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Solutions For Transients in Arbitrarily Branching Cables:
IV. Nonuniform Electrical Parameters

Guy Major and Jonathan D. Evans
University Laboratory of Physiology, Oxford, OX1 3PT, United Kingdom

ABSTRACT Solutions for transients in arbitrarily branching passive cable neurone models with a soma are extended to models
with nonuniform electrical parameters and multiple dendritic shunts. The response to an injected current can again be repre-
sented as an infinite series of exponentially decaying components with system time constants obtained from the roots of a
recursive transcendental equation. The reciprocity relations and global parameter dependencies are the same as for uniform
models. Infinitely many "raw" electro-morphological models map onto a given "core" electrotonic model; local as well as global
raw parameter trade-offs are now possible. The solutions are illustrated by means of biologically relevant examples: (i) the effects
of nonuniform electrical parameters in a two-cylinder + soma cortical pyramidal cell model, (ii) the errors that can occur when
uniformity is incorrectly assumed in a single cylinder model, (iii) nonsumming interactions between cells and electrodes that can
dramatically increase the duration of the effective capacitative electrode artefact, and (iv) shunting inhibition and double im-
palements in a hippocampal CAl pyramidal cell "cartoon" representation. These solutions should complement compartmental
modelling techniques.

LIST OF SYMBOLS*

An nth amplitude component [mV]
An, An between segments e and r or vice-versa (specify

Ze, Xr), [mV] (Eq. 4)
A, constant in Gr(Xr, Ze, p) at soma (Eq. 23)
f3c constant in 0,(X, Ze, p) for "mainline" segment c

(Eq. 24)
Cs lumped soma capacitance (= ird2Cm), [pF]
Cm global (default) cell specific membrane capacitance

[p,Fcm-2]t
d, soma diameter [1im]t
dtrsp the set of daughter segments of segment p
En position-independent "Electrical" part of An [mV],

(Eq. 13)
gs soma conductance, including shunt (= 9shunt + gsm),

[nS]
gshu.t = g...,,,, somatic shunt conductance [nS]"
gsM soma membrane conductance (= ird.2IR,), [nS]§
Gr(X, Ze, t) voltage response at Xr to unit point charge at Ze

[mV], (Appendix 1)
0r(Xr, Ze, p) Laplace transform of Gr(Xr, Ze, t) with respect top
Gs(Ze, t) voltage response at soma to unit point charge at Ze

[mV] (Appendix 1)
G.(Ze, p)
p
q
qj
Ri

Rm

Laplace transform of Gs(Ze, t) with respect to p
complex Laplace transform variable [dimensionless]
(1 + Tmp)'12 [dimensionless], (Appendices)
(1 + Twp)"2 [dimensionless], (Appendices)
global (default) cell axial cytoplasmic resistivity
[fQcm]t
global (default) cell specific membrane resistivity
[flCM2]t

segs
stems

t

t490
Vj(Xj, Z.,. t)

V-(t)
Xi

Xi

Ze

Ze

the set of all segment indices j
the set of indices of segments st originating from
soma (i.e. stem segments)
time [ms]
10-90% rise time [ms]
transmembrane voltage with dimensionless space
parameters [mV]
Vj(t) at soma [mV]
physical distance from proximal end of segment j
[Am]
electrotonic distance from proximal end of segment
j (= xjIAj), [dimensionless]
physical distance of excitation site from proximal
end of segment e [gm]
electrotonic distance of input site from proximal end
of seg. e [dimensionless]

GREEK SYMBOLS

a2
a2
an

ajn

Kj,

Rj

jA
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global (cell) separation constant (Eqs. 4, 6, 12)
local (segment) separation constant (Eqs. 4 and 6)
nth global eigenvalue of boundary problem (satisfies
Eq. 11)
nth segment j eigenvalue (= (Tmj/Tn- 1)1/2)
somatic shunt parameter Ts/Tm [dimensionless]
nth voltage continuity normalisation factor of seg-
ment j (Eq. 8)
continuity factor in Gr for segment j (Eq. 22)
branching constant of segment j; depends on aj
(Eq. 9)
, when a1 = ajn
branching constant in segment j for (4; depends on
qa (Eq. 20)
term from segment j in denominator of amplitude
(Eq. 14)
spatial eigenfunction in segment j [dimensionless],
(Eq. 5)
global (default) membrane time constant (= RmCm
= cJgsm), [ms],
nth equalising time constant [ms], (Eqs. 4 and 6)

pin

Tm

Tn
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1s

TSy,

effective time constant of soma with shunt included
(= c,Igs), [ms]
nth synaptic time constant for multi-exponential cur-
rent input [ms]

* Units and relevant equation numbers in square brackets and
parentheses, respectively.
t Raw electro-morphological parameters.
§ Core electrotonic parameters (see Table 2 also).

INTRODUCTION

In the first paper of this series (Major et al., 1993a), referred
to as "Paper I" below, a separation of variables solution was
derived for voltage transients in a passive cable model of an
arbitrarily branching neurone with a soma plus shunt. In the
next paper (Major et al., 1993b), referred to as "Paper II"
below, analogous solutions were derived for models under
voltage clamp. In the third paper (Major, 1993), referred to
as "Paper III" below, these solutions were used to illustrate
a number of problems that occur with voltage clamp of
neurones.

Despite providing a useful complement to compartmental
modeling techniques, these analytical solutions have a num-

ber of weaknesses, in particular:

(i) A uniform distribution of the specific electrical param-
eters Cm (membrane capacitance per unit area), Rm (re-
sistance of a unit area ofmembrane) andRi (cytoplasmic
resistivity) is assumed, whereas in reality they may vary

from one part of the cell to another,
(ii) Additional localized constant conductances away from

the soma cannot be incorporated, for example, those due
to shunting inhibition (e.g., Rall, 1964; Jack et al., 1975,
chapter 7; Koch et al., 1990) or electrode-induced leaks
from dendritic recordings, and

(iii) Changing conductances, for example, active or transient
synaptic conductances, cannot be included.

This paper will address the first two points, but not the
third.

Reasons for nonuniform passive models

Specific membrane resistivity (Rm)

Good passive models are an essential foundation for models
incorporating active conductances accurately. Under many

circumstances the behavior of a neuron may be dominated
by active conductances in both soma and dendrites (e.g.,
Hounsgaard and Midtgaard, 1989). However, in certain
situations, for example, at rest when voltage transients are

very small, or at very extreme membrane potentials or

after pharmacological manipulations, these conductances
may reach an effective steady-state, perhaps with a non-

uniform distribution.
There is mounting evidence that membrane ion channel

densities vary over different parts of many neurones. Both
anatomical and electrophysiological data now exist suggest-

ing that different kinds of calcium channel are located pref-
erentially on different classes of dendrite (e.g., Westenbroek
et al., 1990, 1992; Hillman et al., 1991). Sodium channels are
located predominantly (but nonuniformly) on the somata and
apical trunks of pyramidal cells (e.g., Huguenard et al.,
1989). Delayed rectifier potassium channels in pyramidal
cells may be most dense on the cell body and proximal den-
drites (e.g., Trimmer, 1991). Many ion channels open only
at thresholds positive to the resting membrane potential (for
review, see Llinas, 1988). However, there is now evidence
that other conductances, active at rest, may have differential
distributions over certain cells, for example the conduc-
tance(s) responsible for undershoot after excitatory postsyn-
aptic potentials or EPSPs (Major, 1992, chapter 5; Nicoll
et al., 1993). Another potential cause ofnonuniform effective
Rm would be spatial variations in the distribution of tonically
active synaptic conductances (e.g., Holmes and Woody,
1989). No doubt, as further data become available, more
examples will be found.

Cytoplasmic resistivity (Re)

It is also possible that Ri may be nonuniform. There is evi-
dence that Ri may be of the order of 200-300 [lcm in many
classes of mammalian neuron (e.g., Shelton, 1985; Stratford
et al., 1989; Major, 1992; Paper I; Jonas et al., 1993; Thurbon
et al., 1994; Major et al., 1994), rather than the more con-
ventional 70 [lcm (e.g., Barrett and Crill, 1974; Clements
and Redman, 1989). Part of this discrepancy may be ex-
plained by the observation that a significant fraction of the
cross-sectional area of neuronal processes can be occluded
by organelles and cytoskeletal elements (e.g., Stevens et al.,
1988). In addition, the properties of intracellular water differ
from that of pure water or water in electrolyte solutions. For
example, self-diffusion coefficients can be two- to sevenfold
lower, and microviscosity may be up to 5 times higher in cell
water than in pure water (e.g., Clegg, 1984a, b). The effects
of organelles, cytoskeleton, and cytomatrix on Ri may well
vary over different parts of a neurone.

Specific membrane capacitance (Cm)

It seems less likely, although not inconceivable, that Cm may
vary from one part of a cell to another (see below for mod-
eling electrodes). Different densities of transmembrane pro-
teins or nonuniform lipid composition may affect the di-
electric properties of the membrane. Gating currents can
occur in the absence of ionic currents and could increase
effective Cm locally (although, because this is both a voltage-
and frequency-dependent phenomenon (e.g., Takashima,
1976), this kind of nonuniformity violates passive modeling
assumptions).

Dendritic shunts

Additional point shunt conductances may occur both in vitro
and in vivo. An example might be where a dendrite has been
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impaled by a sharp electrode (e.g., Wong and Stewart, 1992).
Localized "shunting" inhibitory conductances may also oc-
cur (e.g., Rall, 1964; Jack et al., 1975, chapter 7; Koch and
Poggio, 1985).

Microelectrodes and micropipettes

Passive cables need not be neuronal in origin: when a pipette
or electrode is introduced onto or into a cell, it behaves very
much like an additional process with membrane capacitance
(the transmural capacitance) and resistance (the extremely
high transmural resistance), and cytoplasmic resistance (the
axial resistance of the filling solution and any occlusions).
The values ofRm, Cm and Ri for the electrode in question will
normally be very different from those of the cell!

