Supporting Text

A Strictly Scale-Invariant Discrete Model. In dealing with our first g #
1 discrete example, we start with two equal and distinguishable
binary subsystems 4 and B (N = 2). The associated joint proba-
bilities are, with all generality, indicated in Fig. 9, where « is the



correlation® between A and B. Let us now impose (1, 2)
additivity of S,.” In other words, we choose k(p) such that S,(2) =
25,(1), where (for W= 2) S,(1) =1 —p? — (1 — p)?/q — 1, and
(for W =4)S,(2) = 1 — (p* + k)t — 2[p(1 — p) — ¢ — [(1 — p)? +
k]7/q — 1. We focus on the solutions k,(p) for 0 = g = 1 indicated
in Fig. 10.*

With the convenient notation

To=r=pi =p

m=ra=p;=~0-p)

=10 =pht =pt+ [19]

m=rn=pht=pif=pl-p) —«

T =rp=pnt=(0-p’+k

we can verify
ryt+ 2ry Frep=1,

20+ 7111 =1 =P, [20]
rutrp=ra=1-p

Let us now address the case of three equal and distinguishable
binary subsystems, 4, B, and C (N = 3). We present in Fig. 11
probabilities that are not the most general ones, but rather general
ones for which we have strict scale invariance, in the sense that all
the associated marginal probability sets exactly reproduce the above
N = 2 case. Notice how strongly this construction reminds us of the
one that occurs in the renormalization group procedures widely
used in quantum field theory, the study of critical phenomena, and
elsewhere (6-9).

With the convenient notation ) = I";() = pA 111 31 =11 =
AB+C pA+B+c pA+ +C pA C. pA FBHC
11; c 5 T3 = ri2 = P22l
pAlz = pisPTC s = rs = pioit T and SO on, we can Verlfy

r30 + 3ry +3r +rg3 =1,

r30+721:rzo:P2+Kq(P)’ [21]

ra1 + 1 =1 =p(l = p) — ky(p),
rip+rgs =rop = (1 —p)* + k4(P),

and so on.

Let us complete this example by considering the generic case
(arbitrary N). The results are presented in Fig. 12, where we have
merged the Pascal triangle and the present Leibnitz-like triangle
(10). For the left elements, we have the usual Pascal rule, i.e., every
element of the Nth line equals the sum of its “north-west” plus its
“north-east” elements. For the right elements we have the property
that every element of the Nth line equals the sum of its “south-west”
plus its “south-east” elements. In other words, for (N = 1,2,3,...;

O 1 2 N) wehavethatrN n,,+rN n—ln+1 =IN— n,lﬂ,and
also that EN ON'/(N —n)nlry_n, =1HN =0,1,2,...). These
two equations admit the following solution:

*Assuming that the states 1 and 2 of subsystems A and B correspond to the values aj and
a; of the random variable, we have that the covariance equals (a1 — a2)k, and the
correlation coefficient equals k/[p(1 — p)l.

TAs previously mentioned, it is as a simple illustration that we imposed S¢(2) = 2S4(1) instead
of say S2-4(2) = 252—4(1). The results would then obviously be the same with (1 — q) <> (q —
1). Consequently, we would have additivity for 1 = g = 2, instead of 0 = g = 1.

*The (1 — q)< (g — 1) “duality” appears naturally in nonextensive statistical mech-
anics (see, for instance, refs. 3 and 4). J. Marsh and S. Earl (see ref. 5) noticed and
kindly communicated to us that, for the present k-model, there were also x > 0 solutions,
and also that the additivity of the g # 1entropy Sq(N) was limited to values of N that only
achieved infinity forp = 1.



(N0 —p) + (" —1)]

rN,O :PN + Kq(p) (1 _p)z ’
1 _pN—l
IN—1,1 =PN71(1 -p) - Kq(P)ﬁ, [22]
- Kq(P)
'N—nn :pN n(l _P)n|:1 + (1 q_p)2:|(2 =n SN)

Summarizing, as long as rx = 0, this interesting structure
takes automatically into account (i) the standard constraints of
the theory of probabilities (nonnegativity and normalization of
probabilities), and (ii) the scale-invariant structure which guar-
antees that all the possible sets of marginal probabilities derived
from the joint probabilities of N subsystems reproduce the corre-
sponding sets of joint probabilities of N — 1 subsystems. Consis-
tently S, is strictly additive for all N = N4, where N, depends
on (p, q). In this way, the correlation k,(p) that we introduced
between two subsystems will itself be preserved for all N =< N4

Let us now address the following question: how deformed, and in
what manner, is the occupation of the phase space (N-dimensional
“hypercube”, in the same sense that the N = 2 phase space may be
seen as a “square”, and the N = 3 one as a “cube”) in the presence
of the scale-invariant correlation k,(p) determined once and for all
(see Fig. 10)? The most natural comparison is with the case of
independence (which corresponds to k = 0, hence to g = 1). It is
then convenient to define the relative discrepancy Mx—nn = {rN—nn/



[PV (1 = p)"]} — 1 (naturally, other definitions for discrepancy can
be used as well, but the present one is particularly simple). Since n =
0,1,2,..., N, we may expect in principle to have N + 1 different
discrepancies. It is not so! Quite remarkably there are only three
different ones, namely mno, mv-1,1, and all the others, which
therefore coincide with mg . They are given by

kap) [HN“"’)”]SO,

NN = (1 _p)z N
K,(p) 1
-1 = q_p)z (1 —pN,l) =, and [23]
__*4lp) =02=n=N),

MNN-nn = (1 _p)2

where the inequalities hold for 0 = g < 1, for which «,(p) = 0. Of
course, the equalities in Eq. 23 correspond to g = 1 (i.e.,x = 0) (see
Fig. 13). We see that, for arbitrary N = 2, only three different types
of vertices emerge in the N-dimensional hypercube. These can be
characterized by the (1, 1, ..., 1) corner, the N sites along each
cartesian axis emerging from this corner, and all the others. As N
increases, the middle type predominates more and more, with
increasingly uneven occupation of phase space.

