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Response of a Single Cell to an External Electric Field
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ABSTRACT The response of a cell to an external electric field is investigated using dimensional analysis and singular
perturbation. The results demonstrate that the response of a cell is a two-stage process consisting of the initial polarization that
proceeds with the cellular time constant (<1 ps), and of the actual change of physiological state that proceeds with the membrane
time constant (several milliseconds). The second stage is governed, by an ordinary differential equation similar to that of a
space-clamped membrane patch but formulated in terms of intracellular rather than transmembrane potential. Therefore, it is
meaningful to analyze the physiological state and the dynamics of a cell as a whole instead of the physiological states and the
dynamics of the underlying membrane patches. This theoretical resultis illustrated with an example of an excitation of a cylindrical

cell by a transverse electric field.

GLOSSARY
Regions and surfaces

Q,, Q. inside and outside regions of the cell
r excitable membrane separating (2, and (2,
N area of the cell membrane

Material constants

specific conductivities of intra- and extracellular regions
n extracellular conductivity measured in units of o;

R,, C, surface resistance and capacitance of the membrane
d, typical dimension of a cell; in a cylindrical cell, diameter
AV amplitude of an action potential
T, cellular time constant equal to d.C, /o,
Tm membrane time constant equal to R, C,,
T time constant of initial polarization
€ small, dimensionless parameter, defined as the ratio 7/7,,
Potentials
@, ®, potentials in intra-, extracellular regions
P, transmembrane potential
Y, 2 leading order intra-, extracellular potentials
¢ leading order transmembrane potential
v transmembrane potential averaged over the cell mem-
brane
Vv, transmembrane potential at the time the field is applied

Fields and currents

E, E external electric field and its magnitude
I, pointwise ionic current of the excitable membrane
i ionic current averaged over the cell membrane

ion
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Independent variables and operations

X position vector

t time variable

9, derivative with respect to time

A unit vector pointing in the direction normal to the mem-
brane

w vector of weight functions

INTRODUCTION .

The response of a single cell to an external electric field has
received a significant amount of attention in the literature
because of its possible relevance to the mechanism of de-
fibrillation (Plonsey and Barr, 1986; Krassowska et al., 1987;
Chernysh et al., 1988; Dillon, 1991). Recent experiments
performed on single cells measured the strength of the elec-
tric field required to excite isolated ventricular cells (Tung
et al., 1991; Bardou et al., 1990) confirmed the existence of
the negative and positive transmembrane potential on the
opposite ends of a myocyte and investigated the dependence
of this potential on the strength of the electric field (Knisley
et al., 1993). However, since the transmembrane potential in
a single cell is difficult to measure and control, there is vir-
tually no data related to the dynamics of a single cell in an
external field.

In the absence of experimental data, the dynamics of a
single cell has been extrapolated from the dynamics of a
space-clamped membrane patch. For example, the excitation
in a membrane patch is preceded by passive depolarization
of the membrane with current supplied by the electrodes
which proceeds with the time constant on the order of several
milliseconds. The excitation occurs when the transmembrane
potential exceeds the threshold value. However, the space-
clamped membrane is uniformly polarized so that the exci-
tation process is unaffected by the spatial interference from
adjacent regions. In contrast, the transmembrane potential of
a cell stimulated by an external field varies from positive
(depolarized) at the end of a cell facing the cathode to nega-
tive (hyperpolarized) at the end facing the anode. To account
for this difference, in extrapolating to a single cell, the ex-
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citation process of a membrane has been supplemented with
a “loading effect” exerted by the opposite, hyperpolarized
end of the cell. Computer simulations of a single, excitable
cell in an external field (Tung and Borderies, 1992.; Leon
et al., 1993) indicate that such an extrapolation is not entirely
correct. For example, the hyperpolarized end of the cell is not
a “load” counteracting excitation: its inward flow of potas-
sium current is crucial to the excitation process.