Nonuniformities introduced by simplified representations

It is common practice to model the effects of dendritic spines
by adjusting the values of Cm and Rm in a given dendritic
segment to reflect the increase in surface area. If Fj = (area
including spines) . (area without spines) for a segment j,
then Cm is multiplied by Fj and Rm is divided by Fj in that
segment (e.g., Shelton, 1985; Rapp et al., 1992). Dendritic
shaft diameters, spine densities, or single spine areas gen-
erally vary in such a way as to change Fj from one segment
to another (e.g., Larkman, 1991), resulting in nonuniform
adjusted Rm and Cm (but not Ri).

Other simplification procedures may lead to nonuniform
parameters, for example, that used by Douglas and Martin
(1992): to preserve physical length, surface area, electrotonic
length, input impedence, and dendrite-to-soma transfer im-
pedences when dendrites are collapsed together, Ri must be
increased. For example, ifN identical cylinders of length 1
and diameter d are combined into one equivalent cylinder of
length 1 and diameter Nd, then Ri must be increased by a
factor fRi = N to conserve the electrotonic length L (giving
equivalent L = 21(fRiRi/RmNd)l12 = 21(Ri/Rmd)"2 =
original L) and to ensure that the total input conduc-
tance (infinitely extended cylinders) is the same for both
models (so original Ng. = N(IT/2)(RmRi) - 1/2d31/2 = (7T/2) .
(RmRifRi) - "/2(Nd)312 = g.o of equivalent cylinder). Suppose
a cell's dendritic segments can be grouped into sets, every
member of a given set having the same length and diameter.
If the sets contain different numbers of segments, then Ri of
the simplified representation will necessarily be nonuniform.

Both of the above electro-morphological simplification
procedures can actually be mapped formally onto equivalent
procedures that change only the morphology and leave the
electrical parameters uniform. Spines can be incorporated
into their shafts of origin by the transformation 1* = IF2/3,
d* = dF113 as described in Stratford et al. (1989) and
Larkman et al. (1992). Complicated, nonequivalent cylinder
dendritic arbors can be simplified into "cartoon" represen-
tations (Stratford et al., 1989; Paper I) by performing equiva-
lent cylinder collapses only on groups of dendrites of similar
electrotonic lengths and with points of origin close together.

Nevertheless, some workers find it advantageous to use pro-
cedures that change the electrical parameters nonuniformly.

Constraining nonuniformities

If the distribution of electrical parameters over a given de-
tailed branching model were completely unconstrained,
"core"~electrotonic model nonuniqueness might become an
intractable problem: many different models might match a
given set of experimental waveforms indistinguishably well,
but yield substantially different predicted responses for
other, untested, input or recording sites (see Discussion in
Paper I and below). Some constraints on the possible non-
uniformities are necessary if only limited target experimental
data are available.

Fortunately, it is unlikely that Cm varies much over a cell,
particularly under passive conditions. Accurate independent
measurements of Cm could be made from isolated somata,
synaptosomes, or from near-spherical cells (e.g., Rosenboom
and Lindau, personal communication).
Membrane resistances and shunts influence responses at

late times more than at early times (see below). Moreover,
the actual distribution of Rm may not affect model predic-
tions greatly once one response has been optimized against
its experimental counterpart (see Example 2, below). Varia-
tions in Rm can be reduced by ion channel blockade. The
relative distribution of Rm could be constrained by channel
density estimates, for example, using specific binding agents
(e.g., Ellisman and Levinson, 1982; Westenbroek et al.,
1992) or from cell-attached patch clamping onto as many
kinds of process as possible. Electrode-induced shunts can
minimized by using tight seal whole-cell recording (e.g.,
Jonas et al., 1993; Major et al., 1994), and tonic shunting
synaptic conductances can be eliminated using neurotrans-
mitter blockers (or channel blockers in some cases).

There might be more of a problem with Ri if it does, in-
deed, turn out to vary with process diameter or contents.
Future studies may help establish some simplifying relation-
ships. Tortuosity and the proportion of cross-sectional area
occluded by cytoskeleton and organelles could be estimated
using electron microscopy. Ion diffusion rates could be
measured with ion-sensitive dyes, such as those used by Jaffe
et al. (1992). Dendritic whole-cell recordings (e.g., Stuart
et al., 1993) or voltage sensitive dyes (e.g., Fromherz and
Vetter, 1992) may prove extremely powerful in combination
with morphologically based cable models, and they may help
further constrain the possible distribution of electrical pa-
rameters in a given cell.

Methods for dealing with nonuniform models

Compartmental models are sufficiently flexible to incorpo-
rate both static and time-varying nonuniformities in the elec-
trical parameters of a model. The compartmental model ma-
trix eigenfunction expansion method (Rall, 1964; Perkel
et al., 1981; Holmes et al., 1992) can be used to produce
N time constants and amplitudes in nonuniform models with
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static parameters, where N is the number of compartments
(e.g., Holmes and Woody, 1989). This technique and others,
such as implicit numerical integration (Hines, 1984, 1989),
can also be very efficient. Arbitrary accuracy can be achieved
by increasing the number of compartments (at the cost of
slower computations).

Rall (1962) considers the simplified case of transients in
a cylinder with two regions of different steady membrane and
synaptic conductance densities, but as far as we know there
is no published analytical solution for transients incorporat-
ing arbitrary branching (with a soma), nonuniformities in Cm,
Rm, and Ri, and dendritic shunts. In this paper, the methods
used in Papers I and II are extended to obtain separation-
of-variables solutions for models with discontinuous non-
uniformities, i.e., the electrical parameters can be different
from one segment to another, but must be constant within a
given segment. Smooth spatial variations in electrical pa-
rameters can be approximated by using small segments. The
analytical solutions have a number of useful features:

(i) the exponential components of response waveforms are
given explicitly,

(ii) parameter dependencies are clarified,
(iii) the mapping of infinitely many "raw" electro-

morphological' models onto a particular, more com-
pact, core electrotonic model is demonstrated (see Dis-
cussion), and

(iv) their implementations can be both accurate and effi-
cient.

Systematic comparison of these solutions with the passive
modeling methods mentioned above has yet to be under-
taken. We note that although the analytical solutions dis-
cussed in this and the preceding three papers obtain system
time constants from eigenvalues that are the roots of a re-
cursive transcendental equation (with sines, cosines, etc.),
the matrix eigenfunction method uses the eigenvalues of the
compartmental matrix, which can be obtained in a number
of ways that are equivalent to finding the roots of its poly-
nomial characteristic equation (e.g., Press et al., 1988, chap-
ter 11). Transcendental functions can be approximated by
polynomials; as the number of compartments per segment is
increased, so the compartmental matrix's characteristic
equation should tend to the corresponding cable model's
transcendental equation (if both are in terms of the same
variable), and the time constants obtained from the two meth-
ods should agree exactly. How well they match with typically
used compartment sizes has yet to be investigated. As long
as the two methods yield similar enough waveforms, any
mismatch between their exponential components may be of
limited significance for most purposes (see discussion of
simplified representations in Paper I).

1 When referring to models or their parameters, the term "raw" is used in
this paper as a concise synonym for "electro-morphological," and "core" is
used as a synonym for "electrotonic."

The nonuniform solutions cannot deal with time-varying
conductances. If conductance transients have stereotyped
waveforms, then discrete time approximations can be made
(e.g., Holmes, 1986; Wilson, 1984), with different passive
models producing consecutive portions of the transient. The
model would be changed after each time step, setting the
conductance to its next level. The final voltage distribution
of the previous time step would become the initial voltage
distribution of the next. However this method is cumber-
some, and it cannot deal with additional state variables such
as those required for voltage-dependent conductances (e.g.,
Hodgkin and Huxley, 1952). Active compartmental model-
ing (e.g., Hines, 1984,1989; Wilson and Bower, 1989) seems
to be a more elegant and appropriate technique for this kind
of problem.
The main steps of the derivation mirror those in Papers I

and II (Major et al., 1993a, b), whose conventions and sym-
bols are adhered to throughout. See also the List of Symbols
and Tables 1 and 2. Where possible, repetition of equations
in Papers I and II is avoided. A reference to Eq. I.5, for
example, would indicate Paper I, Eq. 5. After the mathemati-
cal sections, some applications are given.

VOLTAGE RECORDING IMPULSE RESPONSE

Definition of the system

We assume a dendritic morphology composed of uniform
cylindrical segments, with every segment labeled by an index
j. The segments originating from the soma are called the stem
segments, and their indices st form the set stems. Each non-
terminal (i.e., parent) segment p gives rise to a number of
daughter segments d forming the set dtrsp (examples in Paper
I, Fig. 1). Summations and products are over all the members
of the relevant set.
The default or global membrane time constant is Tm -

RmCm. Table 2 details the physical and electrical parameters
for a segment j. Notice the segment-specific "distribution

TABLE 1 Index conventions
Eigenvalue and eigenfunction index
n (= 0, 1, 2, . . .), never used as a segment index

Segment indices
i
p
d
r
e
c

s

St

Set notation
d E dtrsp
st E stems
j E segs
c E chainj

Vst E stems
`(j)
Y(j)

arbitrary
parent
daughter
segment recorded from
segment stimulated (excited)
segment in a chain
soma
stem segment

over all the daughters d of segment p
over all the stem segments st
over all segments j
over all segments in direct chain between soma

and j (inclusive)
for all stem segments st
parent of segment j
stem segment of sub-tree containing segment j
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TABLE 2 Parameters for segment j
Specific electrical parameter distribution factors
fCm specific membrane capacitance factor [dimensionless]
fiRm membrane resistivity factor [dimensionless]
fJ cytoplasmic resistivity factor [dimensionless]

Raw electro-morphological parameters
I, physical length [,um]
dj diameter [,um]
Cmi =fjCm, actual specific membrane capacitance of j [gFcmn2]
Rmj = fjRmRm, actual specific membrane resistivity of j [fkcm2]
Rij = ftRR, actual axial resistivity of j [flcm]
g,h,,j shunt conductance at distal end of j (also a core parameter)

[nS]

Core electrotonic parameters
Li = Ij/Aj, electrotonic length of j [dimensionless]
Tmj = cmir., = CmrRm, = e,Tm, local membrane time constant

[ms]
= (rmjrnr)-1/ = (ir/2)(RmR.)"112d312, input conductance of

infinite extension of j [nS]
gsh,,tj shunt conductance at distal end of j (also a raw parameter)

[nS]

Other useful combinations of parameters

cmi =rdjCm,, capacitance per unit length of j [,uFcm-1]
rmj =Rm./l4d, membrane resistance of a unit length of j [)cm]
raj =4R1 Iird2, axial resistance per unit length of j, [fQcm<']
A, =(rm Irraj)12 = (Rmjdj/4Rij)1/2, space constant of segmentj

[gxm]
Ej = Tmj T= fjCmfRm, local membrane time constant ratio

[dimensionless]

For each segment j, the cable equation

dX2Vi Ii - Vj = o.axj m"at

The boundary conditions

At terminations:

gx (d)__ + gshuntj (Vj)X,=Lj = 0

I IL

(1)

(2)

(axial current = current flowing through terminal shunt.)

