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Investigations of the Thermal Response of Laser-Excited Biomolecules

P. Li and P. M. Champion
Department of Physics, Northeastern University, Boston, MA 02115

ABSTRACT A model is presented that connects the underlying classical thermal transport coefficients to the experimentally
determined vibrational temperature of a photoexcited chromophore embedded in a protein matrix that is surrounded by water.
Both photostationary state heating (e.g., within a 10-ns laser pulse) and transient cooling (e.g., after termination of the laser
pulse) are treated. Because only a few thermal transport parameters can be experimentally determined, this simple model
provides a practical and efficient method for describing the temperatures of the chromophore, protein, and solvent as functions
of time and position. We expect that such a model will be useful in interfacing experimental observations with more elaborate
molecular dynamics calculations, which depend upon many variables. In the transient cooling process, which is relevant for
ultrafast pulsed laser measurements, the temperature of the chromophore follows a double exponential decay at short times,
whereas at longer times the thermal decay "rolls over" to a diffusion limit (t-312). For typical 1 0-ns laser pulses (- 0.5 GW/cm2)
and chromophore absorption cross-sections (- 1 -16 cm2), we find that the biomolecule reaches thermal steady-state on a ps
time scale. The role of the various thermal transport coefficients and their independent experimental determination is also
discussed.

INTRODUCTION

In chromophoric biomolecules such as heme proteins, rho-
dopsins, or photsynthetic reaction centers, the photon energy

absorbed by the chromophore is rapidly converted to heat
(vibrational energy) causing the temperature of the chromo-
phore to increase. For example, time-resolved anti-Stokes
resonance Raman spectra of heme proteins (Lingle et al.,
1991a,b; Li et al., 1992) and bacteriorhodopsin (Brack and
Atkinson, 1991) have shown that the vibrational temperature
of the chromophore is significantly increased after absorp-
tion of photons. Ultrafast laser pulses are now being used
routinely to measure biologically relevant kinetic processes.

However, during the measurement the chromophore can po-

tentially become very hot (Henry et al., 1986) (for cyto-
chrome c, the heat capacity of the heme group is about
10- 21J/K and excitation at AL = 420 nm leads to A T 5 X
102K/photon, if all the excitation energy is localized in the
heme ground state vibrational manifold). As a result, the time
scale for the dissipation of excess vibrational energy must be
considered in analyzing the kinetics of photon-driven bio-
logical processes. In this work, we analyze heating and cool-
ing processes in photo-excited biomolecules and use the re-

sulting temperature profile of the chromophore to assess the
time scale over which the photoexcitation can affect the bio-
logical rates.
Two basic approaches that can be used to study energy

dissipation in biomolecules are molecular dynamics sim-
ulations (Henry et al., 1986) and classical heat transport
calculations (Kesavamoorthy et al., 1992; Li et al., 1992;
Carslaw and Jaeger, 1959). One disadvantage of the
molecular dynamics simulations is the difficulty of con-
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necting the many internal parameters to the experimental
measurements. In the classical heat transport model pre-
sented here, only a few thermal parameters are needed, and
many of them can be determined by independent experi-
mental measurements.
A previous one boundary thermal transport model was

used by Asher and co-workers to simulate photothermal dy-
namics in colloidal particles suspended in water (Kesava-
moorthy et al., 1992). However, there seems to be a problem
in the application of this model.' In the present work, a clas-
sical two boundary thermal transport model is developed to
simulate the thermal dynamics of both photo-stationary heat-
ing and transient cooling in chromophoric biomolecules.

THEORY
One boundary model
We first consider the thermal response of a perfectly
conducting sphere2 with heat capacity Ch and radius a,

surrounded by solvent with density p, specific heat c, thermal
conductivity K, and surface conductivity H. The heat transfer
will be governed by (Carslaw and Jaeger, 1959)

K a2T-p at(rT)ar at
(1)

