
Supporting information for Kaplan and Robson (2002) Proc. Natl. Acad. Sci. USA,

10.1073/pnas.152502899

Appendix

Proof of Lemma 1: The result follows, because Q is (i) nonempty, (ii) bounded above, and (iii)

closed.

(i) Choose any 0>K .  If 2/),,()( αtKFts = , for t = 1,…,T, then 0)( >tp , for all t = 0,…,T,

and, whereas 0)0( <y , 0)( >ty , for t = 1,…,T.   If ),( ∞−∞∈r  is sufficiently small, it follows

that 0)()(
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(ii) The assumptions on C and F in the first two paragraphs of The Setup imply that there exist

constants B > 0 and C > 0 such that CBKKC +≥)( , for all 0≥K , and a function 0)( >tA  such

that KtAtKF )(),,( ≤α  for all 0≥K , α∈A, and t = 1,…,T.  Consider any Qr∈ , so that
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rtetytp , for some MsKyspyp ∈= )),(),((),( .  Because 1)( ≤tp  and

KtAtstKFty )()(),,()( ≤−= α , for t = 1,…,T, it follows that .0)(
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Hence rr <  where r  is the unique solution of 0)(
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tretAB , and r  is an upper bound

for Q, as required.

(iii) Consider any sequence rrn →  where Qrn ∈  for all n.  It must be shown that Qr ∈ .

Suppose the sequences nK  and ns  generate nr .  Take N such that n > N implies ∆−≥ rrn , for

any fixed 0>∆ .  Since ∑
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)( 0),,()( α , there can be no subsequence of

∞→nK , given the conditions on C and F.  Hence there is a convergent subsequence of



),0[ ∞∈→ KK n , say.  Now define N such that n > N implies ),( ∆+∆−∈ rrrn  and

),( ∆+∆−∈ KKK n , for some 0>∆ .  Because
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)()( 0)())(()( , there can be no subsequence of the

∞→)(tsn , for any t = 1,…,T.  Hence there is a convergent subsequence T
n ss ),0[ ∞∈→ , say.

It follows from continuity of the functions p(s) and y(K,s) that K  and s  generate r , so that

Qr ∈ , as required.

Proof of Lemma 2:  Consider backward induction on t for the results in the first sentence.  These

results clearly hold at t = T.  Suppose then, as the induction hypothesis, that they hold at t + 1. It

follows that 0),,( ≥αtKV  is continuous in 0≥K , because 0),1,( ≥+ αtKV  and 0),,( ≥αtKF

are continuous, and { }),1,())(()(),,(max),,( )( ασαα ++−= − tKVtsetstKFtKV r
ts .  Indeed, the

implicit function theorem implies the optimal s(t) satisfying 1),1,())((' =+ −retKVts ασ  is a

continuously differentiable function of 0>K , for any α∈A.  Using the “envelope theorem”’ it

follows that ),1,())((),,(),,( ασαα ++= − tKVtsetKFtKV K
r

KK , t = 1,…,T - 1.  That is, although

s(t) is a function of K, this does not affect this expression because s(t) is chosen optimally.

Clearly, 0),,( >αtKVK  since 0),,( >αtKFK  and 0),1,( >+ αtKVK .  Further, ),,( αtKVK  can

be differentiated to yield ),,( αtKVKK  as a continuous function of K > 0, completing the

induction argument.

Consider now the choice of K to maximize )(),1,( KCeKVp r −−α .  The assumptions on F and C

imply that 0)('),1,( >−− KCeKVp r
K α , for all small enough K > 0, and that

0)('),1,( <−− KCeKVp r
K α  for all large enough K .  Hence there must exist an optimal K > 0

satisfying the first- and second-order necessary conditions as stated.

Proof of Proposition 2: The dependence of variables on r is noted. For any K > 0, the envelope

theorem implies ),,1,())((),,1,())((),,,( rtKVtsertKVtsertKV r
rr

r ασασα +++−= −− , 



t = 1,…,T - 1.  Since 0),,,( =rTKVr α , it follows that 0),,,( <rtKVr α , for t = 1,…,T – 1.

Given *))(*(*),,1*),(*( * rKCerrKVp r =−α  and ))(*('),,1),(*( rKCerrKVp r
K =−α , it

follows that 0),,1),(*()))(*(),,1),(*(( * <=−− rrKVprKCerrKVp
dr
d

r
r αα , so that

))(*(),,1),(*( * rKCerrKVp r <−α , for all r > r*.  That is, 0*)*,*,( =yprL , so that the growth

rate r* is feasible, but 0),,(max , <yprLyp , for all r > r*, so no growth rate strictly greater than

r* is feasible.

Proof of Lemma 3: The optimal K* and s* solve the following problem
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.  The dynamic programming

approach in Lemma 2 can be extended to prove that such K* > 0 and s* > 0 are continuously

differentiable functions of *r  and α.  Because, in addition,
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, the implicit function theorem

then implies that the maximum growth rate, )(* αr , say, is a continuously differentiable function

of α∈A.  However, as another example of the envelope theorem, the derivatives of K* and s*

play no direct role here.  That is, 
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, as required,

given also that ( ) 0),*,()(*)(*),*,()(*
11
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tKVtptstKFttp αα , by Lemma 2.

Proof of Theorem 1:  Note that 0)(* =αr  and 0)(*
=

α
α

d
dr  throughout.  Consider first:

Lemma A: (i) 0),,( >αα tKV , for all K > 0, and Tt ,...,2= .  (ii) 0),1,( >αα KVK , for all

K > 0.



Proof of Lemma A:  (i) By the envelope theorem,

),1,())((),,(),,( ασαα ααα ++= tKVtstKFtKV , for all 0>K , 1,...,1 −= Tt .  Recall

that 0),,( <αα tKF , for all tt < , but 0),,( >αα tKF , for all tt ≥ . Hence backwards recursion

from T implies that 0),,( >αα tKV , for Ttt ,...,= . Moreover, if 0),,( ≤αα tKV , for some tt < ,

then 0),1,( <− αα tKV . But, since 0/),,()(*),1,(
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ptKFtpKV αα αα , it must then be that

0),,( >αα tKV , for any K > 0, and Tt ,...,2= .

(ii) Differentiating 1),1,())((' * =+ −retKVts ασ  with respect to α , at αα = , holding

K > 0 constant, yields 0
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Since 0),,( ≥αα tKFK , differentiation of ),1,( αKVK  with respect to α , at αα = , with K > 0

constant, then yields 0),1,( >αα KVK .

Now Lemmas 2 and A imply the results of Theorem 1:

(i) Because 0*)(''),1*,( <− KCKVp KK α , it follows from differentiating

*)('),1*,( * KCeKVp r
K =−α  with respect to α , at αα = , that
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(ii) Differentiating 1),1*,())(*(' * =+ −retKVts ασ  with respect to α , at αα = , where K can

vary, finally yields 0
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