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Analysis of the Crystallization Kinetics of Lysozyme using a Model with
Polynuclear Growth Mechanism

Yasuo Bessho, Mitsuo Ataka, Michihiko Asai,* and Tatsuo Katsura
National Institute of Bioscience and Human Technology, 1-1 Higashi, Tsukuba 305, Japan

ABSTRACT A differential equation model with a polynuclear growth mechanism was formulated for a theoretical understanding
of protein crystallization. The model equation contains two parameters characterizing nucleation and growth: the number of
protein molecules constituting a critical nucleus and the order of growth kinetics. This model was applied successfully to explain
the experimental data on the protein concentration changes due to nucleation and crystal growth of tetragonal and orthorhombic
hen egg-white lysozyme. It was shown that the critical nucleus most probably consists of three or four molecules. The range
and extent of the validity of the present model and analysis are discussed.

INTRODUCTION

The technique of protein crystallography for structure de-
termination has advanced greatly in recent years and, in
many cases, preparation of suitable crystals has become the
rate-limiting step (Lesk, 1991). The study of the protein crys-
tallization mechanism and kinetics is important in this re-
spect. Furthermore, it may contribute to the further under-
standing of protein interaction and association of biological
significance.
We investigated previously the kinetics of protein crys-

tallization as a process in which nucleation and growth
proceed simultaneously and analyzed it (Ataka and Asai,
1990; Elgersma et al., 1992) by applying a theory of pro-
tein self-assembly (Oosawa and Asakura, 1975). The
theory originally concerns nucleation and one-dimensional
polymerization of protein and was used to elucidate actin
polymerization.

Our experiments were executed batch-wise for supersatu-
rated solutions of hen egg-white lysozyme as a model protein
with different initial concentrations at fixed temperature and
pH, and the concentration changes on crystallization were
measured using ultraviolet spectroscopy. For the crystalli-
zation curves thus obtained, a linear relation was found be-
tween the initial concentration minus solubility and the half-
reduction time in logarithmic scales. This linearity was
consistent with the prediction of the theory of protein self-
assembly. According to the theory, the number of monomers
constituting a critical nucleus (the smallest nucleus from
which a polymer or crystal begins to grow) could be obtained
from the slope of this line. The estimated numbers were three
to five under the experimental conditions adopted.

Although the application of the theory was apparently suc-
cessful, a point that remained to be considered was that the
growth rate might depend on the crystal size for three-

dimensional crystallization in contrast to simple one-
dimensional polymerization. Furthermore, electron micro-
graphs that suggest the polynuclear growth (PNG)
mechanism of lysozyme crystallization were obtained re-
cently (Durbin and Feher, 1990). These points must be taken
into account to establish a clear picture of the crystal growth
of this protein.

In this paper, we analyze the crystallization kinetics of
lysozyme, adopting a differential equation model of simul-
taneously proceeding nucleation and three-dimensional
growth with a PNG mechanism. The analysis enables us to
estimate both the number of the monomers constituting the
critical nucleus and the order of growth kinetics.

FORMULATION OF THE MODEL

A differential equation system describing nucleation and
three-dimensional crystal growth was formulated by Nielsen
(1964). According to the formulation, nucleation kinetics is
given by

dm/dt=k=ci (1)
where m is the number concentration of nucleus, c the con-
centration of monomer, and k1 the rate constant for nucle-
ation. The exponent i represents the number of monomers
constituting a critical nucleus and is assumed to remain con-
stant, irrespective of c. On the other hand, growth kinetics
with a PNG mechanism is represented as

dr,,/dt = k2cP (2)

with

( t
c = co - (w/v) J (dmIdT)r3t dT,

T, (3)

Receivedforpublication 22March 1993 and infinalform 9November 1993.
Address reprint requests to Yasuo Bessho.
*Present address: National Institute of Materials and Chemical Research,
1-1 Higashi, Tsukuba 305, Japan.
C) 1994 by the Biophysical Society
0006-3495/94/02/310/04 $2.00

where rT,, is the radius or edge length of the crystals nucleated
at time T and grew until time t and k2 the rate constant for
growth. The exponent p represents the order of growth ki-
netics assumed to remain constant as i. Equation 3 represents
the conservation of the molecules per unit volume of the
solution, where co is the initial concentration of monomer, c