At branch points:

(aVP + gshuntp (VP)XP=LP =Ig= (VaV _

pXp= dedtrsp adx-
(3)

(axial current conserved.) The somatic boundary condition,
voltage continuity constraints, and the initial condition are
given by Eqs. I.8-.11.

Separation of variables solution

Following Rall (1969) and Paper I, the general solution of the
above system of equations, in separable form, is

factors" multiplying the default-specific electrical param-
eters. For example, the factor fi.m multiplies Rm to give the
segment's actual specific membrane resistivity Rm . As a
consequence, each segment can have its own local membrane
time constant Tmj = EjTm, where ej = f,.m f m. Without loss of
generality we assume that at the somafCm = fRm = 1, i.e., that
the soma membrane is a "reference" against which the rest
of the cell's membrane is compared. This allows us to con-
tinue to use unsubscripted E = Ta/Tm = gsm/gs as the somatic
shunt parameter, where gsm is the lumped soma membrane
conductance before introduction of any shunt, gshunt (with no
subscript j) is the somatic shunt conductance, gs = gsm +
gshunt is the total somatic conductance, Ts = cslgs is the ef-
fective somatic time constant including the shunt, and cs is
the lumped soma capacitance. A further elaboration of the
model is the possibility of an extra shunt conductance to
earth, gsbunt., at the distal (furthest from the soma) end of each
segment j: this will complicate the current conservation con-
straint at the branch point (see below). A shunt at a location
within a segment can be achieved by splitting the segment
in two and including it at the new branch point.
Time is in dimensional (S.I.) units, but distances are in

normalized units of Ap, the space constant of segment j. The
voltage response Vr(Xr, Ze, t) at electrotonic distance Xr
along segment r is desired, after injection at time t = 0 of
a unit point charge at electrotonic distance Ze along seg-
ment e. The system to be solved is defined by the follow-
ing equations:

Vr(Xr, Ze, t) = a En ijen (Ze) irn (Xr)e 5tTn= An e t/Tn,
n=O n=O

where

4jn(Xj) = K,jcos ajn(L -Xj) + p.,,, sin aj(Lj- Xj)]

are the spatial eigenfunctions, and

Tn = Tm/(1 + at) = Tm/(1 + a')
are the time constants, i.e.,

(X.n = (mln-1)1/2.=n (Tm ITn - 12

(4)

(5)

(6)

(7)

The aj,, are the eigenvalues for the jth segment and may be
termed the local or segment eigenvalues, whereas the a,, may
be termed the global or cell eigenvalues. If Tm < T,,, then aj,,
is an imaginary number. (Imaginary a,, values can be avoided
by ensuring that the global default (=soma membrane) Tm is
greater than or equal to all of the local dendritic T. values.
Because the soma is lumped, we are free to choose how much
of its total conductance is assigned to its membrane, and how
much to its shunt.)
The factors Kj,,, which ensure voltage continuity at branch

points, satisfy the iterative definition

K = HI (Cos a L + gcnsin a cnL) 1,
cEchainj

(8)

where the elements of chainj are the indices of every segment
c in a "chain of direct descent" ("mainline"), starting with the
stem segment of the tree containing j, and ending with seg-
ment j itself.
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The gj,, obtained using current conservation and voltage
continuity at branch points, are defined recursively as

1

gshunt, - I adg cota1-L+to a1kn II (9){

1 dEdtrsp cot adnLd + dn}

for parent p and daughter d branches, with the condition for
terminal segments

_tjn gshunt (10)

The global eigenvalues a = an, n = 0, 1, ... are given by
the roots of the recursive transcendental equation,

gs[ - E(l + a2)]- - a2gSriE(1 a2)] asun

given by

1 - -1 ~cot astLs,+ tt" = 0}

E,st = 2 jesubtree(st) { Y(e) = Y(r) = st

otherwise
(15)

where Y(j) is the stem segment ofj (derivation in Appendix 2).
We note that the summation is only over segments in the subtree
with stem st, from which the global eigenvalue a,, was generated.
The clamp point is taken to belong to all subtrees. The responses
to a dendritic charge impulse (case I), with the soma clamped to
zero, are given by Eqs. II.15-11.17, and 11.19 with a,, replaced
by a 5,(e)n. Likewise, the responses to a somatic voltage impulse
command (case II) are given by Eqs. 11.21-41.24, replacing a,, by

(11)

(1 - ,stcotastLst
stEstems u\cot aLstts + St

where

a2= E.(1 + a2)-1 (12)

and the ,pj are defined by Eqs. 9 and 10, dropping the sub-
script n. The root-finding algorithm described in the Imple-
mentation section below can deal with imaginary global or
local a values.
The position-independent ("Electrical") component En of

the amplitude term A,, may be determined using techniques
from complex analysis (e.g., Priestley, 1985; see Appendix
1 below for details) and can be written as

1 -
FEn = [gsmTm + 2jgvjfl (13)

_jEsegs

where vjn is defined by

rn-t oojKj2 {Lj(1 + A,2 ) + [(1 - ) sin 2a1,,L1

+ 4ptjn sin2ajnLj]/2a1j}, (14)

except where ao = 0, in which case Eq. 1.36 applies. We note
that gsTs = gsmTm = cs, and Tmjgcj = cmjXj, where cmi is the
capacitance per unit length of segment j, so En has units of
1/capacitance. As with the uniform case (Paper I), an alter-
native derivation of the amplitude terms is possible using a
modified orthogonality relation (Churchill, 1942).

PERFECT VOLTAGE CLAMP IMPULSE
RESPONSES
The solutions are similar to those given in Paper II. The
definition of Kjn is given by Eq. 1.28 with a,n being replaced
by addn, and Kst = 1. The eigenvalues are the roots of the
recursive transcendental equation (Eq. II.6), replacing a with
as,, using the definition of /jn above (Eqs. 9 and 10). En, is

Nonsomatic voltage clamp
As discussed in Paper II, rather than derive new (and more
complicated) solutions for dendritic voltage clamp points, it
is easier to re-label a model, assigning a new "soma" at the
clamp point and replacing the original soma with a short
cylinder of the correct surface area.

OTHER RESULTS

Imperfect voltage clamp impulse responses
The discussion of imperfect voltage clamp in Paper II also
applies, with trivial modifications, to nonuniform cables with
extra dendritic shunts. The series conductance gser is again
added to the somatic gshunt for the transcendental equation
(Eq. 11). The expression for E,, given above (Eq. 13) is used.
The responses to synaptic inputs (case I) are given by Eqs.
II.39 and 11.40. Eqs. II.41 and II.42 can be used to obtain the
responses to voltage command impulses (case II).

Responses to arbitrary inputs
The linearity of the system can be exploited to obtain the
response to any arbitrary current input, voltage command, or
initial voltage distribution, by convolution (e.g., Jack et al.,
1975, chapter 13). Details for obtaining the responses to cur-
rent or voltage command steps, short pulses, alpha functions,
and multi-exponential functions are given in Papers I and II.
Where appropriate, apply Eqs. 1.46-I.52, 11.26-11.29, II.31,
and II.43-11.47. Use the denominator of As in Eq. 23 (Ap-
pendix 1, below) instead of 11.35. The nonuniform Laplace
transform solution G, and the definition of pj (Eq. 20) given
in Appendix 1, below, should be used when required, set-
ting p = 0 for steady-state terms, and p = -(input rate
constant) for lumped terms of smoothly changing inputs.
As before, conductance inputs are not considered here:
compartmental models should be used in such cases.
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Parameter dependence

If the distribution factors fRm, fCm and fRi are fixed, then the
discussion of parameter dependence in Papers I and II still
holds. These factors can be thought of as being "quasi-
morphological" in their effect. The time constants will be
proportional to, and the E,, will be inversely proportional to,
global Cm. It can be shown from Eqs. 9, 10, and 1.39-4.41
that the a,n are proportional to global R12, and inspection of
Eq. 13 shows that the E, will be independent ofRm, as in the
uniform case. If the various shunts are either very small or
very large (e.g., voltage clamp) compared with the a1jn, then
the a,n are proportional to R -1/2, and the En are independent
ofRi. As in the uniform case, shunts andRm have their effects
predominantly at late times of responses, Cm is the only glo-
bal parameter effecting fast amplitudes of impulse responses,
and fast time constants are proportional to RiCm. The de-
pendencies on the distribution factors are not considered in
detail here, although they are illustrated in some of the ex-
amples below. In essence, changes infRm will only affect late
times, changes in fRi will affect early times, and late times if
there are nonuniformities in the local membrane time con-
stant (taking shunts into account), and changes infcm should
affect responses at all times. The extent of these influences
will be very dependent on the locations of the stimulation and
recording sites relative to the zones changed.