1 A version of Newton's law of cooling, which assumes perfect thermal
conduction inside the particle, was applied by Kesavamoorthy et al.,
1992. Yet, their solutions show a spatial variation of temperature within
the particle (Fig. 4, Kesavamoorthy et al., 1992) that is inconsistent with
this assumption. Similarly, the time evolution of the temperature profiles
depict (Fig. 1, Kesavamoorthy et al., 1992) a period (10-100 ns) during
which the water temperature at the surface of the particle exceeds that of
the particle surface itself. Continued cooling would therefore require that
heat flow from a cooler to a hotter surface element, in violation of the
second law of thermodynamics.
2 The assumption of perfect conductivity corresponds to rapid intramolecu-
lar vibrational redistribution, which has been previously established for
large chromophores (Miller, 1991).
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with the boundary conditions:

Ch aTh + 4lra2H(Th-T) =Q, for r = a;

aT
K- + H(Th-T) =O, for r = a,

where Q is the rate of heat absorption of the chromoph
because of photon excitation, Th is the temperature of
chromophore, and the T is the temperature of the surround
solvent. For convenience, we will assume that the rate of I
absorption is both constant and continuous in time. 0t
ously, these assumptions are correct for the transient cool
process (Q = 0), but when Q 0 0 heat absorption will
be continuous on very short (-ps) time scales. In additi
ground state population bleaching (Li et al., 1992) and
temperature dependence of the optical absorption linesh
(Schomacker and Champion, 1986) both lead to a time
pendence in the rate of heat absorption of the chromoph4
Here we take Q as a constant corrected for saturation (blea
ing) effects (Li et al., 1992) and consider the heat absorpt
on short time scales using an average value for (Q), inasm
as the experiment interrogates many molecules in the la
beam region.
We assume initial conditions of Th = T* and T = T,

t = 0. If we let To = 0 (i.e., re-scale temperature To to ze
and do the Laplace transformation, Eq. 1 and Eq. 2 i

become

In the case of T* * 0 and (Q) = 0, Eq. 6 gives the thermal
cooling profile after short pulse excitation. Using the inverse
Laplace transform (see APPENDIX), we find

(2) 2a2DT*h2
Th =

IT
hore- e

tore J [u2(1 + ah) - Dah]2 + (u3 - Dahu)2

(7)

For small times or large values of K/H, Eq. 7 is approxi-
mated by

Th = T*e / c

with a cooling time constant Tc = a/DhK = Ch/4,ua2H.
At long times Eq. 7 goes as

Th = T*a3 3T*a4[2 + ah(2 - D)]2D,r'2Kt)/ 4hD2,TT/2(Kt)'/2

(8)

(9)

where the first term can be identified as the thermal diffusion
limit.

In the case of T* = 0 and (Q) 0 0, Eq. 6 describes the
process of chromophore heating by photon absorption. Using
the inverse Laplace transform,

(Q) f1 + ah 2a2D2h2
h=4ITaK ah (0

d2(rT) p =
dr2 K

and

Ch(pTh-1) + 4'na2H(Th- T) = , for r = a;

dT
d + h(Th - T) = 0,

e- dh]2+u

[U2(1 + ah)-ua]2 + [uDahu]2 '

(3)

(4)
for r =a.

we find

T JQ ) Dh
+...Th = (Q t- - + * * *]

for small value of the time, and

(Q) 1 + ah a

h 4-rKa ah (7TKt)"2
Where p is the Laplace transform parameter, K = K/pc
and h = H/K.

So long as T has a finite value when r -> 00, Eq. 3
leads to

A

T -e- FKr
r (5)

dT 1 + r\/7
A

dr r

Putting the expressions for T and dT/dr into Eq. 4 gives

a2(pChT* + (Q))(1 + ah + a )
ThChPK[(apK)3 + (aN/p/K)2(1 + ah)+ Dah(l + a )]

(6)

a4(pChT* + (())e -/~pI(r a)

rpChK[(a\/p7K)3 + (ap2(l + ah) + Dah(l + aX/pW)]

where D = 4rTa3pC/Ch.

(12)
a2[2 + ah(2 - D)]

2hD,u'/2(Kct)3/2 X

for t -* co. The first term in Eq. 12 gives the temperature when
photostationary state conditions are achieved (e.g., within a

10-ns laser pulse).

