Table 2. Summary of constants used to estimate step edge free energies, α , and kinetic coefficients, β , for quartz, feldspar, and kaolinite

Mineral	Solution*	Constants				Dislocation model (Eq. 12b)		Nucleation model (Eq. 12a)	
		Temp, °C	h, Å	ω, cm ³	mh⁺, Å	β , cm/s	$lpha_{ m dislocation}$ mJ/m ²	$lpha_{ m homogeneous}$ mJ/m ²	$lpha_{ m defect\ assisted}$ mJ/m ²
Quartz	H ₂ O	200	4.33	$3.77 imes 10^{-23}$	4.91	$\sim \! 1 \ imes 10^{-6}$	16.2 ± 5	_	_
Quartz	0.0167 M CaCl ₂	200	4.33	$3.77 imes10^{-23}$		—	—	79 ± 14	32 ± 10
Quartz	0.05 M NaCl	200	4.33	$3.77 imes10^{-23}$		—	—	61 ± 6	18 ± 8
Feldspar [‡]	КСІ/КОН, рН 9	150	7.22	$1.80 imes 10^{-22}$		—	—	30 ± 4	8 ± 4
Kaolinite§	HClO₄/NaOH, pH 3	80	7.37	$1.65 imes10^{-22}$	7.37	\sim 2 $ imes$ 10 ⁻⁸	$2.6\ \pm\ 0.4$	—	—
Kaolinite [¶]	HCl, pH 2	150	7.37	$1.65 imes10^{-22}$		—	—	23 ± 2	4 ± 2
Kaolinite [¶]	NH ₄ Cl/NH ₄ OH, pH 7.8	150	7.37	$1.65 imes10^{-22}$		_	_	24 ± 2	7 ± 3

*Note that the aqueous solutions also contain dissolved aqueous silica and (as applicable) stoichiometric amounts of aluminum.

¹The Burgers vector, b = mh, is used to estimate the perimeter, *P*, in Eq. **12b** by the relation $2\pi r_h$. Values of r_h for quartz and kaolinite are 1.25*b* and 2.5*b*, respectively (16). No value is reported for K-feldspar because only the dislocation model requires *b*.

[‡]Dissolution rate data from ref. 22 using log $K_{sp} = -15.24$ at 150°C.

[§]Dissolution rate data from ref. 6 using log $K_{sp} = 3.75$ for pH = 3, $T = 80^{\circ}$ C.

[¶]Dissolution rate from ref. 23 using log $K_{sp} = -4.00$ (pH 2) and log $K_{sp} = -7.45$ (pH 7.8) at 150°C.