Implementation

ANSI-C programs have been written for both voltage re-

cording and voltage clamp. Using Eqs. 6 and 7, dropping
subscripts n, the transcendental equation (Eq. 11) can be
expressed in terms of possible time constants T. Its roots are

the required system time constants T,,, which can be found
with recursive root-finding algorithms like those described in
Papers I and II. Brent's method of bracketing, then inverse
quadratic interpolation or bisection, repeated as appropriate
(Press et al., 1988, pp. 267-269), typically yields a three- to
fourfold increase in speed over repeated bisection alone. Sin-
gularity clashes and "lost roots" are again avoided by minor
adjustments to the lengths of the segments involved. For
imaginary aj = i43, expressions are used based on the iden-
tities cosh 13j = cos i43 and i sinh I3y = sin i3g.

In addition, a direct fitting program has been written that
uses a simplex algorithm (Nelder and Mead, 1965; Press
et al., 1988, pp. 305-309) to match a model's response to a

target waveform. Some parts of the model can be varied
while others are held constant. This is useful in hybrid
electrode-cell models (see Example 3, below), where the
electrode parameters are known, but those of the cell
need to be optimized against an experimental response.
To keep the number of free parameters from growing too
large, a fixed distribution of fRm, fCm and fRi must be
specified over the variable part of the model. The
programs have been tested extensively against equivalent
nonuniform compartmental model output, and in general
run several times faster than a package using explicit
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FIGURE 1 Two cylinder + soma simplified representation of a layer III
visual cortical pyramidal neuron (Example 2 in Paper I). Soma diameter d,
15 ,gm, basal length 1000 gm, diameter 10 ptm, apical length 1500 ,im,
diameter 4 ,um; 1 pC point charges injected into one of arrowed sites labeled
1 (basal, 500 ,um from soma) or 2 (apical, 1000 ,um from soma). All voltage
responses recorded from soma. Waveform components listed in Table 3.
Solid lines are responses of default model with uniform global electrical
parameters: Cm, 0.7 ,uFcmn2; Rm, 100,000 [1cm2; Ri, 250 [lcm; no shunt.
Other responses are from models with one of these parameters nonuniform.
(A) Apical Rm halved (f2m = 0.5, dotted lines). (B) Apical R, halved
(fRi = 0.5, dotted lines). (C) A 10-nS shunt at one of three locations: soma
(s, dotted line), basal (b, 500 ,Lm from soma, dashed line), or apical (a, 1000
,um from soma, long dashed line): effect on the responses to the apical input.
The response of the default model with no shunt is the solid line.
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forward Euler integration (Clements, 1986). Further bench-
marking and optimization is required.

APPLICATIONS

All the waveforms illustrated below were generated by the
programs just described, and they have been checked against
equivalent nonuniform compartmental model output.

Example 1. Two cylinder + soma models

A simplified representation of a layer III visual cortical py-
ramidal neurone from an adult rat is shown in Fig. 1, with
details of model parameters in the legend. A camera lucida
drawing and dendrogram of the original cell, together with
a description ofhow the representation was obtained, is given
in Paper I. The nonuniform analytical solution is illustrated
by comparing models incorporating one nonuniform feature
at a time against a default uniform model with biologically
plausible parameters.

In Fig. 1 A, the nonuniform model has its apicalRm halved
with respect to the default. The final decay of the reduced
apical Rm model is faster than that of the default model.
Because in the nonuniform model the apical membrane dis-
charges more rapidly than the basal, the responses to apical
and basal inputs no longer converge at late times, and charge
no longer equalizes throughout the cell. The response to the
apical input is changed earlier and more markedly than that
to the basal input. At early times the responses are not altered
from those of the default model. This impression is con-

firmed by inspecting the values of the waveform compo-
nents, the first 10 of which are listed in Table 3. Compared
with the default uniform model, the reduced apical Rm model
has a faster T0 and unequal Ao values for the two different
input sites, the apical one being smaller than the basal. How-

ever, the faster time constants of the two models agree to
within two decimal places, for n > 2, as do the corresponding
amplitude terms for n > 8 for the basal and n > 10 for the
apical (not shown). This example confirms that the Rm dis-
tribution affects only relatively late parts of responses,

changing both the slow time constants and their associated
amplitudes.
By contrast, changes in the Ri distribution affect early

parts of responses (but not late parts in the case of uniform
Tm and no shunts). Fig. 1 B illustrates what happens when the
apical Ri is halved from its default value. The slowest time
constants T0 and amplitudes Ao of the two models are now

the same, and all the responses converge at late times, as

charge equalizes. However, the nonuniform model's re-

sponses at early times differ from the default model's. The
changes are most pronounced and last longest in the case of
the apical input. Time constants other than T0 are faster in the
reduced apical Ri model than in the default, and the pattern
of amplitudes is much altered. The difference between the
apical and basal responses is smaller in the reduced apical Ri
model, reflecting the reduced axial resistance between the
two input sites.

Fig. 1 C shows the effect of a 10-nS shunt upon the apical
response, and how this changes with the location of the shunt.
The waveform components of the shunt models are listed in
the lower half of Table 3. Of the three locations, the shunt
at the input site causes the earliest changes and reduces the
peak somatic voltage the most. The shunt furthest from the
input site, i.e., the basal one, has the smallest effect of the
three. However, the shunt at the soma reduces T0 the most,
because it has the greatest "access" to the whole cell, whereas
the apical shunt reduces T0 the least, having the worst access.

Note that, irrespective of location, shunts only affect re-

sponses at late times: the early parts of the responses su-

perimpose. The time constants with n > 5 agree with those

TABLE 3 Two cylinder + soma models*
n 0 1 2 3 4 5 6 7 8 9

Default uniform model
Tn 70.00 10.14 1.80 0.82 0.56 0.32 0.21 0.17 0.13 0.10
An,, 2.80 1.01 -0.21 -0.56 0.47 0.04 -2.57 -4.55 -0.40 0.45
An2, 2.80 -2.58 -0.05 -3.73 4.65 -0.21 -0.79 -1.72 1.56 2.51

Apical fR. = 0.5
Tn 52.19 9.15 1.76 0.82 0.56 0.32 0.21 0.17 0.13 0.10

An,, 3.02 0.79 -0.22 -0.55 0.47 0.04 -2.61 -4.51 -0.39 0.45
A">s 2.56 -2.32 -0.05 -3.70 4.60 -0.18 -0.81 -1.70 1.54 2.53

Apical fRi = 0.5
T 70.00 5.78 1.09 0.62 0.32 0.20 0.15 0.10 0.08 0.06
An,, 2.80 0.81 -0.82 0.47 0.03 -4.83 -2.21 0.51 0.42 -0.42
A,2, 2.80 -1.96 -0.74 -1.68 0.09 5.32 -3.58 -0.14 -2.52 2.20

Basal gsh.t = 10 nS
Tn 27.17 8.64 1.79 0.82 0.56 0.32 0.21 0.17 0.13 0.10
An2, 3.32 -3.14 -0.03 -3.71 4.68 -0.29 -0.70 -1.82 1.65 2.47

Soma gshunt = 10 nS
Tn 26.74 9.22 1.80 0.79 0.55 0.32 0.21 0.17 0.13 0.10
A,2, 3.01 -2.76 -0.04 -3.90 4.79 -0.21 -0.73 -1.81 1.58 2.46

Apical gsh,,,, = 10 nS
Tn 38.16 5.50 1.80 0.80 0.54 0.31 0.21 0.17 0.13 0.10
Anb 1.27 -0.98 -0.05 -3.25 3.94 0.03 -0.80 -1.66 1.38 2.72

* Units: Tn, ms; An,, mV.
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FIGURE 2 Single cylinder models: nonuniform Rm vs. uniform R1,, with
and without a shunt. Length 1500 ,um, diameter 4 ,um. The responses to a

1 pC point charge of three of the models in Table 4 are compared (waveform
components in Table 5). Recording site for all waveforms is the left hand
end of the cylinder (0 ,m). Note the different voltage scales in the three
panels. Solid lines: "true" model, cylinder divided into five equal segments,
fRm doubles from one segment to next moving from left to right. Dashed
lines: membrane conductance of true model spread evenly over whole cyl-
inder to give a uniform Rm. Dotted lines: uniform Rm, and shunt at left hand
end of cylinder; parameters Rm, Cm, Ri, and g,, from optimum uncon-

strained fit to response of nonuniform R, model with input site at left hand
end (0 pm). This model illustrates the relatively minor errors that arise for
this geometry and centrifugally increasing Rm, when uniform Rm is incor-
rectly assumed but the fitter allows a somatic shunt. More quantitative com-
parisons of the models' responses are given in Table 4. (A) Stimulation site

of the default (no shunt) model to within two decimal places
irrespective of shunt location. The amplitudes of the faster
components tend to those of the no-shunt model.

In summary, the distribution of Rm and shunts only af-
fects late parts of responses, whereas the distribution of R,
affects early parts (and can affect later parts when some
parts of the cell discharge more rapidly than others; not
shown). Changes in Cm distribution affect all parts of
waveforms (not illustrated).

Example 2. Fits to single cylinder model with
nonuniform Rm

An important part of passive neural modeling is parameter
estimation from experimental data. Given a measured cell
morphology and a short pulse response recorded from the
same cell, what is the range of electrical parameters that is
compatible with the data? An important assumption com-
monly made in the absence of any quantitative information
about the distribution of passive membrane conductances is
that dendritic Rm is uniformly distributed, allowing perhaps
for the possibility of increased somatic conductances or a
somatic shunt. Suppose in reality the distribution of dendritic
Rm is highly nonuniform; what kind of errors may result from
falsely assuming that it is uniform? Fleshman et al. (1988)
and Clements and Redman (1989) compared short pulse re-

sponses recorded from spinal motoneurones using sharp
electrodes to the equivalent responses of various kinds of
morphologically based compartmental model, after param-
eter optimization. Models with either a step increase in Rm
from soma to dendrites (equivalent to a somatic shunt), or

with Rm increasing monotonically from soma to dendritic
tips, allowed good fits to the experimental data. However,
uniform Rm models without a shunt frequently proved to be
incompatible with the real neurones' responses.