Two boundary model

To more accurately describe heat dissipation in chromo-
phoric biomolecules, we develop a two boundary model
(Fig.1) having a perfectly conducting core (chromophore)
covered by a shell of protein material that is surrounded by
solvent. Here we take K1 and K2 to describe the thermal
conductivities of the protein and the surrounding solvent.
The surface conductivities for the chromophore/protein
and protein/solvent boundaries are given by H1 and H2 re-

spectively, and Ch is the heat capacity of the chromophore.
The quantities cl and c2, Pi and P2 are the specific heats,

(11)
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and densities of the protein and solvent, whereas Th, T,
and T2 describe the temperatures of chromophore, protein
and solvent.
The heat transfer in this model is determined by

a2(rT1) a(rT1)
Kl d 2 picl d = °;K1ar2 - al1t

0

a2(rT2) a(rT2)
K2 ar2 at =0;

with the boundary conditions (Fig. 1):

Ch aTh + 4ira 2H(T - ) =

aT

aT2

aT, aT2
K = r '

(13)

for r= a;

for r= a;
(14)

for r = a2;

for r = a2.

Using the initial conditions of Th = T* and T1 = T2 =
To = 0 at t = 0 (when the laser pulse switches on, we take
T* = 0 and ( ) ) 0 ; when the laser pulse switches off, we
take T* # 0 and (Q) = 0 ), we perform a Laplace transform
on Eqs. (13) and (14) to find

