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Appendix

Proof of Lemma 1: The result follows, because Q is (i) nonempty, (ii) bounded above, and (iii)

closed.

(/) Choose any K > 0. If s(t)= F(K,t,0)/2, fort=1,...,T, then p(t)>0,forallt=0,....T,

and, whereas y(0) <0, y(¢) >0, fort=1,...,T. If r € (—o, ) is sufficiently small, it follows

T
that Zp(t)y(t)e”’ >0,sothat re Q.

t=0

(if) The assumptions on C and F in the first two paragraphs of The Setup imply that there exist
constants B> 0 and C > 0 such that C(K)> BK + C, for all K >0, and a function A(¢) > 0 such

that ' (K,t,a) < A(¢)K forall K >0,ae€Ad,and¢t=1,...,7. Consider any r € 0, so that

ip(t)y(t)e_” >0, for some (p,y)=(p(s),(K,s)) e M . Because p(t) <1 and

t=0

T
y(t)=F(K,t,a)—-s(t)< A)K, fort=1,...,T, it follows that K(—B+ ZA(t)e”]—C > 0.
t=1

T —
Hence r <7 where 7 is the unique solution of — B + Z A(t)e™" =0, and 7 is an upper bound
t=1

for O, as required.

(ii7) Consider any sequence », — 7 where r, € Q for all n. It must be shown that 7 € Q.

Suppose the sequences K, and s, generate r,. Take N such that » > N implies r, 27 — A, for

T —
any fixedA > 0. Since —C(K,) + ZF(Kn ,t,a)e” "™ >0, there can be no subsequence of

t=1

K, — o, given the conditions on C and F. Hence there is a convergent subsequence of



K, — K €[0,), say. Now define N such that n > N implies 7, € (¥ — A,7 + A) and

K, e (K —A,K +A), for some A > 0. Because
— T [— — —
—-B(K-A)-C+ Z(A(t)(K +A)e "N —5 (e ! ) > 0, there can be no subsequence of the
t=1

s (t) = o, forany ¢ = 1,...,T. Hence there is a convergent subsequence s, — § €[0,)", say.

It follows from continuity of the functions p(s) and y(K,s) that K and 5 generate 7, so that

7 € Q, as required.

Proof of Lemma 2: Consider backward induction on ¢ for the results in the first sentence. These
results clearly hold at t = 7. Suppose then, as the induction hypothesis, that they hold at 7 + 1. It
follows that V' (K,t,a) > 0 is continuous in K > 0, because V' (K, +1,00) >0 and F(K,t,a) >0

are continuous, and ¥ (K, z,0.) = max., {F(K,1,0) = s(t) + ¢ s (s())V (K, +1,a)}. Indeed, the
implicit function theorem implies the optimal s(¢) satisfying c'(s(?))V(K,t +La)e =1 isa
continuously differentiable function of K > 0, for any aeA4. Using the “envelope theorem™’ it
follows that V. (K,t,0) = F (K,t,a)+e ‘o (s()V (K,t+La),t=1,...,T-1. Thatis, although
s(?) is a function of K, this does not affect this expression because s(¢) is chosen optimally.
Clearly, V, (K,t,a) > 0 since Fy (K,t,a)>0 and V, (K, +1,0) > 0. Further, V', (K,t,0) can
be differentiated to yield V., (K,t,0) as a continuous function of K > 0, completing the

induction argument.

Consider now the choice of K to maximize pV (K,l,a)e”” —C(K). The assumptions on F and C
imply that pV, (K,LLa)e™ —C'(K) > 0, for all small enough K > 0, and that
PV (K,L,a)e" —C'(K) <0 for all large enough K. Hence there must exist an optimal K > 0

satisfying the first- and second-order necessary conditions as stated.

Proof of Proposition 2: The dependence of variables on 7 is noted. For any K > 0, the envelope

theorem implies V. (K,t,a,7) =—e "o (s())V(K,t +1La,r)+e o (s())V.(K,t +La,r),



t=1,...,T-1. Since V (K,T,a,r) =0, it follows that V' (K,t,a.,r) <0, for¢t=1,....,T— 1.