Another (minimalist) illustration of this issue is presented
in Fig. 2 and Tables 4 and 5, using a single cylinder repre-

sentation. The "true" model cell consists offive 300 p,m long,
diameter 4 ,um segments in a chain, with fRm doubling from
one segment to the next, starting from unity on the left. Glo-
bal Cm = 0.7 ptFcm-2, Rm = 15,600 fcm2, Ri = 250 fcm,
and there are no shunts. The overall 16-fold variation in
Rm is hopefully far more extreme than would be encountered
in typical cells in quiescent preparations such as brain slices.
Increases inRm away from the soma could be due to a number
of factors. More ion channels may occur naturally in the
somatic membrane, with a gradual fall-off with distance
away from the soma. Alternatively, if a cell has been impaled
by a microelectrode containing high concentrations of ions

left hand end (O ,um). The best free fit model response agrees extremely
closely with the target true nonuniform model response, but the evenly-
spread membrane conductance model ("uniforn Rm") gives a very different
waveform. (B) Stimulation site 600 ,um along cylinder. The nonuniform and
best fit models still agree well. (C) Stimulation site right hand end of cyl-
inder (1500 um from left). The evenly-spread conductance model now gives
the best match to the nonuniform model.
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TABLE 4 Summary of single cylinder models

Model Cm Rm Rj gshunt C.V.O* C-v-600* C0V.1500* mean C.V.t

,uFcm -2 flcm2 fQcm nS
Uniform Rm 0.7 40,300 250 0.00 0.313 0.20 0.06 0.17
Best free fit 0.728 61,500 289 1.60 0.036 0.08 0.17 0.11
Fixed Cm fit 0.7 62,400 280 1.63 0.037 0.06 0.12 0.07
fixed Ri, Cm fit 0.7 47,200 250 1.09 0.081 0.08 0.17 0.11
* Fit coefficient of variation between given model response and that of nonuniform Rm model (i.e., fit SD/mean value of target waveform over fit interval
of 0.1-100 ms); subscripted numbers are stimulation locations, in ,gm from left hand end of cylinder. Recording always from left hand end of cylinder.
t Mean c.v. over six stimulus locations (0, 300, 600, 900, 1200 and 1500 ,um from left hand end).

TABLE 5 Waveform components from single cylinder models in Table 4*

n 0 1 2 3 4 5 6 7 8 9

Nonuniform Rm model
aTn 30.96 3.38 0.96 0.44 0.25 0.16 0.11 0.08 0.06 0.05
Ano,o 5.23 16.17 15.77 15.44 15.28 15.16 15.21 15.21 15.20 15.18
An6WIO 6.03 6.44 -12.05 -12.60 4.43 15.16 4.90 -12.17 -12.37 4.56
An,500,0 7.15 -14.83 15.31 -15.24 15.19 -15.16 15.16 -15.17 15.17 -15.16
Uniform Rm model
Tn 28.23 3.50 0.96 0.44 0.25 0.16 0.11 0.08 0.06 0.05
AnO,O 7.58 15.16 15.16 15.16 15.16 15.16 15.16 15.16 15.16 15.16
An6 7.58 4.68 -12.26 -12.26 4.68 15.16 4.68 -12.26 -12.26 4.68
Anl5WO 7.58 -15.16 15.16 -15.16 15.16 -15.16 15.16 -15.16 15.16 -15.16
Best free fit model
Tn 31.10 3.95 1.14 0.52 0.30 0.19 0.13 0.10 0.08 0.06
Ano,o 5.11 13.51 14.27 14.44 14.50 14.52 14.54 14.55 14.56 14.56
An6WIO 6.04 5.51 -11.14 -11.99 4.12 14.53 4.74 -11.64 -11.89 4.34
Anj5,Oo 6.59 -13.70 14.33 -14.46 14.51 -14.53 14.55 -14.55 14.56 -14.56
* Units: Tn, ms; An,, mV. 1 pC impulses.

in solution, there may be ionic gradients from soma to
dendrites, resulting in greater availability of charge carriers
to cross membrane channels nearer the soma than further
away.

Four different models are compared to the true one (details
in Table 4):
(i) A model where the specific membrane conductance

Gm = 1/Rm is the average of the Gm values of all the
segments, i.e., the total membrane conductance is the
same as in the true model, but it is evenly distributed
("smeared");

(ii) A model obtained using the standard fitting protocol of
this laboratory: Cm, Rm, Ri, and a "somatic" gshunt (at
left-hand end) are free parameters of a simplex opti-
mization routine that minimizes the sum of the errors
squared between model response and target "true cell"
response, given the same stimulus. In this case 1 pC
impulses into the left hand end of the cylinder were
compared, recording from the same location. A uniform
Rm is assumed throughout the cylinder. The optimum
free fit model is given in Table 4. Reassuringly, Cm and
Ri are very close to their correct values;

(iii) As in (ii), but with Cm constrained to the correct value
of 0.7 ,uFcm-2;

(iv) As in (ii), but with both Cm and Ri constrained to their
correct values.

The predictions of the four models can be compared to the
output of the true model in a number of different ways. Im-

pulses of 1 pC were injected into a number of different input
sites, with recording from the left hand end ("soma"). A
visual impression comparing (i) and (ii) to the true model is
illustrated in Fig. 2. Surprisingly, the optimum free fit model
leads to predictions of responses from other stimulus sites
that are not seriously in error. The smeared Gm model, how-
ever, gives very inaccurate impulse responses from stimu-
lation of proximal (left hand) sites.
More objective scoring of the different models is possible.

One measure of goodness of fit that is independent of the
stimulus size (and only weakly dependent on model dimen-
sions and fit interval) is the fit C.V. or coefficient of varia-
tion. This is equal to the root mean squared deviation (fit
S.D.) between the two waveforms divided by the mean value
of the target waveform over the same interval. This is a more
helpful measure, in some ways, than the fit S.D., which suf-
fers from being proportional to the stimulus magnitude and
approximately inversely proportional to model capacitance.
Fit C.V.s allow useful comparisons to be made between
noise-free fits across a wide range of different modeling situ-
ations. The average fit C.V. of responses from six test input
sites is computed for each model with respect to the true
model (see Table 4). Overall, the fixed Cm fit gives the best
predictions, followed closely by the other two fit models. The
worst model is the one with uniformly smeared Gm, except
its responses to distal (right hand) inputs are closer than its
rivals' to those of the true model.
The first 10 waveform components of the waveforms in

Fig. 2 are listed in Table 5. It can be seen that the optimum
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free fit model has similar time constants to the true (non-
uniform Rm) model. The faster time constants (n > 1) of the
uniform Rm (averaged Gm) model are indistinguishable from
those of the true model to within two decimal places. How-
ever, its slowest time constant is about 10% faster than o of
the true model, and its slowest amplitude does not change
with stimulation site, so it is unable to follow the 40% varia-
tion inA0 of the true model. The best fit model's amplitudes
are all fairly close approximations to those of the true model,
whatever the stimulation site.

These simulations need to be extended to more realistic
branching geometries, and to actual measured distributions
of relative ion channel density (and perhaps Ri), as these
become available. As a preliminary exercise, however,
they are encouraging: even a large "centrifugal" increase
in Rm can be compensated for by a point shunt at the
"soma," with only comparatively minor errors resulting in
the model predictions.

Example 3. Nonsumming interactions between an
electrode and the two cylinder + soma model

A particularly relevant question for electrophysiologists is,
"if an electrode produces a given extracellular control arte-
fact in response to a test stimulus, and is then used to stimu-
late and record from a cell, what is the electrode's actual
distorting effect on the cell's response to the same stimulus?"
To simplify matters, assume that the electrode resistance
does not change with impalement/whole-cell recording.
(This is unrealistic, particularly in the latter case.) Assume
also that the artefact is entirely capacitative, i.e., there are no

polarization effects or dielectric breakdown (see Purves,
1981; Major, 1992, chapter 3), and that capacitance neutral-
ization, if available, has already been performed as well as
possible. Purves (1981, p. 49) has reported that for a non-
distributed electrode capacitance, even with optimal capaci-
tance compensation, the electrode-amplifier circuit 10-90%
rise time t1l09 2(t10imt10. )1/2, where tl0o,1 is the un-

compensated 10-90% rise time of the electrode, and
tlo1m is that of the amplifier. What remains after capacitance
compensation is effectively an uncompensatable capacitative
artefact. A physiologist might instinctively subtract the ex-

tracellular control from the response recorded from the cell,
to obtain a "cell alone" response. This maneuver unfortu-
nately is misguided, because it is based on a mathematical
fallacy, that the responses of the cell and the electrode simply
sum. When the electrode is "added" to the cell, a new system
is created, and "the whole is greater than the sum of its parts!"
The electrode now has to discharge to earth via the cell, rather
than directly via its tip, and the cell has an extra (perhaps
distributed) capacitance attached to its soma. Nonsumming
interactions are touched on in Paper II, Fig. 3.
A simulation of this nonsumming cell-electrode interac-

tion is shown in Fig. 3. The cell model has the same pa-
rameters as the apical fRm = 0.5 model in Example 1A (see
Fig. 1 legend), except there is a 10 nS somatic shunt (about
what one might expect for a typical intracellular impalement
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FIGURE 3 Nonsumming cell-electrode interaction. Cell as in Example
1A, with 10-nS shunt at soma. Details of electrode in Table 6. A short square
current pulse (1 nA X 0.5 ms) is injected into the wide end of an electrode
with its tip earthed. The electrode artefact, i.e., the voltage at the wide end,
is recorded (solid line marked "el. alone"). The same current pulse is injected
directly into the soma of the nonuniform Rm two-cylinder + soma model,
and the voltage response at the soma is measured (dot-dashed line marked
"cell alone (C)"). The tip of the electrode is then attached to the cell, at the
soma, so that their interiors become continuous. The current pulse is again
injected into the wide end of the electrode. The voltage recorded at the wide
end of the electrode is the dotted line marked "cell with electrode (CE)".
Finally, the response of the cell alone is subtracted from that of the cell-
electrode system to obtain the "effective artefact CE-C" (dashed line). The
waveform components of the various responses are listed in Table 7.

of this kind of cell: see Major, 1992, chapter 4). The electrode
has the same global parameters as the cell; other details are
given in Table 6. It is within the range used for intracellular
recordings, with a resistance of 113 MfQ, and a stray ca-
pacitance to earth of 1 pF. Current pulses of magnitude + 1
nA and duration 0.5 ms were used in all cases.