Th(VP)
_ (T*p + (Q)/Ch) [f2G1eRVp + f5G2e-R(2a21ai-l)V]
- ~~~~L(Vj)

T1(VW) (15)

FIGURE 1 The two boundary classical heat transport model for a solvated
biomolecule of radius a2 with an embedded chromophore of radius a,.

where

F= a,D +p,

A = 1 + S1 +RIN ,

f5= 1 + S1-Rl ;

(18)

a1S,(T*p + (C)I/Ch)[Gle RI(rIal)Vp- + G2e-Rj[(2a22-r)/ad]N4]
rL(X/j)

T2(V1)
2a2S1S2K,R,X/p(T*p + (Q)/Ch)e -[(a2/al)RI +((r-a2)/a2)R2])VP

rL(v/-)
with

L( p) = (Ff2 - a,S1D)G,(\/p)pe-Rl (1(

+ (Ff5 - a1S1D)G2( R)pel-R[(2a2l/a)-1]

and

and R1 = a,1c1p11K1, R2 = a2cp/, S =all,
S2= a2h2, D = 41ralHl/Ch.
To get Th, T1 and T2, we can use the inverse Laplace trans-

form and do a numerical calculation (see Appendix)

- 11+
Tj = limpT7(p) + J

p-0o 0
Im[Tj(-i]e-P dp,

(19)
(j= h, 1, 2).

6) For small values of time or large KI1H1, K21H2 with small
RC = 3CQ,/47ra3p1c (for heme proteins, Rc - 0.05), the chro-
mophore cooling can be described as a double exponential
decay

GI = KI(I +S2+R -)( ~-Rv- l)1

+ S2K2(1 + R2P);

G = K1(1 + S2+RA/')(l + a2RX)

-S2K2(1+R2);

Th- (1 - A)e klt + Ae-k2t;

where

(17)
A =
k k2 '

k = (1 + Rc)kc, -(1

(20)
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and

Rck(lkc2
k2 =kc2 +kc2 -(1 + Rc)kc,

with

4ra'Hl 4,7ra2H2k l = aH and kc2 - HCh C
Here Cp = 4/3r(a3- a)cip is the heat capacity of the pro-
tein. For large values of time, the cooling still passes over to
the thermal diffusion limit.

Th =T=T2 Ch(7 + -)31Th=T = T2 8p2c,(7rK2t)312+ .

0

*

0

t_-

(21)
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RESULTS AND DISCUSSION

For convenience, the normalized temperature, v, will be used
in much of following discussion when (Q) = 0. The nor-
malized temperature is defined as

V(t) = T (22)
T* - T

where To is the initial solvent temperature and T* is the initial
temperature of the chromophore when the laser pulse ter-
minates ((Q) = 0).

In Fig. 2 we display plots of the normalized chromophore
temperature as function of time based on the one boundary
model. The squares are the predictions of the model (Eq. 7),
whereas the dashed lines show the exponential decay at short
times (Eq. 8) and the solid lines give the diffusion limit at
large time (Eq. 9). In panel a, we use water as a surrounding
medium. The coefficient of surface heat transport, H, is es-
timated from the Raman analysis described previously (Li
et al., 1992). The first two decades of thermal relaxation take
place on the ps time scale, in agreement with the results of
molecular dynamics simulations (Henry et al., 1986). How-
ever, because the thermal conductivity of the protein material
is expected to be smaller than water (Anderson, 1981), we
depict in panel b) the results when the thermal conductivity
is reduced. Under this condition the diffusion limit becomes
more important, and the exponential approximation begins to
break down. Panel c) depicts the situation when H is also
reduced so that the exponential decay again becomes a very
good approximation over a large dynamic range.

Notice that the parameters p, c, a can be well approximated
by independent experiments. For example, we can find the
specific heat of the heme group by using explicit vibrational
frequencies (Henry et al., 1986) Ch(300K) = 0.82 X 10-21
JIK], or by using values reported for bulk protein material
(Mrevlishvili, 1979) [Ch(300 - 400K) = 1.2 - 1.6 x 10-21
JIK]. Here we take Ch = 1 X 10-21 JIK. The thermal con-
ductivity K can also be measured by the technique of im-
pulsive stimulated thermal scattering (Duggal et al, 1991 and
1992) in protein films or crystals. The coefficient of surface

lo2 100 10 4

t (ps)

FIGURE 2 The plot of normalized heme temperature vh vs. time for a
simplified one boundary model. The square symbols are the predictions of
Eq. 7 With a = 0.5 nm, Ch = 1.0 x 10-21 J/K, cp = 4.18 J/Kcm3. In the
top panel (a), K = 6.0 X 10-1 W/Kcm and H = 1.0 X 104 W/Kcm2; in
the middle panel (b),K = 6.0 x 10-4W/Kcm andH = 1.0 X 104 W/Kcm2;
in the bottom panel (c), K = 6.0 X 10-1 W/Kcm and H = 1.0 X 103
W/Kcm2. The dashed lines are the short time approximations using Eq. 8
with Tc = a/DhK = Ch/4-rra2H. The solid lines are the long time approxi-
mations using Eq. 9.

heat transport, H, has been estimated previously using anti-
Stokes/Stokes Raman saturation data (Li et al., 1992).
The predictions of the more realistic two boundary model

are shown in Fig. 3 by the open squares. As an example of
the two boundary model we use the heme chromophore sur-
rounded by protein material, with water as the solvent. The
thermal conductivity of the protein, K1, is estimated by taking
the average value from various protein materials (Anderson,
1981). The surface conductivities at each boundary (H1 and