This example shows that the behavior of a single cell in
an external electric field is not yet thoroughly understood.
While important insights have been provided by numerical
studies referenced above, further progress in this area is ham-

- pered by the difficulties of obtaining the solution to a single
cell problem. The boundary value problem for a fully ex-
citable cell is by no means trivial because of nonlinear bound-
ary conditions on the membrane. The researchers must either
drastically simplify the model with accompanying loss of
accuracy (Tung and Borderies, 1992; Quan and Cohen, 1993)
or engage considerable computing and programming re-
sources (Leon et al., 1993). Furthermore, qualitative under-
standing gained from a purely numerical analysis is limited.
Clearly, more convenient ways of analyzing and solving the
single cell problem are needed.

This study demonstrates that the boundary value problem
for a single cell reduces at leading order to an ordinary dif-
ferential equation that governs the dynamics of the cell as a
whole. The governing equation is general and applies to cells
of any shape as long as their dimensions are short in com-
parison with the length constant of the tissue, to membrane
dynamics described by any model, and to stimulation in any
phase of an action potential. Thus, the interaction of a cell
with an external field can be studied in a manner similar to
that of the membrane patch, cutting down on the computa-
tional requirements and allowing the use of nonlinear dy-
namics methods to gain a qualitative insight in the mecha-
nism of stimulation with the external field. This result was
derived using dimensional analysis and the perturbation
method. In the past, a similar analysis was performed for a
membrane patch and for myelinated and unmyelinated axons
by FitzHugh (1973) and for a single cell stimulated by an
intracellular source and extracellular sink by Barcilon et al.
(Barcilon et al., 1971) and Peskoff et al. (Peskoff and
Eisenberg, 1975; Peskoff et al., 1976).

BASIC EQUATIONS AND DIMENSIONAL
ANALYSIS

Consider an idealized model of a single cell in an external
electric field shown in Fig. 1. Intra- and extracellular regions
are assumed purely resistive, with conductivities o; and o,.
Hence, intra- and extracellular potentials satisfy Laplace’s
equations,

VP, =0 in Q

1)
Vb, =0 in 0,

The boundary conditions on the external surface 3}, are
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FIGURE 1 Idealized representation of a single cell in an external electric
field. An excitable membrane is represented by a closed surface I' that
separates the interior of the cell {), from the surrounding medium ().. The
intracellular region (), has a typical dimension d_, usually on the order of
micrometers. Electric field E is established by a pair of external electrodes
and is assumed uniform in the vicinity of the cell.

determined by the experimental setup. However, if the cell
is small compared with the extracellular region, and if it is
located away from the electrodes, the electric field is ap-
proximately uniform in the vicinity of the cell. Therefore, the
details of the experimental setup can be neglected. In such
a case, the extracellular potential far away from the cell cor-
responds to the uniform electric field

d.(x,1) = —-E-x as |x|— oo, (@A)

On the membrane T', the potential is discontinuous, and the
difference between intra- and extracellular potentials is the
transmembrane potential ®_(1)

P =9, - P, on T. 3)

The current through the membrane is continuous. Normal
current densities in both regions are equal to the membrane
current per unit area which consists of capacitive and ionic
components

—A-{oVd} = C, 9D, + I (P,)

T, 4
i foN0Y = Coa®, @y O @

where 7 is a unit normal pointing outward from the cell, 9,
denotes the derivative with respect to time, and C,, is the
surface capacitance of the membrane. The ionic current [,
is determined by a complex dynamics of the excitable mem-
brane and consists of several nonlinear dynamic currents car-
ried by different ions. For the purpose of this study, these
details are not important: the excitability of the membrane
will be represented by the total ionic current I, , viewed as
depending on the transmembrane potential ®_ (Fig. 2). To
simplify presentation, Fig. 2 assumes that the rest state occurs
at the zero membrane potential, ignoring a constant of about
—85 mV. Consequently, potentials ®_, ®,, and ®, should be
understood as deviations from their rest values.