310



Crystallization Kinetics of Lysozyme

the shape factor of the crystals, i.e., w r ,3equals the volume
of a crystal nucleated at time , and v the specific volume
(volume per unit mass) of the crystals. When p = 1, Eqs. 2
and 3 represent simple adhesive growth kinetics without sur-
face nucleation.
We considered the details of the growth mechanism by

surface nucleation. The surface nucleation rate J is given by
the same form as Eq. 1:

J = k3ci, (4)
where i' is the number of monomers constituting a critical
surface nucleus and k3 a rate constant. We also assume that
the linear growth rate of the nucleated surface layers V is
given by:

V = k4 ci, (5)
where positive integer j is the order of the growth of the
nucleated surface layers representing the adhesion of coop-
erative j monomers or of j mers, and k4 a rate constant.
The general expression for the linear growth rate of a crys-

tal with a PNG mechanism with sufficiently large numbers
of surface nuclei is given by

Rp = ha(hJV2)"3, (6)

where b is the shape factor and h the step height of the nucle-
ated surface layers, and a a constant (Obretenov et al., 1989).
Using Eqs. 4 and 5, Eq. 6 becomes

Rp = ha(bk3k2)13C(i +2j)13 (7)

Rp being equivalent to dr,,/dt (Eq. 2), we obtain the relation

p = (i' + 2j)/3. (8)

FEATURES OF THE MODEL

A distinctive feature of the model, indispensable to the ex-
planation and analysis of our experimental data, is that the
following scaling relation holds (Nielsen, 1964) for any pair
of solutions with different values of k1, k2, and co:

T = (k1/K1 )1/4(k2K2 )314(/Co CO ) (i+3p- 1)'4t. (9)
Here we suppose k1 and k2 to be invariable for analyzing the
experimental data obtained under fixed pH and temperature.
When K1 = k1, K2 = k2, and CO = 1, Eq. 9 becomes

T=cot (10)

with

ly= (i + 3p - 1)/4. (11)
From Eq. 10, we get the relation

log T = y log c0 + log t. (12)

Equation 12 means that the solution which represents the
crystallization curve with the initial concentration co has the
same shape as that with CO = 1, and the former can be su-
perimposed on the latter by the translation y log co along the
log t axis.

If we introduce tj/2 and T1/2 for the times when the con-
centrations reduce to the halves of the respective initial con-
centrations co and 1, the relation between log t1/2 and log co
is obtained from Eq. 12:

log t1l2 = - y log c0 + log T112. (13)

By applying Eq. 13 to the experimental crystallization
curves with various co, we can estimate the value of y, which
is defined by the exponents characterizing nucleation and
growth (see Eq. 11).

Another feature of the model found by numerical com-
putation, which provides a simple viewpoint for the inter-
pretation of the experimental data, is that the shapes of the
crystallization curves are virtually determined byp alone and
independent of i.

ANALYSIS OF THE EXPERIMENTAL DATA

We can apply the model formulated above to the experi-
mental data previously obtained: Ortho4.6 (350C, pH = 4.6,
orthorhombic), Ortho6.0 (350C, pH = 6.0, orthorhombic),
and Tetra6.0 (50C, pH = 6.0, tetragonal) (Elgersma et al.,
1992). In the analysis below, we use Eqs. 1-3 with the actual
concentration minus solubility (c - cs) in place of c. This
modification is necessary to satisfy the requirement that the
driving force of the crystallization must be 0 when c = c,.
The experimental data and the best fit theoretical curves

are shown in Fig. 1. The experimental crystallization curves
with various initial concentrations have a similar shape and
can be superimposed on each other by the translation along
the log t axis. The present model can certainly explain such
a feature as noted in the previous section. On the other hand,
the crystallization curves for different temperature or pH ex-
hibit different shapes. As also mentioned above, the model
ascribes this feature to a differing value ofp and, accordingly,
to the detailed mechanism of PNG, not to the nucleation
kinetics.
The linear relations between log t1/2 and log (co - cj) rep-