Current was injected into the wide end of the electrode,
with its tip earthed (equivalent to being in the extracellular

TABLE 6 Details of electrode model

Electrode fR; 0.04
seg. 4 (wide end) 1 400 ,um

seg. 3

seg. 2

seg. 1
(tip)

d
fRm

fCm

I
d
fRm

fCm

I
d
fRm

fCm

I
d
fRm
fCm

4.0 ,um
8000
0.0114
250 ,um
2.0 ,um
4000
0.0227
200 ,um
1.0 ,Lm
2000
0.0455
150 ,um
0.5 ,um
1000
0.0909

N.- - - - - -
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solution, see Fig. 3 inset, right). The nonuniform perfect volt-
age clamp solution was used in this case, with the electrode
tip clamped to zero. The extracellular artefact, or voltage
recorded from the wide end of the electrode, is the solid line
"el. alone" in the figure. Current was injected into the soma
of the cell with no electrode attached (not illustrated), but the
shunt still in place, and the response recorded from the soma
is the dot-dashed line marked "cell alone (C)". The electrode
tip was attached to the soma of the cell, so that their interiors
were continuous (illustrated in Fig. 3 inset, left). Current was
injected into the wide end of the electrode, and the voltage
response at that point is the dotted line "cell with electrode
(CE)". Subtracting C from CE gives the effective artefact
("CE - C", dashed line).
The extracellular artefact falls to below 5% of the cell

alone response by 1.1 ms (i.e., 0.6 ms after the end of the
pulse). The effective artefact, however, falls to less than 5%
of the cell alone response only after 2.4 ms (i.e., 1.9 ms from
the pulse end). This is about 3 times as long as the recorded
artefact. (If the error tolerance is reduced from 5 to 2% of the
cell alone response, the extracellular electrode artefact lasts
0.7 ms, and the effective artefact lasts 3.2 ms from the pulse
end, a factor of 4.6 longer.)
The nonsumming cell-electrode interaction can be "dis-

sected" into its waveform components with the nonuniform
analytical solution. The components of the first three tran-
sients above are given in Table 7. The electrode behaves
predominantly as a lumped resistor-capacitor circuit, with a

time constant of 88 p,s, just below the 113 p,s one would
predict from its resistance and capacitance. The faster com-
ponent has a trivial amplitude by comparison with AO. The
amplitudes of even faster components (not shown) are pro-

gressively smaller. When the electrode is attached to the cell,
the T0 of the combined system is slightly slower than that of
the cell alone, but the other time constants are remarkably
similar to those of the cell alone, up to n = 9. However, T1o
is equal to 91 gs, which is different from the 82 ,us Tr1 of
the cell but not far from the 0 of the electrode (boxes for
emphasis). At higher indices, T,, of the combination corre-

sponds closely to rTn-l of the cell alone: it is as if the electrode
time constant is inserted into the list, and faster cell time
constants are moved along one to the right. This at least is
consistent with a summing interaction. The same is not true,

however, of the amplitudes: the large Ao of the electrode is
spread over many of the combined model's A,, terms; Ao is
changed by 0.9%,A1 by 1.5%,A2 by 13.6%, andA3 by 30%.
The changes inA, become greater as T,, approaches 0 of the
electrode alone, and then fall off again. The biggest com-

ponent by far is A10, the term corresponding to the electrode
time constant, however its value of 68.6 mV is much reduced
from the electrode-alone A0 of 109.1 mV. Power has leaked
out of the electrode term, and into neighboring cell terms,
because of the coupling between the two structures. The ef-
fects of the n = 2 term can be expected to last for about three
time constants, i.e., over 5 ms from the pulse end: whether
this would make an important difference to the outcome of
model fitting would require further simulations.

In other simulations, in which either the pipette capaci-
tance or the pipette resistance was increased by a factor of
only 1.25, the change inA0 exceeded 1%, suggesting that in
many experiments the effective artefact may be significant
over the entire duration of the cell's response, and that it is
an oversimplification to assert that the effective artefact is
approximately 3 times the length of the extracellular control
multiplied by the ratio of intracellular to extracellular elec-
trode resistance (c.f. Paper III, Appendix). In such circum-
stances, particularly when electrode capacitance (after com-
pensation) is large, it may be necessary to attach an explicit
model of the electrode onto the model of the cell, fixing the
capacitance and resistance to their measured values (e.g.,
Major et al., 1994).
The results above suggest that any uncompensated elec-

trode capacitance must be treated with caution by modelers:
its true effects may outlast the extracellular controls by a

considerable factor and may affect optimal fit parameters,
particularly Ri, which can be appreciably higher than its true
value (see Major, 1992, Chapter 3). Early waveform com-

ponents are boosted by increases in electrode resistance or

decreases in capacitance neutralization (not shown). The du-
ration of the extracellular control, the "fittability" of a cell's
response, and the duration of the changes in the response

when capacitance neutralization is reduced or electrode re-

sistance alters can all act as rough guides to the earliest "safe"
fit start time (see Major, 1992, chapters 3 and 6), or whether
it might be necessary to model the electrode along with the

TABLE 7 Nonsumming cell-electrode Interaction
n 0 1 2 3 4 5 6 7 8 9 10 11 12

Electrode alone*
STn | (.sxtI|E 0.003
An 109.149 1.610

Cell alonet
Tn 22.466 8.557 1.758 0.786 0.551 0.322 0.210 0.172 0.129 0.096 0.082 0.069 0.055
An 1.033 0.453 0.059 1.573 0.844 0.001 0.411 0.762 0.029 0.059 0.447 0.062 0.003

Cell with electrode*
wTn 22.513 8.565 1.758 0.790 0.552 0.322 0.210 0.174 0.130 0.097 |llIJ9l 0.078 0.069
An 1.042 0.460 0.067 2.049 1.190 0.002 1.373 3.214 0.292 11.507 68.610 22.710 1.177

Units: Tn, ms; An, mV.
t Injecting 1 nA X 0.5 ms short pulse into and recording from soma or wide end of electrode,* when present.
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cell. More precise indications can be built up by detailed
simulations of a particular experiment (e.g., Major et al.,
1994).

Example 4. Nonuniform CAl pyramidal cell
"cartoon" representation

To illustrate the nonuniform solutions with a more complex
geometry showing branching, the cartoon representation
(Stratford et al., 1989) of a real hippocampal CAl pyramidal
cell is employed. The physical dimensions of the represen-
tation are shown in Fig. 4 of Paper I, accompanying which
there is a description of how it was obtained. Fig. 4 of the
current paper shows the cartoon together with the Rm and R,
factors of its individual segments; Cm is assumed to be uni-
form over the whole cell. The general trend is for Rm to
increase away from the soma (perhaps because of ions flood-
ing out of a microelectrode), and to be lower in the apical than
in the basal tree (for a possible justification see Major, 1992,
chapter 5: there may be more conductances associated with
"undershoot" after EPSPs in the apical dendrites; also see
Nicoll et al., 1993). In addition, Ri increases away from the
soma (again, perhaps because of ionic concentration gradi-
ents resulting from the presence of a microelectrode, or per-
haps because of increased cytoskeletal occlusion in thinner
segments).

Three models are considered. All have the same biologi-
cally reasonable global electrical parameters: Cm = 0.7
,uFcm 2, Rm = 50,000 lcmn2, Ri = 250 Qlcm, somatic
gshunt = 10 nS. The models differ in the magnitude and lo-
cation of their single dendritic shunt. The default, "soma
stab" model has no dendritic shunt. The "double stab"
model has a 10-nS shunt at the distal end of segment 28,

FIGURE 4 Cartoon Representation of hippocampal
CAI pyramidal cell from Paper I, Figs. 2 and 4. A non-
uniform distribution of Rm and Ri is introduced: fRm is
written above each segment, andfRi is written inside, just
below, or just beside the end of each segment. See text
for global electrical parameters. fj- = 1 for all segments.
A left-first, depth-first numbering scheme for segments
is assumed, with the soma having index 0. There is a
10-nS somatic shunt in all the models, to mimic the ef-
fects of impalement by a microelectrode. The default
("soma stab") model has no further shunts. The "double
stab" model has an additional 10-nS shunt at the distal
end of segment 28 (lower apical trunk). This has two
interpretations: (i) a second electrode has impaled the
apical dendrite, (ii) a strong, localized tonic shunting in-
hibition is being applied. A third model omits the apical
trunk shunt, but has instead a 1-nS shunt at the base of
the uncollapsed dendritic spine, at the distal end of seg-
ment 23. The resistors indicating the latter two shunts in
the figure are labeled with question marks to emphasize
that they are not present in all the models.

as if it had been impaled by a microelectrode (e.g., Wong
and Stewart, 1992). This site is at the end of one of the
twin apical trunks, about 360 ,im from the soma, before
the spine collapse procedure (see Paper I). The third model
has a 1-nS shunt at the base of its single uncollapsed den-
dritic spine, at the end of segment 23 (assuming depth-
first, left-first numbering, with the soma index 0).
The responses of the models are shown in Fig. 5, and their

waveform components are listed up to n = 9 in Table 8. Two
kinds of stimulus are used. In the upper two panels, a double
exponential current (Eq. 51 of Paper I) with total charge
0.1 pC, Tsyi = 0.1 ms andTY,2 = 2 ms is injected into the spine
head (see that paper for justification of current parameters).
In Fig. 5 C, short current pulses of amplitude 1 nA and du-
ration 0.5 ms are injected into the soma or the apical trunk
impalement site (in the case of the double stab model).