H2) are unknown but in principle can be found by compari-
sons to experiments that directly monitor the thermal decay,
such as time resolved anti-Stokes/Stokes Raman scattering.
In the upper panel of Fig. 3, we take the surface conductivity
to be H1 = H2 = 104W/Kcm2 as estimated previously from
the simplified one boundary analysis (Li et al., 1992). The
major part of the cooling still takes place in less than 10 ps.
However, because the thermal conductivity of the protein,
K1, is less than water, the temperature in the two boundary
model is maintained at a higher level between 1-100 ps than
in the one boundary model. For reference, the dotted line in
Fig. 3 a gives the results of the one boundary model from Fig.
2 a. The solid lines are the long time thermal diffusion ap-
proximations from Eq. 21, and the dashes are the short time
double exponential approximations from Eq. 20. Ifwe reduce
the coefficient of heat transport at the boundary between the
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FIGURE 3 The plot of normalized heme temperature vh vs. time for the
two boundary model. The square symbols are the predictions of the two

boundary model with a, = 0.5 nm, a2 = 1.5 nm, Ch = 1.0 x 10- 21 J/K,

clpl = 2.0 J/Kcm3, and c2p2 4.18 J/Kcm3. For the upper panel (a),
K, = 1.0 X 10-3 W/Kcm, K2 =6.0 X 10--W/Kcm, andH1= H2 = 1.0
X 104 W/Kcm2; in the lower panel (b) all parameters are same as the upper

one except H2 = 1.0 X 103 W/Kcm2. The dotted line is the one boundary
model result with a = 0.5nm, cp = 4.18 W/Kcm3, K = 6.0 x 10- 3W/Kcm,
and H = 1.0 X 104 W/Kcm2. The solid lines are long time approximations
from Eq. 21 and the dashed lines are the short time approximations from
Eq. 20.

protein and solvent (H2) by one order of magnitude, the
double exponential nature of the decay is made even more

evident (lower panel). The two time constants for the double
exponential decay (given by k1 and k2 1 in Eq. 20) in the
upper panel of Fig. 3 agree well with the previous molecular
dynamics simulations (Henry et al., 1986).
As might be expected, the thermal conductivities K1 and

K2 also play an important role in the heat transport. In Fig.
4 we demonstrate how reducing K1 (upper) and K2 (lower)
by one order of magnitude affects the vibrational cooling
dynamics. The dotted line is the simulation using the pa-

rameters of Fig. 3 a. As can be seen, reducing K1 slows
the cooling in the 1 ps to 1 ns range, and reducing K2
slows the cooling at times longer than 10 ps.

From numerical calculations we can also get the tempera-
ture of the protein and solvent as a functions of position. Fig.
5 shows the cooling simulation ((Q) = 0) for the chromo-
phore, protein and solvent using the two boundary model.
Because the specific heat of the protein is 20 to 30 times
larger than that of the chromophore, the highest temperature
of the protein is only -5 X 10 -2 of vh(O). This corresponds
to a 25K transient rise in temperature of the protein, as-

suming the chromophore vibrational temperature is in-
creased by 500K upon absorption of a photon. All tempera-
tures will converge and follow the same diffusion limit decay

FIGURE 4 The plot of normalized temperature vh vs. time using different
conductivity for the protein and solvent with HI = H2 = 1.0 X 104 W/Kcm2.
The dotted lines are from Fig. 3 with K, = 1.0 X 10 -3 W/Kcm and
K2 = 6.0 X 10-3 W/Kcm.

100

F 10-2

-

Z10

14

t (ps)

FIGURE 5 A plot of normalized temperatures as a function of time at
different positions with a, = 0.5 nm, a2 = 1.5 nm, H1 = H2 = 1.0 X 104
W/Kcm2,Kj = 1.0 X 10-3 W/Kcm andK2 = 6.OX 10-3 W/Kcm. The solid
squares are at r = 0, the circles are at r = 1.0 nm, and the crosses are at
the solvent interface, r = 1.5+ nm.

after 100 ps. Fig. 6 shows the spatial profile of the tem-
perature at several times.

The process of laser heating can also be simulated and is
shown in Fig. 7. Here we use an initial photoexcitation rate
of kL = JoA 4 X 101 s-1, which is typical for a focused
420-nm, 10-ns laser pulse being absorbed by a heme protein
(average power of 15 mW at 100 Hz with J - 1027 photon/
sec - cm2 for the photon flux and cYA 4 X 10-16cm2 for
the absorption cross-section). However, when we consider
the ground state population loss because of saturation (Li
et al., 1992), the average photoexcitation rate under photo-

100 :

10-2

lo, -io-4
0

tO 10°

- 10-2

10-

*I10-6 -

t (ps)
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FIGURE 6 A plot of the normalized temperature as a function of posi-
tion at different times. In panel (a) when t = 0, v = 0 for r > al, so it can
not be shown in the figure. All parameters are the same as in Fig. 5.
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FIGURE 7 A plot of the temperatures of the chromophore and protein as