Solutions to the single cell problem (Egs. 1-4) are deter-
mined up to an arbitrary function of time added to both &,
and ®,. To obtain a unique solution, Egs. 14 must be supple-
mented by a normalization condition. It is convenient to as-

sume it in the form
f ®,da = 0. )
r
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FIGURE 2 Anexample of the current-voltage relationship of an excitable
membrane. The N-shaped relationship between transmembrane potential
®_. and ionic current [, is typical for short intervals after the application
of the stimulus (compare Fig. 13 of the paper by Hodgkin et al., 1952). It
has three intersection points with the horizontal axis representing three
physiological states of the membrane. Two of these states, the rest state
@, = V, and the excited state & = V,, are stable. The third state, ®_ =
Vi is unstable and corresponds to the threshold phenomenon. The figure
defines two fundamental constants related to the excitable membrane: AV,
the amplitude of the action potential, and R, the surface resistance of the
membrane measured at rest.

Eqgs. 1-5 can be converted into nondimensional form with
the following system of units:

potentials: AV, amplitude of action potential;
conductivities: o, intracellular conductivity;
membrane currents: AV/R_;
distance: d_, typical cell dimension;
electric fields: AVid;
time: 7, = d.C,/o;, cellular time constant;
and
T,, = R,,C,,, membrane time constant.

The presence of two time scales, 7, and 7, indicates that
a single cell responds to an external field in two stages. The
first stage takes place immediately after the external field is
turned on and describes charging the cell membrane with
intra- and extracellular currents. This stage is called “initial
polarization” of the cell. The second stage describes the ac-
tual change of the physiological state of the cell caused
by the field. For example, during excitation, the second
stage describes the process that takes cell from the rest
state to the excited state. In the language of singular per-
turbation theory, initial polarization that proceeds with a
cellular time constant 7, (<1 us) constitutes an initial
layer of the second stage that proceeds with a much longer
membrane time constant T, (several milliseconds)
(Bender and Orszag, 1978).

INITIAL POLARIZATION

The problem describing initial polarization is obtained
by scaling Eqs. 1-5 with the system of units given above
and with a cellular time constant 7, as a unit of time.
Laplace’s equations (Eq. 1), boundary conditions (Egs. 2
and 3), and the normalization condition (Eq. 5) remain
unchanged; the nondimensional boundary conditions on
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currents are:

—7 -V, = 3,®, + e, (P,)

on

—uh - Vo, =9,D, + el (P,)

on

on I'. (6)
Here, p = o,/0, I,,, is a nondimensional ionic current,
and € is a small, dimensionless parameter formed from
fundamental material constants

— dc 7
E_RmO'i’ 7

that has a typical magnitude of 6.25 - 107>, In the bound-
ary conditions (Eq. 6), € multiplies I, indicating that
during initial polarization, the ionic current is orders of
magnitude smaller than the capacitive current. Indeed, if
solutions to Egs. 1-3 and 6 are sought as expansions in

powers of e,

D(x,t,€) = ) + ed] + - - in Q
D(x,2,€) = P+ epl + -+ - in Q,

®)
O (x,t,e) =) +tep,+--- on T,

then in the limit € — 0, the leading order potentials
9, &Y, and ¢° satisfy Laplace’s equations with the fol-

lowing boundary conditions:
—A- Vd)? = atd’g
—uh - Vd)(e) = at(rb?n

Eq. 9 contains no ionic current, and hence the membrane
during initial polarization behaves as a pure capacitance.

The initial polarization problem requires initial conditions
on potentials at time ¢ = 0%, These are determined, in general,
by solving a boundary value problem determined by Egs.
1-3, subject to the following boundary conditions on the
membrane:

on TI. )

—h- Vo) = —pit - Vo)
0(x,0%) = V.

(10)

At t = 0", the current across the membrane is continuous and
the transmembrane potential remains unchanged because the fi-
nite external current cannot instantaneously change the charge
on the membrane capacitance. The value V, depends on the
physiological state of the membrane at the time the field is ap-
plied and is independent of the position on the membrane.