Given pV(K *(r*)L,a, e = C(K *(r*)) and pV, (K *(r)La,r)e” = C'(K *(r)), it
follows that di( V(K *(r)La,r)e ™ —C(K*(r) = pV, (K *(r).L,a,7) < 0, so that
r

V(K *(r),l,a,r)e” < C(K *(r)), for all > r*. Thatis, L(r*, p*,y*) =0, so that the growth
rate r* is feasible, but max ,  L(r, p,y) <0, for all » > r* so no growth rate strictly greater than

r*1s feasible.

Proof of Lemma 3: The optimal K* and s* solve the following problem
T t—1

max g oy «ro {— C(K)+ z 1_9[1_[0 (s(t))j(F(K, t,a) — s(t))e’*’} . The dynamic programming
t=1 =1

approach in Lemma 2 can be extended to prove that such K*> 0 and s* > 0 are continuously

differentiable functions of »* and a.. Because, in addition,

[— C(K*)+ iﬁ(ﬁc (s*C ))j(F (K*,t,o)—s* (t))e"*’} = 0, the implicit function theorem

t=1 =1

then implies that the maximum growth rate, » * (o), say, is a continuously differentiable function

of aeAd. However, as another example of the envelope theorem, the derivatives of K* and s *

i@ | XPTOREND)

DS ) (F(K* 1.3~ 5* (1))

t=1

play no direct role here. That is, =0, as required,

T T
given also that z tp* (t)(F(K*, t,a)—s* (t)) =Zp *@W(K*,t,a) >0, by Lemma 2.

t=1 t=1

o
Proof of Theorem 1: Note that »*(a0) =0 and arr(@)

=0 throughout. Consider first:

Lemma A: (i) V (K,t,a) >0, forall K> 0, and ¢ =2,...,T . (ii) V,,(K,l,a) >0, for all
K>0.



Proof of Lemma A: (i) By the envelope theorem,
V. (K, t,oa)=F (K,t,oa)+o(s())V (K,t+1,a),forall K >0, t=1..,7—-1. Recall
that F, (K,t,a) <0, forall ¢t <7 ,but F, (K,t,&0) >0, for all #>7 . Hence backwards recursion

from T implies that V, (K,¢,&0) >0, for ¢ =¢,...,T . Moreover, if V, (K,t,&0) <0, for some ¢ <1,

T
then V_ (K,t—1,a) < 0. But, since V(K ,L,a) = Zp *(F, (K,t,a)/ p =0, it must then be that

t=1

V,(K,t,o)>0,forany K>0,and t =2,...,T .

(if) Differentiating o' (s(t))V(K,t +1,a)e”” =1 with respect to o, at o =a , holding

os(t) o' (s()V, (K,t+1,a)
oo o"(s(OV(K,t+1,a)

K> 0 constant, yields >0, fort=1,...,T—1. The envelope

T
theorem implies that V. (K,L,a) = Ze_’*(’_l)cj (s(1)..o(s(t-1)F,(K,t,a) >0, forall K >0.

t=1

Since F, (K,t,o) > 0, differentiation of V', (K,l,o.) with respectto a,at a =a, with K> 0

constant, then yields V, (K,1,a) >0.

Now Lemmas 2 and A imply the results of Theorem I:

(i) Because pV,, (K*,1,a)—C"(K*) <0, it follows from differentiating
PV (K*1,a)e”” = C'(K*) with respect to o, at o, =& , that

dK*  pVe (K* L&)
do.  C'"(K*)— pV,o (K*1,&)

(if) Differentiating o' (s * (£))V (K*,t + L,a)e”” =1 with respect to o, at oo =& , where K can

G'(s*(t))[Va(K*,t+1,0T)+VK(K*,t+1,oT) dK*}

vary, finally yields

ds*(t):_ >0, for
do ’

"' (s*(OW(K*,t+1,&)