a function of time during photon driven heating. All thermal parameters are

the same as in Fig. 5 and (Q) = 5 x 10-8W. The protein temperature is
evaluated at r = 1.Onm.

stationary conditions corresponds to a photon absorption ev-

ery 8-9 ps (under saturation conditions, ()- hvL J(JAI(l +
VJo-A) S X 10 - 8W, with a ground electronic state recovery
time (Li et al., 1992) for heme proteins of X 6ps). This is
on the order of the time constants for double exponential
decay given in Fig. 3 a and leads to a steady-state protein
temperature that is increased by only about 25K (e.g., see Fig.
7). Note that the temperature of the chromophore and the
protein both saturate at iOOps as photostationary state con-
ditions are established. The steady-state temperature of the
chromophore is increased by about 170K using the param-

eters in Fig. 3 a. This is very close to the value extracted from
the anti-Stokes/Stokes measurements (Li et al., 1992).

SUMMARY

In this work, we have shown how a simple classical heat
transport model can be used to describe the thermal response

of photoexcited biomolecules. In this model, only a few pa-

rameters are needed, and most ofthem can be experimentally
determined using independent measurements (Li et al.,
1992).
We have shown how the temperatures of the chromophore,

protein and solvent can be simulated as functions of time and
position during photon-driven heating and cooling processes.
The results show that the time scales of significant tempera-
ture change for both processes are in the ps range and indicate
that the photoexcitation of a chromophore is likely to affect
the biological transport rates if they occur on the ps time
scale. For most cases of practical interest, the temperature of
the chromophore appears as a double exponential decay in
the short time limit. At longer times the thermal decay "rolls
over" to a diffusion limit (t-312). Figs. 2 and 3 demonstrate
that the closed form expressions, Eqs. 8, 9, 20, and 21, pro-

vide a simple and useful approximation to the thermal re-

sponse under most circumstances.
In a more precise treatment, the specific heats of the

chromophore and the protein (assumed constant here)
will be increasing functions of temperature (Mrevlishvili,
1979; Landau and Lifshitz, 1980). This leads to an ad-
ditional effect, where the specific heat rises during
laser heating and further slows the rate of chromophore
cooling (see Eqs. 8 and 20). One can imagine that a posi-
tive feedback mechanism of this type could be utilized in
natural photon driven biological processes (e.g., photosyn-
thesis, vision) to irreversibly enhance certain key transport
rates (e.g., energy migration, isomerization, or charge
separation).
The simple thermal transport model presented here shows

good agreement with the results of molecular dynamics
simulations (Henry et al., 1986). From a practical point of
view, use of such a model facilitates the interface between
experiments, which are able to extract only a few parameters,
and the more sophisticated molecular dynamics simulations,
which depend upon many degrees of freedom with unknown
interaction strengths. Most importantly, the results presented
here show that transient thermal effects cannot be neglected
when monitoring kinetic events in biomolecules on the ps

time scale.

APPENDIX

In general, the inverse Laplace transform is given by

1 (y+iO

F(t) = - P(p)ePt dp.
- ix

(Al)

where y is so large that all the singularities of F(p) lie to the
left of the line (y - ioo, 'y + mo).

lOns pluse

<>=5xl10"W'>5chromophore
.

I protein

f~~~~~~

. .v

, ul ....Is * .ww ....Bl W w I l.
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T +Y+i
LA,1 B

F E
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Y -i

FIGURE Al The contour used to evaluate the integral in Eq. A.2.

Using the contour shown in Fig. 1 A, we have

Jr JJDf J 2'n-ilRes (A2)
FA2r,JC JE JE

In our problem F(p)=(V/i), and there is no singularity
for v(\/p), inside the contour, so IRes = 0. Let p = peiO,
when p - °, fr, = fr2 = 0. So we get

rY+10 rs D rF r
F= JR JDJFJ-|-|-| (R->c) (A3)

'y- jo A C E

For the path C D, p = pei; for the path E -p,
p = pe ;for the path (, p = eie and we let E-> O to find

rD ro
JD xfi)eP dp = v(i/)e-Pt dp

= J v(iXOiI)e-P' dp;

rF 0x
JF V( ) =-i v(-i)ePt dp.

So

rD rF 00

-J -JF= J [v~(-i)-(i\p)]e-Pt dp. (A4)

Let v(X/p) = g(p)/p, and P = sei, then

J(X/pjePt dp = i g(\eiO12)e -Ete' d

When E -* 0,

J (N1p_)ePtdp = -2irig(0), (A5)

Changing p back to p, and notice that v(\/p) and v(t) are
real functions, we can get

r D rF
v(t)= -f f UF

( C E (A6)

= g(O) +- Im[pv(-i/)jl]e -Pt dp.
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