For simple geometries, the initial polarization problem de-
scribed by Egs. 1-3, 9, and 10 can be readily solved. The
solution for a cylindrical cell is given in the section on ex-
citation of a cylindrical cell. Solutions for cells of other ge-
ometries, both steady-state (Klee, 1973; Klee and Plonsey,
1976; Irnich, 1990) and time-dependent (Teissie and Tsong,
1981; Schwann, 1983; Cartee and Plonsey, 1992), can be
found in the literature.

Of particular interest are the steady-state solutions because
they serve as initial conditions to the problem governing the
subsequent evolution of potentials that proceeds with the
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time constant 7,,. For a cell of an arbitrary shape, intra- and
extracellular potentials at the end of the initial polarization
are determined by the following boundary value problems.
In the extracellular space,

V240 =0
A Vel=10
¢x) = —E - x as

f¢2da =0.
r

Problem 11 has a linear dependence on the electric field E.
Thus, extracellular potential is sought in the form

¢Yx, E) = E - w(x), (12)

where w is a vector of weight functions. Computing w,
involves solving Eq. 11 with ith component of electric
field E set to 1 and other components to 0. In the intra-

cellular space,

in Q,
on T

(11

Ix| —

V240 = 0
A-Ve =0

in (13)

on TI.

Eq. 13 implies that the leading order intracellular poten-
tial will be constant throughout the interior of the cell.
The normalization condition (Eq. 5) together with bound-
ary conditions (Eq. 9) and the initial condition on trans-
membrane potential (Eq. 10) imply that

=V, (14)

i.e., the intracellular potential is determined by the
state of the cell at the time the field was applied. Con-
sequently, the leading order transmembrane potential has
the form

d°(x,E) =V, — E - w(x) (15)

evaluated for x belonging to I'. Hence, the transmembrane
potential varies with the position around the cell: ¢¢ is
the smallest at the end of the cell facing the anode and the
largest at the opposite end.

CHANGE IN THE PHYSIOLOGICAL STATE

Further time evolution of these potentials and, in par-
ticular, the possibility of changes in the physiological
state of the cell membrane, depend on the ionic current
I,,,. The initial polarization cannot determine whether
such changes occur because the ionic current in Eq. 9 has
been eliminated by scaling. Hence, to answer this ques-
tion, one must examine the long time behavior of the cell.
The problem governing the active response is obtained by
scaling Eqs. 1-5 with units given in the section on basic
equations and dimensional analysis and with 7_ as a unit
of time. Laplace’s equations (Eq. 1), boundary conditions
(Egs. 2 and 3), and the normalization condition (Eq. 5)
remain unchanged; the nondimensional boundary condi-

Single Cell in an External Field 1771

tions on currents are:
—h- VO, = e{3,®, + I,,,(D,)}
—I“'ﬂ : V(I)e = E{atq)m + Iion(d)m)}

Note that in this problem, all currents flowing through the
membrane, i.e., both capacitive and ionic components, are
multiplied by a small parameter €. Hence, in a leading
order approximation, the membrane behaves as an insu-
lator. That is precisely the situation that developed at the end of
the initial polarization; consequently, the steady-state solutions
of the initial polarization serve as initial conditions to the prob-
lem describing the active response of the cell.

Solutions to this problem can be obtained numerically by
discretizing (Eqs. 1-3 and 16) and solving them on a com-
puter. In essence, the cell will be treated as a collection of
membrane patches and the physiological states of those
patches will determine the physiological state of the whole
cell. An alternative approach is to recognize that the bound-
ary value problem (Eqgs. 1-3 and 16) reduces at leading order to
an ordinary differential equation that governs the response of a
cell treated as a whole. To show this, one must examine the
macroscopic balance of current. The net current entering or leav-
ing the cell is computed by integrating Eq. 16.1 over the mem-
brane I'. The integral of the intracellular current (left hand side)
is zero because the cell is source-free. Hence, the net capacitive
current entering or leaving the cell is balanced by the net ionic

current
f 8P, da= - f L(@,) da. an
r T

Eq. 17 indicates that during the actual change of the physiologi-
cal state, the cell has no net exchange of current with the en-
vironment. The active response of the cell draws upon the charge
stored in the membrane during initial polarization.