Fig. 5A shows the responses to synaptic input under "soma
stab" and "double stab" conditions. The peak of the somatic
PSP ("sp-s") is only decreased slightly by the extra dendritic
conductance, and the final decay time constant is reduced
from 18.9 to 15.1 ms. The fast time constants and amplitudes
A., (n > 6) are barely changed, and this is reflected in the
close superposition of the two somatic responses at early
times. Again, this is consistent with shunt effects only ap-
pearing at relatively late times in responses. The response at
the dendritic recording site in the double stab model is also
plotted ("sp-at"): it shows an earlier and bigger peak than the
somatic response of the same model. The difference at early
times is due partly to the longer distance (both physical and
electrical) from the spine to the soma compared with the
distance from the spine to the dendritic recording site, and
partly due to "load effects": there are more side branches off
the spine-to-soma route than off the route from the spine to

collapsed
apical tuft

collapsed
apical obliques

collapsed
basals

collapsed
apical obliques

collapsed
apical tuft 7e
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FIGURE 5 Responses of the cartoon models in Fig. 4. Solid lines: re-

sponses of default model (somatic shunt only). Dotted lines: responses of
"double stab model", i.e., one with extra 10-nS shunt at distal end ofsegment
28 in one of the apical trunks. Dashed line: response of third model, with
1 nS shunt at spine base. Waveform labels of the form "e-r" indicate stimu-
lation site e and recording site r, where "s" stands for "soma", "at" for "apical
trunk" (distal end of segment 28), and "sp" for "spine head". Waveform
components are listed in Table 8. The waveforms in the upper two panels
are responses to a double exponential input current with total charge = 0.1
pC, TrY, = 0.1 ms and T,Y2 = 2 ms into the spine head (segment 26). (A)
Somatic post synaptic potential (PSP) of default model (solid, "sp-s") com-
pared with that of double stab model (dotted, "sp-s"). The response at the
apical trunk "impalement" site in the double stab model is labeled "sp-at".
(B) Illustration of shunting inhibition on input into the spine. All responses

are recorded from the soma. Dotted line: response when a 10-nS localized
"off-line" shunting inhibition is applied to the end of segment 28 (apical

the dendritic recording site. The difference at late times is
because, in relative terms, the dendritic shunt increases the
local conductances to earth far more than the somatic
shunt does, and so, loosely speaking, that part of the cell
loses charge more rapidly than the soma. In fact, at late
times charge flows from the soma towards the dendritic
impalement site, so all parts of the cell discharge with the
same final time constant. The differences in the final de-
cays are in the amplitudes A ,,2 and A,28'

Fig. 5B is an illustration of how the nonuniform analytical
solution can be used to explore shunting inhibition (e.g., Jack
et al., 1975, chapter 7; Koch et al., 1990). The efficacy of a

large "off-line" shunt is compared to that of a small "on-line"
shunt, in their ability to depress the peak voltage at the soma
in response to the synaptic stimulation outlined above. The
"off-line" model is the same as the "double stab" model,
merely being reinterpreted. The 10-nS shunt at the end of the
lower apical trunk is not on the direct route between input
spine and soma, and so has relatively little effect on the EPSP
peak, although it causes a detectable (20%) change in T0. The
input resistance of the default ("soma stab") model is 43.1
MfQ, which is reduced to 36.5 MQl by the 10-nS dendritic
shunt, a 15% change, probably detectable under most con-

ditions. By contrast, the more strategically placed 1-nS shunt
at the base of the input spine has a much more pronounced
effect on the peak EPSP, almost halving it. Inspection of
Table 8 shows that the change in T0 from the default model
is less than 3%. The input resistance of the spine base shunt-
ing inhibition model is 42.4 Mfl, a reduction of less than 2%
from the default model. Both changes would be hard to detect
in experiments. Curiously, some of the faster time constants
in this model (T44--r6), together with their associated ampli-
tudes, appear to have changed more from the default model
than have the equivalent ones in the double stab model, even

though the latter has a bigger dendritic shunt. (We note that
because Tsy2 T6, the large opposite signed amplitudes of

these two terms should be combined, leaving a net amplitude
which is closer to the value in the default model.) This phe-
nomenon should perhaps be explored in more detail.

Fig. 5 C compares the short pulse responses of the soma

stab and double stab models, with a logarithmic voltage axis.
The different final time constants of the two models are ap-

parent. The two "s-s" or soma-soma responses are indistin-
guishable at early times, and their fast time constants and
amplitudes largely agree to within two decimal places for
n > 6. In terms of model fitting, the double stab model in-
troduces one new parameter (dendritic gshunt), assuming
the impalement location is known. However, two addi-
tional waveforms, potentially, are available, the trunk-
trunk response "at-at" and the trunk-soma transfer re-

sponse "at-s", which because of reciprocity, should be the
same as the soma-trunk transfer response (an additional

trunk). Dashed line: response when shunting inhibition of only 1 nS is
applied "strategically" to the dendritic shaft just below the input site. (C)
Responses to 1 nA X 0.5 ms short current pulses of"soma stab" and "double
stab" models, logarithmic voltage axis. See text for discussion.

II II II

Biophysical Journal628



Nonuniform Branching Cable Solution

TABLE 8 CAl pyramidal cell cartoon models' response components

n 0 1 2 3 4 5 6 7 8 9 sy2

Soma stab model
Tn 18.86 6.99 5.39 4.01 3.26 2.97 2.58 1.76 1.61 1.45 2.0
A"2~* 0.23 0.05 -0.07 -0.01 0.06 -0.06 -0.62 0.01 0.04 -0.01 0.34
A t 0.85 0.07 0.10 0.02 0.00 0.00 0.01 0.09 0.06 0.03nss

Double stab model
Tn 15.07 6.80 5.08 4.01 3.17 2.96 2.52 1.76 1.61 1.45 2.0

An2* 0.19 0.06 -0.04 -0.01 0.13 -0.06 -0.73 0.01 0.04 -0.01 0.37

An2 0.13 0.06 0.13 0.00 1.84 0.47 -3.46 0.00 0.02 0.01 0.69
An t 0.84 0.14 0.04 0.02 0.00 0.00 0.02 0.09 0.06 0.02

A t 0.39 0.11 0.40 0.00 0.28 0.03 0.35 0.00 0.03 0.02

Spine base shunting inhibition model
Tn 18.38 6.97 5.38 4.01 3.10 2.87 1.99 1.76 1.61 1.45 2.0
A"2 0.13 0.03 -0.03 -0.00 0.04 0.04 21.91 0.03 0.07 -0.01 -22.24

Units: Tn; An, mV.
* Response to double exponential current, Q = 0.1 pC, into spine head.
t Response to 1 nA X 0.5 ms short current pulse.

test for linear behavior of the system). Both new responses
contain valuable information. Because its Ao and A2 are of
similar magnitude, the trunk-trunk response has a pro-
nounced "slow bend," useful for constraining core electro-
tonic model nonuniqueness (see Major, 1992; Paper I; be-
low): it should not be discarded. The transfer response has
great potential for checking or further constraining a core
electrotonic model. Compared with the other two re-
sponses, it should suffer less distortion at early times due
to electrode artefacts. Therefore, assuming minimal or ac-
curately quantified morphological errors, the transient
transfer response should be well-suited to constrain the
range of likely R, values. Ideally, in the time available ex-
perimentally, all three responses should be measured. Non-
uniform model direct fit programs, such as the one de-
scribed above, can then be used to obtain likely parameter
ranges, given accurate morphological measurements and
short pulse responses from the same cell, together with es-
timated relative Rm and Ri distribution functions.

DISCUSSION

The solutions for transients in nonuniform branching cables
presented above are extensions of those presented in Papers
I and II of this series (Major et al., 1993a, b). Most of the
general points discussed in those articles also apply to the
nonuniform solution. The system (cell) time constants are
independent of stimulation and recording sites and are ob-
tained from a recursive transcendental equation. The ampli-
tudes are composed of three factors, one constant over the
whole cell, one varying with input site, and the other varying
with recording site. All the convolutions detailed in Papers
I and II hold for the nonuniform case. There is reciprocity
between stimulus and recording site, for current injections.
For voltage clamp, there is a further reciprocity relation: the
clamp current resulting from a dendritic current injection is
the same as the inverted voltage response at that point after

a somatic voltage command, providing both inputs have the
same time-course and magnitude (in appropriate units). The
discussion in the Appendices of those two papers about
lumped terms, efficacy, attenuation, A.C. responses, and sin-
gularity clashes can be generalized to the nonuniform case
by using the Laplace transform response G described in the
Appendices below. Singularity clashes can be avoided, as
before, by small changes in the lengths of the involved seg-
ments. The parameter dependencies of the nonuniform and
uniform solutions are similar (see Example 1).
As in the uniform case, for a given branching pattern, an

infinite number of possible raw electro-morphological mod-
els map onto a particular core electrotonic model. All these
models give the same response to a given stimulus, when
input and recording sites are expressed as fractional distances
along particular segments. A nonuniform raw electro-
morphological model is specified by its physical morphology
(branching pattern; d5, Ij, dj; for all segments j), distribution
factors, global specific electrical parameters (Cm, Rm, Ri),
and shunts. The corresponding core electrotonic model has
a more compact mathematical representation, in terms of the
same branching pattern and (for example) the parameter set
{TM, gsm, gshunt; Tmj Lj, gj, gsh.,j for all segments j}. Al-
ternative core parameterizations are possible, but all involve
the Lj terms, hence the name "electrotonic."

If the number of segments isN, and their branching pattern
is fixed, there are 6N + 4 raw electro-morphological pa-
rameters versus 4N + 3 core electrotonic parameters for a
nonuniform model. A uniform model has only 2N + 5 raw
versus 2N + 3 core parameters (Paper I, p. 440; Evans et
al., 1994). Compared with the uniform model, there are
two extra core parameters per segment, namely Tm and
gshunt,f but there are four extra raw parameters: fCm, fAin fRi
and gshu.t (although one of the f,i factors can be set equal
to 1 without loss of generality, if global Ri is set to that
segment's Ri.). More trade-offs between raw parameters
are possible, 'therefore, in the nonuniform case for a given

Major and Evans 629



Volume 66 March 1994

core electrotonic model, because the distribution factors
fCm, fRm and fRi can now be used to compensate for local-
ized changes in physical dimensions without alterations to
the global specific electrical parameters: the trade-offs in
Paper I can now apply to individual segments as well as to
entire cells.

