�� �4 � 4A � B�
�1 �

2A � B
2 � A

x2�.

[29]

We want this marginal probability to recover the original p(x), so we
impose (2A 
 B)�(2 
 A) � a, which implies B � aA 
 2(a � A)
and ���

� dy Pq(x, y) � p(x). It follows that

Pq�x, y� �
4

� �4 � 2�a � A� � aA	
e��x2
y2�

� �1 � A�x2 � y2� � �aA � 2�a � A�	x2y2�. [30]

Finally, to have A as a function of (q, a), we impose, as for the
binary case,

Sq�2� � 2Sq�1�, [31]

where Sq(1) is given by Eq. 25 and

Sq�2� �

1 � �
��

� �
��

�

dxdy�Pq�x, y�	q

q � 1

�

1 � � 4
��4 � 2�a � A� � aA	�

q�
��

� �
��

�

dxdy e�q�x2
y2�

��1 � A�x2 � y2� � �aA � 2�a � A�	x2y2�q

q � 1

�

1 �
1
q� 4

��4 � 2�a � A� � aA�
q

J�a, A, q�

q � 1
[32]

with (40)

J�a, A, q� ��
��

� �
��

�

du dv e��u2
v2�

� �1 �
A
q

�u2 � v2� �
aA � 2�a � A�

q2 u2v2�q

�
1

���q��
��

�

dz � 1 � �A�q�z2

�A�q� � ��aA � 2�a � A���q2	z2 e�z2

��1 � �A�q�z2�q

� � ���	 1
2

� q

1

�F1	 1
2

,
3
2

� q ,
1 � �A�q�z2

�A�q� � ��aA � 2�a � A���q2	z2

� 	 �A�q� � ��aA � 2�a � A���q2	z2

1 � �A�q�z2 

1
2

q

���q��	 1
2

� q

�1F1	�q ,

1
2

� q ,
1 � �A�q�z2

�A�q�
�aA
2�a�A���q2� z2
.

[34]

See in Fig. 16 the a-dependence of A for typical values of q. Finally,
the relative discrepancy

��x, y� �
Pq�x, y�

P1�x, y�
� 1 [35]

is illustrated in Fig. 17 for a typical set (a, q). For higher values of
N we follow here a procedure similar to the one in our discrete
example SSF of Fig. 3. Let us address the N � 3 case. For the case
of independence, we have

P1�x, y, z� � p�x�p�y�p�z� � e��x2
y2
z2�

� �1 � a�x2 � y2 � z2� � a2�x2y2 � y2z2 � z2x2� � a3x2y2z2	. [36]

We consistently assume

Pq�x, y, z� �
8

� 3/2�8 � 12A3 � 6B3 � C3�
e��x2
y2
z2�

� �1 � A3�x2 � y2 � z2� � B3�x2y2 � y2z2 � z2x2�

� C3x2y2z2	, [37]

which satisfies ���
� ���

� ���
� dx dy dz Pq(x, y, z) � 1. Clearly, for q �

1, (A3, B3, C3) � (a, a2, a3). For the general case, we impose that
���

� dzPq(x, y, z) � Pq(x, y), i.e., the N � 2 distribution as given by
Eq. 31. This imposition implies

2A3 � B3

2 � A3
� A2 � A,

Fig. 15. Dependence of Sq(1) on a for typical values of q. Sq is positive for a �

ac(q) and negative for a � ac(q). The threshold value ac decreases from infinity
to zero when q increases from zero to unity. For q � 1 we have that SBG � 0
for all a � 0, thus exhibiting the well known difficulty of classical statistics.
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2B3 � C3

2 � A3
� B2 � B, [37]

2 � A3

8 � 12A3 � 6B3 � C3
�

1
4 � 4A2 � B2

,

hence

A3 �
4A2 � 2B2 � C3

4 � 2A2 � B2
,

B3 �
4B2 � �A2 � 2�C3

4 � 2A2 � B2
.

[38]

The coefficient C3 
 0 must satisfy that C3 � a3 for q � 1. If Sq(3) �
3Sq(1) is automatically satisfied, we have some freedom for choos-
ing C3. Natural choices could be C3 � a3 and C3 � A3B3 (which
automatically satisfies C3 � a3 for q � 1). If, however, Sq(3) �
3Sq(1), we can impose the equality and determine a better approx-
imation for q. The new value is expected to be only slightly different
from the one that we already determined by imposing entropic
additivity for N � 2. The procedure can in principle be iteratively
repeated for increasing N. Although such a study has its own
interest, it lies outside the scope of this article.

Final Remarks
Let us now critically re-examine the physical entropy, a concept
which is intended to measure the nature and amount of our
ignorance of the state of the system. As we shall see, extensivity may
act as a guiding principle. Let us start with the simple case of an
isolated classical system with strongly chaotic nonlinear dynamics,
i.e., at least one positive Lyapunov exponent. For almost all possible
initial conditions, the system quickly visits the various admissible
parts of a coarse-grained phase space in a virtually homogeneous
manner. Then, when the system achieves thermodynamic equilib-
rium, our knowledge is as meager as possible (microcanonical
ensemble), i.e., just the Lebesgue measure W of the appropriate
(hyper) volume in phase space (continuous degrees of freedom), or
the number W of possible states (discrete degrees of freedom). The
entropy is given by SBG(N) � k ln W(N) [Boltzmann principle (41)].§§

§§A. Einstein: ‘‘Usually W is set equal to the number of ways (complexions) in which a state,
which is incompletely defined in the sense of a molecular theory (i.e. coarse grained), can
be realized. To compute W one needs a complete theory (something like a complete
molecular-mechanical theory) of the system. For that reason it appears to be doubtful
whether Boltzmann’s principle alone, i.e. without a complete molecular-mechanical
theory (Elementary theory) has any real meaning. The equation S � k log W 
 const.
appears [therefore] without an Elementary theory—or however one wants to say it—
devoid of any meaning from a phenomenological point of view.’’ [translated by E. G. D.
Cohen (41)]. A slightly different translation also is available: [‘‘Usually W is put equal to
the number of complexions. . . . In order to calculate W, one needs a complete (molecular-
mechanical) theory of the system under consideration. Therefore it is dubious whether
the Boltzmann principle has any meaning without a complete molecular-mechanical
theory or some other theory which describes the elementary processes. S � R�� log W 


const. seems without content, from a phenomenological point of view, without giving in
addition such an Elementartheorie.’’ translated by Abraham Pais, Subtle is the Lord. . . ,
Oxford University Press, 1982)].

Fig. 16. (a, q)-dependence of A (A � a for q � 1). (a) For typical values of
q. (b) For typical values of a.

Fig. 17. �(x, y; a, q) for (a, q) � (0.5, 0.95) (hence A � 2.12); x � y is a plane
of symmetry, i.e., �(x, y; a, q) � �(y, x; a, q). The two bold straight lines
correspond to � � 0.
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