resented by Eq. 13 were really observed on the experimental
data as already mentioned in the Introduction and are shown
in Fig. 2. The estimated values of y were: 2.0 for Ortho4.6,
1.5 for Ortho60, and 2.4 for Tetra6.0. On the other hand,
theoretical values of p and y are restricted by the require-
ment that i', j, and i should be positive integers according
to Eqs. 8 and 11. Possible combinations of (i, p(i', j), i', j)
to explain the experimentally obtained values of y are
shown in Table 1.
By numerical computation, we obtained the theoretical

curves corresponding to all possible pairs of i and p com-
patible with experimental y. For each pair of i andp, the time
scales of the theoretical curves with different co were opti-
mized as a whole by minimizing the standard deviation from
the experimental data, where k1114 k23/4 was taken as the
fitting parameter (see Eq. 9). The standard deviation data for
different i and p are presented in Table 2. The (i, p) values
for the best fit curves with the minimum standard deviations
are (3, 2) for Ortho4.6, (3, 4/3) for Ortho6.0, and (4, 7/3) for
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FIGURE 2 Relation between t1/2 and co - c, in log scale for different
experimental conditions. The slopes determined by the least squares fit are
indicated. (0) Ortho4.6 (35°C, pH = 4.6); (A) Ortho6.0 (35°C, pH = 6.0);
(0) Tetra6.0 (5°C, pH = 6.0).

TABLE 1 Possible combinations of (i, p(i', j), i', j)

,Y(i, p) i p(i',j) it j

2 (Ortho4.6) 3 2 2 2
3 2 4 1
4 5/3 3 1
5 4/3 2 1
6 1 1 1

3/2 (Ortho6.0) 3 4/3 2 1
4 1 1 1

5/2 (Tetra60) 3 8/3 2 3
3 8/3 4 2
3 8/3 6 1
4 7/3 3 2
4 7/3 5 1
5 2 2 2
5 2 4 1
6 5/3 3 1
7 4/3 2 1
8 1 1 1

Tetra6.0. The corresponding (i', j) are (2, 2) and (4, 1) for
Ortho4.6, (2, 1) for Ortho6.0, and (3, 2) and (5, 1) for Tetra6.0
(see Table 1).
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DISCUSSION

FIGURE 1 Crystallization data of hen-egg white lysozyme and the best
fit theoretical curves with the minimum standard deviation. The experiments
were carried out batch-wise in water with 3.0 wt % NaCl and without buffer
for various initial concentrations (co). The concentration of lysozyme in
solution was determined using an ultraviolet spectrophotometer (Cary 14D
or Shimadzu MPS-2000). The vertical axis shows normalized supersatu-
ration concentration, where c5 is solubility, and the horizontal axis repre-

sents time (in days). (A) Ortho46 (35°C, pH = 4.6, orthorhombic): cs, 1.15
(wt %); co: 9.71 (LI), 7.73 (A), 4.66 (A), 3.19 (-), 2.07 (0); (i, p), (3, 2).
(B) Ortho6.0 (35°C, pH = 6.0, orthorhombic): c,, 0.93; co: 6.57 (-), 5.71

(C]), 4.69 (A), 3.79 (A), 2.85 (0), 1.95 (0); (i, p), (3, 4/3). (C) Tetra60 (5°C,
pH = 6.0, tetragonal): cs, 0.17; co; 2.10 (LI), 1.47 (A), 1.12 (A), 0.88 (0),
0.63 (0); (i, p), (4, 7/3). The standard deviation data for different (i, p) are

shown in Table 2.

Using a three-dimensional growth model with a PNG mecha-
nism we estimated two important parameters characterizing
the crystallization of lysozyme: the size of the critical nucleus
(i) and the order of growth kinetics (p).
The most probable size of the critical nucleus was esti-

mated as three or four, depending on temperature and pH.
This result is similar to that obtained previously using the
theory of protein self-assembly. We can attribute this to the
oppositely operative terms of Eq. 11, i.e., i/4 and (3p - 1)/4,
the sum ofwhich is given experimentally, by comparing with
the corresponding expression -y = i/2 in the previous analy-
sis: the estimation of i did not become larger because of the
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TABLE 2 Standard deviations for theoretical curves

i p (w/v)1/4k,1/4k23/4 Standard deviation

Ortho4.6 3 2 0.0552 0.0789
4 5/3 0.0510 0.0976
5 4/3 0.0471 0.1187
6 1 0.0440 0.1401