In translating from an electro-morphological to a core
electrotonic description, lengths and diameters are combined
with (capacitance/unit area), (resistance of unit area), and
(resistance of unit cross-sectional area/unit length), resulting
in a more compact description in terms only of resistances,
capacitances and dimensionless quantities (time constants
can be thought of as having dimensions [resistance X ca-
pacitance]). As the number of parameters is reduced, infor-
mation about absolute lengths and diameters is lost.
A similar raw-to-core mapping applies to compartmental

models. For simplicity, suppose there are no shunts. The raw
electro-morphological model, after multiplication of the glo-
bal specific electrical parameters by the distribution factors,
consists of the compartmentalised morphology and the local
specific resistivities and capacitances. The core electrical
model is the corresponding branching network of actual re-
sistances and capacitances. A compartment in segment j has
five electro-morphological parameters (length, diameter,
Rmj, Cm , and Rij), but only three core electrical parameters
(membrane resistance, membrane capacitance, and axial re-
sistance). Various different combinations of raw parameters
can therefore yield the same core model. Again, the absolute
length and diameter information is lost.

Target data of insufficient quality will lead to core elec-
trotonic model nonuniqueness, even when the distribution
factors are known for a given type of cell. When the distri-
bution factors are not known, a whole new world of non-
uniqueness opens up (e.g., Rall et al., 1992). Fortunately, the
errors arising from incorrect assumptions about fRm may not
be too serious if compensating shunts are allowed (see Ex-
ample 2). These issues all need to be explored in more detail
using models of real neurones.

It is worth emphasizing that errors in morphological mea-
sures will lead to errors in inferred values for specific elec-
trical parameters such as Ri, even if the core electrotonic
model is correct-irrespective of how it was obtained.
Matching model responses from arbitrarily many different
stimulation and recording sites with their experimental coun-
terparts still allows only the core electrotonic model to be
constrained. Translation of this back into a raw electro-
morphological description, in order to deduce Cmj, Rmj, and
Rii in a particular segment, requires accurate morphological
measurements of lI and dj.
The power of the nonuniform solutions to explore issues

such as nonsumming interactions between electrodes and
cells is illustrated in Example 3. The effective artefact re-
sulting from an electrode may be far worse than extracellular
controls would suggest; indeed, it may be significant for the
entire duration of a response. In such cases a nonuniform
direct fitting program can be used to match a combined
electrode-cell model to experimental data.

Shunting inhibition and dual or multiple recordings can
also be explored using the nonuniform solutions (see Ex-
ample 4), which can provide complementary insights to those
obtained by conventional compartmental modelling tech-
niques.

Tapering morphology or smooth spatial variations in the
elect.rical parameters need to be approximated by step-wise
changes, but for most purposes this should not prove to be
a major deficiency. The most serious limitation of the so-
lutions presented above is that they cannot deal with transient
conductances: for these, compartmental models are still nec-
essary. Despite the undoubted involvement of active con-
ductances and synaptic conductance changes in the func-
tioning of neurones, many important insights can be still
obtained from passive cable modelling (e.g., Rall, 1977), and
it is hoped that the nonuniform analytical solutions will prove
to be a useful tool in this endeavor.

APPENDICES

Appendix 1: The amplitude terms using
complex residues

We now derive the Laplace transform solution of the impulse response for
arbitrarily branching geometry with a soma + shunt, nonuniform electrical
parameters and dendritic shunts, and use it as in Bluman and Tuckwell
(1987), Evans et al. (1992), and Paper I to derive the coefficients An,.

Laplace transform of impulse response

We define Gr(Xr, Ze, t) to be the spatially continuous voltage response at
Xr to a unit point charge at Ze, (i.e., the solution to Eqs. 1-3, I.8-.11 in
segment r). At the soma it is defined to be G,. Let Gj(Xj, Ze,P) be the Laplace
transform of Gj(Xj, Ze, t) with respect to a complex variable p. It satisfies
the following problem: In each segment j we have the ordinary differential
equation,

d2G { -g'-'V(X -Ze) if je,
XjL - (T.rP + l)G =t ~ me e otherwise,

with boundary conditions:

at terminations

tdGj -

g. dXj X gshuntj (Gj))X,=L =

at branches

(dGp )dp9 dX) PL
+ gshuftp(Gp)Xp=Lp = E gd (dXd )Xd=OdEdtrspX

(16)

(17)

(18)

and Eqs. I.61 and I.62 at the soma. Integrating Eq. 16 across the input site
Ze again gives us Eq. I.63.

Laplace transform solution

Define

qj-(1 + TjP) .

For all parent p and daughter d segments, we define

1 [ (1 + coth qL
g= L pdhdtrsp + coth qLd + 1d JI

(19)

(20)
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with with

&ht=- for all terminal segments j.l

gx>qj

Also, for all segments j,

Rj = [j (cosh qctL + iicsinh qc) -.
cEchainj

(21)

(22)

As in Paper I, we divide the dendritic tree into five zones, the solutions
in which are given by Eqs. 1.67-1.72 with q being replaced by qJ whenever
it multiplies an electrotonic distance from segment j (such as Lj, Xj, (Lj -

Xj), etc.). Following the same methods as in Paper I, it can be shown that

As- [+ [cosh q
[(LChqL,- Ze) + pAesinh q(L - Z,)]

Asg1 + wTp] + zstEstems g.,,qtR,k(sinh q,,L,, + fi,tcosh qtL,)' (23)

and for parent p and daughter c on the "mainline" soma-input chain,

Bc = g,,qp(cosh qpLp + ,:psinh qpLp)

x (cosh qiA + jicsinh qL,)fplgx¢qc X
(24)

where for the chain's stem segment st

R,[cosh q(L, - Ze) + sinh q (L - Ze)]
B,,-t (25)s ~~~~~Kstq,tg..

and Ae is given by Eq. 1.74 with q, replacing q.

Obtaining An by complex residues

In cases where there are no singularity coincidences in the transcendental
equation (Eq. 11), the amplitude terms may be determined by evaluating the
residue of G,(X,, Z, p) at the simple polep = - 1/Ta, i.e., at qa = ia,j (see
Paper I and Priestley, 1985, p. 110). Thus,

An = lim (p + 1/n)O(X,, Ze,P) = h(p) (26)
p->-)lTnXk'(p) p=-1/7,'

where

h(p) = kRKr[cosh q,(Lc- Ze) + r,esinh q,(L, - Ze)] (27)

X [cosh q,(Lr- Xr) + ILrsinh qr(Lr - Xr)]

and

k(p) = g,(l + Trp) + I qtg.SJKt,,(sinh qsttL + ji,,cosh q,,L,,). (28)
stEstems

It can be shown, using dqj/dp = T,,,,/2qj, that

k'(P) = gsT6 + 2 2 Tm gcoI(t { (1 + jit) sinh 2qstLs + 4 t sinh2qst,L,
stEstems st

+ L'(1 - 2) + (dq + A
), (29)

and, using dqd/dqp = qpTmd/qdTmp, that

dqp qp

- 1 z T K2 (1 + A2) sinh 2qdL + 4Ld sinh2qdLd
TmpgxpKpR 2 9-dTmd d 2qdTm~,P ds-d+rspI + ) (

+ Ld( - j2) + dFd+ ALd} (30)

dA,
dqj qj'

(31)

at tip segments j. Starting from Eq. 29, recursively expanding terms marked
by (L) using Eq. 30 until the tip segments are reached, it can be shown that

k'(p) = & Tr 1 Y 2
(1 + Aj2)sinh 2qjLj + 4jisinh2qjLj

jeslegsT {2

+ Lj (1 IJ)}* (32)

Using Eqs. 27, 32 and I.88 in Eq. 26 gives the expression for An in Eqs.
4, 13, and 14.

Appendix 2: Amplitude terms for perfect voltage
clamp

We follow the working above and in Paper II, Appendix 1, with differences
highlighted.

Case 1: Clamp to zero with synaptic input:
Vcom = 0 and unit dendritic point charge

The Laplace transform of the system of equations describing the model is
the same as Eqs. 16-18, with Eq. II.63 at the soma. Eqs. II.64 and II.65 still
hold, as do the definitions of ,up and kj above (Eqs. 20-22). We use the same
representation scheme for GA as in Appendix 1. As explained in Paper II,
AS, comes to dominate 0 near its poles at qa = iaj", as the other Ac terms
tend to zero. We define

In cases where there are no singularity coincidencesq. in t-he transshcendent-aZlh(p) = KK [cosh q(Le- Ze) + ,:isinhq(L -Z)][coshqr(Lr-Zr)

+ lisinh qr(Lr - Xr)] (33)

when r # st and

)e[cosh q, (Le - Ze) + iiesinh q,(L, - Ze)]sinh qs,Xst
K,,q,,sinh q,,L,,,

when r = st, with

k(p) = gx (R,,sinh qtL,t) 1 - g[coth qs,Ls, + iit]
Evaluating the residues at the simple poles p = - 1/T, we have

k'.(p) = 'm,!Lg Ls,(1 - coth2qstLst) + q
2Ajt qs q s

(34)

(35)

(36)

The recursive expansion Eq. 30 can be used in Eq. 36, and when evaluated
with h(p) in Eqs. 33 and II.6 gives En in Eq. 15.

Case 11: Unit voltage impulse command:
VCOm = 6(t), no dendritic inputs
The derivation is as in Paper II, with k(p) as in Eq. 35 and with h(p) given
by

Kr [cosh q,(L, - Zr) + ,rsinh q,(L, - Zr)]
h(p) = K,:-

Rst sinh q,,L,, (37)
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