The present example corresponds to myo = 7y as given in Eq.
22. It is important to notice in this case that, for fixed (p, ¢) such that
p < 1land g < 1, there is a maximal value of N, noted N,,..«(p, q),
for which the analytical expression for ryg in Eq. 22 is nonnegative.
For N > N,,a, we are obliged to consider 7y = 0, which, through
application of the Leibnitz rule, leads to violations of the nonnega-
tivity of all ry—,, ,. When this happens, of course the additivity of the
entropy, i.e., S4(N) = NS (1), does not hold any more. Unless we
have the trivial situation ¢ = 1 (for which entropic additivity holds
for all 0 = p = 1), the thermodynamic limit N — o imposes p = 1
for 0 =g < 1.Indeed N,ur(1,q) =2 Vq € [0, 1]. For all other values
of p < 1andq <1, Nyal(p, q) is finite.



Continuous Model

Let us now address our last example, namely a continuous model.
It is known that classical mechanics violates the 3rd principle of
thermodynamics, whereas quantum mechanics conforms to it. In-
deed, in the latter we typically have limz—o limy—.. S(N, T)/N = 0
(T being the absolute temperature), whereas in the former such a
limit is typically negative, and can even diverge to —. Consistently,
the present continuous model is going to have, as we shall see,
difficulties of the same type. This, however, does not affect its
scaling properties with N, which constitutes the central scope of the
present paper. We shall therefore dedicate some effort to explore
such continuous cases. We consider the following probability
distribution.

plx) = e ™1 + axd(a = 0). [24]

\G(Z + a)

We can verify that [, dx p(x) = 1. This distribution is illustrated
in Fig. 14.



The entropy corresponding to one subsystem (i.e., N = 1) is
given by
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with (11)
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I' and 1F; being respectively the Riemann’s I" and the hypergeo-
metric functions. The a-dependence of S, for typical values of g is
depicted in Fig. 15. As expected for continuous distributions,
negative values for S, do emerge.

Let us now compose two such subsystems. If they are indepen-
dent (¢ = 1) we have



4 2
Py(x,y) =ppy) = me_(xzﬂ“)[l +al® +y?) + a’x’y?]

[27]

Of course, [7.. [”.. dxdy Pi(x,y) = 1. For the general case, we
propose the following simple generalization of p(x)p(y):

4
— —(x2+y?) 2 2 2.2
P,(x,y) 77(4+4A+B)e [14+Ax>+y?) + BxH?],

[28]

which satisfies 7., [Z.. dxdy Py(x,y) = 1. Of course, for g = 1, we
expect (4, B) = (a, a?). Let us now calculate the marginal
probability, i.e.,

22+ A)e™ [ 24+8B 2]

dy P = +
fqu(x’y) Jrd+aa+pl T 2+4”

[29]
We want this marginal probability to recover the original p(x), so we
impose (24 + B)/(2 + A) = a, which implies B = a4 + 2(a — A)
and [Z.. dy P,(x,y) = p(x). It follows that

4
Pyx,y) = w4+ 2(a + A) + aA]

A1+ AW +y?) + [ad + 2(a — A)WH?. [30]

e~ D)

Finally, to have A as a function of (¢, @), we impose, as for the
binary case,

§,(2) =25,01), [31]
where S,(1) is given by Eq. 25 and

1—J' f dxdy[P,(x, y)
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with (11)
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See in Fig. 16 the a-dependence of 4 for typical values of g. Finally,
the relative discrepancy

_Pyxy)
_Pl(X,Y)

N, y) [34]

is illustrated in Fig. 17 for a typical set (a, g). For higher values of
N we follow here a procedure similar to the one in our discrete
example SSF of Fig. 3. Let us address the N = 3 case. For the case
of independence, we have

Py(x,y,2) = plo)p()p(z) = e~ W7D
(1 + ale? +y? + 22 + a?(y? + y*2? + 22%) + a’Py%?]. [35]
We consistently assume

8
7328 + 1245 + 6B; + C3)

—(x2+y2+22)

Py(x,y,z) = e

(14 A5 +y? + 22) + By(xy? +y%2? + 2%

+ Cx?y’2?], [36]
which satisfies [*.. [Z., [Z.. dxdy dz P,(x,y,z) = 1. Clearly, for g =
1, (43, B3, C3) = (a, a2, a®). For the general case, we impose that
JZo dzPy(x, y, 2) = Py(x, ), i.e., the N = 2 distribution as given by
Eq. 30. This imposition implies

245 + B;

2+4, =4



2B; + C;

2+ As =B,

B, [37]

2+ A, B 1
8+ 1245+ 6B;+ C; 4 +44,+ By

hence

M2 2B 1 G
P 4-24,+B,°
[38]
4By + (4, — 2)Cs

7 4-24,+B,



The coefficient C3 > 0 must satisfy that C3 = ¢ forq = 1. If §,(3) =
35,(1) is automatically satisfied, we have some freedom for choos-
ing Cs. Natural choices could be C; = a3 and C; = A3B; (which
automatically satisfies C3 = 4> for ¢ = 1). If, however, S,(3) #
35,(1), we can impose the equality and determine a better approx-
imation for g. The new value is expected to be only slightly different
from the one that we already determined by imposing entropic
additivity for N = 2. The procedure can in principle be iteratively
repeated for increasing N. Although such a study has its own
interest, it lies outside the scope of this article.
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