Ortho60 3 4/3 0.0620 0.1410
4 1 0.0575 0.1439

Tetra6.0 3 8/3 1.290 0.0715
4 7/3 1.203 0.0635
5 2 1.119 0.0636
6 5/3 1.027 0.0727
7 4/3 0.940 0.0884
8 1 0.855 0.1055

second term. It is interesting that the estimated critical
nuclear size of three or four also coincides with those for the
polymerization of actin and flagellin (Oosawa and Asakura,
1975), although the coincidence may not necessarily imply
the similarity of the nucleation mechanism.

According to the generally accepted view for nucleation,
the critical nuclear size is defined by the maximum point of
the free energy function composed of two parts representing
negative volume energy and positive surface energy. The
invariance ofthe critical nuclear size (i), which was supposed
in the present model and justified by the linear relation be-
tween log co and log t112, means that the maximum point of
the free energy function for nucleation is almost invariable
in such a wide range of concentrations. Another reason for
the invariance may be that the free energy of a nucleus com-
posed of only a few monomers varies in relatively large de-
gree even when only one monomer is added or removed and,
as a result, the critical nuclear size is not sensitive to the
change of the free energy function.
The order of growth kinetics (p) was estimated from the

shape of the crystallization curves under the condition of Eq.
8, in which positive integers i' and j represent the size of the
critical surface nucleus and the order of the growth from the
surface nucleus, respectively. For Ortho6.0, the possible pair
of (i', j) corresponding to p for the best fit curves is unique,
whereas in the cases of Ortho4.6 and Tetra6.0 it is not uniquely
determined (see Table 1). However, if we adopt the assump-
tion that a surface nucleus is more stable than a nucleus of
the same size, possible (i', j) is uniquely determined also in
these cases: (2, 2) for Ortho4.6 and (3, 2) for Tetra6.0. The
elementary process of the surface nuclear growth with j =
2 can be either the cooperative interaction between two
monomers or dimer-based adhesion.
The rate constants for growth may be different among

different faces of the same crystal. For crystals with three
different rate constants k2l, k22, and k23, it can be shown
easily that the present model and analysis are valid with the
substitution

k2 = (k21k22k23)"13. (14)

It is also possible that the orders of growth kinetics are dif-
ferent among different faces. In such a case, a crystallization
curve is defined by the sum of the growth on different faces

and p is estimated from its shape by the curve-fitting pro-
cedure. Therefore, estimated p can be considered to take an
average value of real parameters for different faces and still
provides useful information about the growth mechanism.

While the experimental data Ortho4.6 and Tetra6.0 agree
well with the optimized theoretical curves, Ortho6.0 shows
some deviations characterized by the longer latent periods
and subsequent steeper slopes in log t scale (Fig. 1). Un-
fortunately, the experimental data points of Ortho6.0 seem to
be insufficient, partly due to the steep decline of the con-
centration to provide reliable discussion about the deviations.
However, it is possible that the PNG model, which supposes
sufficiently frequent occurrence of surface nucleation, was
not very appropriate for Ortho6.0 and that the linear growth
rates for small crystals were depressed. The characteristics
of the data are apparently explained from this point of view.
On the other hand, the crystallization curves of the data

Tetra4.0 (5°C, pH = 4.0, tetragonal), which we have not
addressed in this paper, have too moderate slopes in log t
scale to be explained by the present model. Using numerical
computation, we have found that this character can be re-
produced by supposing a diffusion-controlled growth equa-
tion in place of Eq. 2. Further investigation is necessary to
ascertain whether these observations are valid.
The study of the simultaneously occurring nucleation and

crystal growth system of lysozyme has provided useful in-
formation, in particular about critical nuclei and surface criti-
cal nuclei, both of which are difficult to observe directly
because they begin to grow at the moments when they are
created. Application of the present model to other protein
crystallization systems is also promising, since no particular
assumption for lysozyme crystallization is supposed herein.
Combination with other experimental methods such as dy-
namic light scattering and laser Michelson interferometry
(Vekilov et al., 1993) will allow deeper understanding about
the crystallization of lysozyme and other proteins.
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