Integral identity (Eq. 17) can be approximated by an or-
dinary differential equation. First, recognize that in a limit
€— 0, Egs. 1-3 and 16 have no time dependence. Thus, the
leading order potentials will retain the same form established
by the initial polarization except for a time-dependent con-
stant. As shown in the previous section, intracellular potential
is constant throughout the interior of the cell; this constant may
subsequently evolve with time. Extracellular potential is given
by E - w and does not depend on time. This result is motivated
physically: a small net ionic current crossing the membrane can
easily change potential inside a cell that is only several microme-
ters in diameter. However, the same current has’ practically no
impact on the extracellular potential, because the extracellular
region (), is large and because the extracellular field is enforced
by the electrodes. Thus, in the limit € — 0, the leading order
intracellular potential depends only on time ¢ while the leading
order extracellular potential depends on the position x and,
parametrically, on the electric field E:

d(x,1,0) = $Ye)
®,(x,1,0) = ¢%x, E) = E - w(x).

(16.1)
on I'. (16.2)

(18)
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Second, define the macroscopic ionic current i, as an average
of the pointwise ionic current I, over the surface of the
membrane S,

iion(d)?a E) = %v flmn(d)om) da = ]§ flhn(¢? —-E- W) da.
r r
(19)

For a given geometry of a cell and the dynamics of the mem-
brane, this macroscopic ionic current is a function of intracellular
potential ¢? and depends parametrically on the field E. Intro-
ducing Egs. 18 and 19 allows writing the macroscopic balance
of current (Eq. 17) as

8,9 = —iy(d7, E), (20)
or, in the dimensional variables,
C,0,9° = —i,(d?, E). 21

Equation 21 demonstrates that the active response of a cell to an
electric field is governed by an ordinary differential equation. In
comparison, the equation governing the response of a space-
clamped membrane patch is

C,o®, = —I.(®,) + o.E. 22)

Equation 22 assumes that the membrane patch is placed in a
uniform electric field whose strength E is measured or controlled
in the extracellular space; thus, o,E denotes the stimulating
current.

Comparing Eqgs. 21 and 22 demonstrates that the behavior
of a single cell resembles the behavior of a membrane patch
provided that the parallels are drawn between the intracel-
lular potential ¢ and the membrane potential ® . The simi-
lar form of Eqgs. 21 and 22 indicates that a single cell in an
external electric field can be treated as a unit. Just as a mem-
brane patch has distinct physiological states associated with
the transmembrane potential ®_, a single cell can be con-
sidered to have its own physiological states, defined in terms
of intracellular potential ¢?. The difference is that in a single
cell, the driving force for the time evolution of ¢? and, sub-
sequently, for the change of the physiological state is the
macroscopic ionic current entering the cell. In contrast, in the
membrane, the ionic current opposes the depolarizing influ-
ence of the external field.

EXAMPLE:
EXCITATION OF A CYLINDRICAL CELL

The theoretical results presented above are illustrated with an
example of a cylindrical cell placed in an electric field trans-
verse to its axis and activated during diastole. Here, d_ is the
cell diameter, 15 wm, the conductivities are o; = 20 mS/cm
and o, = 4 mS/cm, and the membrane capacitance is C,, =
1 pF/cm?® The dynamics of the cell membrane is described
by the Beeler-Reuter model (Beeler and Reuter, 1977). With
these assumptions, the cellular time constant 7, is 0.4 us and
the membrane time constant 7, is 6 ms.
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The first stage of an excitation process is the initial po-
larization governed by Egs. 1-3, 9, and 10. In this example,
the cell is assumed to be initially at rest, so V, the trans-
membrane potential prior to the application of the field, is
equal to V, = 0. For a cylindrical cell in a transverse field,
the solutions to Egs. 1-3, 9, and 10 are obtained by separation
of variables (Dixon, 1971) and express potentials in cylin-
drical coordinates as functions of radius 7, angle 6, and time
t. In dimensional variables, these solutions are:

¢%r, 0,1) = — 20, Ercos e r= 2 (23)
iy Uy g + > 2

i €

0, 0 = —E, 91_|_d_g I_L"‘/ﬂp
&Xr, 0,t) = —Er cos e P 0_ee ,

_ &
r=3

$°(0,1) = Ed.cos (1 — e™™),  r=d_/2.

All three potentials evolve with a time constant of initial
polarization,

1 1 1
Tp = Echm(;i + —e) (24)
If intra- and extracellular conductivities were equal, initial
polarization would have proceeded with the cellular time
constant 7, = 0.4 us. For conductivities assumed in this ex-
ample, T is shorter than 7, about 0.24 us.

The behavior of intra- and extracellular potentials is il-
lustrated in Fig. 3. Immediately after the field is turned on
(dashed lines), intracellular potential ¢? changes linearly
with the distance and has the slope higher than the strength
of the external field. This is because the intracellular con-
ductivity o; is assumed to be five times larger than the extra-
cellular conductivity o,. On the membrane T', the potential at
time 0" is continuous, so initially transmembrane potential
¢?, is 0. Extracellular potential ¢° asymptotes with the distance
to the straight line corresponding to the applied electric field.

If intra- and extracellular conductivities were equal, the
electric fields at t = 0* would have been equal to E in both
intra- and extracellular space. The cell would be totally in-
visible to the field. With intracellular conductivity higher that
extracellular, the field “sees” the interior of the cell, but does
not “see” the membrane.

- Astime increases, the gradient of intracellular potential
decreases in magnitude, and ¢? asymptotes to a constant
value, shown by a solid line. In contrast, the magnitude
of the extracellular potential in the proximity of the cell
slightly increases in time. At steady state, the slope of
¢? at the membrane T is 0; that indicates that after initial
polarization is complete, the membrane is fully charged
and behaves as an insulator: it admits no further current
from the environment.

As intracellular and extracellular potentials evolve in time,
they lose continuity on the membrane I', and the transmem-
brane potential ¢, develops. Fig. 3 ¢ shows ¢? increasing
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FIGURE 3 Intracellular, extracellular, and transmembrane potentials dur-

ing initial polarization. The potentials are plotted along axis x connecting
two poles of the cell as shown in a. In b, the part of the graph between —d /2
and d/2 corresponds to intracellular potential ¢, and the part beyond this
range corresponds to extracellular potential ¢?. Dashed lines show intra- and
extracellular potentials immediately after the electric field was turned on
(t = 0%). As time increases, intra- and extracellular potentials move in the
directions indicated by the arrows until they reach the steady state shown
by solid lines. A thin line marked —Er is the potential corresponding to the
uniform external field. (c¢) Time course of the transmembrane potential,
which increases in time at the end of the cell facing the cathode and decreases
at the opposite end.

in time to the steady state value of E d_ at the end of the cell
facing the cathode and to —F d_ at the end facing the anode.
After the initial polarization is complete, the final values of
potentials are:

&%, 0) =0, r=dr2

d? d
¢2(r,9)=—ErCOSO 1+m s rZE (25)

¢°(0) = E d_cos 0, r=d.72.

Further time course of these potentials is determined by the
second stage of the excitation process which describes the actual
transition from the rest to the excited state. The time evolution
of this transition is computed from Eq. 21. Alongside, the figures
show the excitation of a membrane patch, computed from Eq.
22, to underscore the similarities and differences between the
behavior of a single cell and a membrane patch.
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Qualitatively, the excitation of a single cell can be ana-
lyzed by plotting the time derivative 9, ¢? as a function of
¢! (Fig. 4 a). From Eq. 21, 9, ¢? for a cylindrical cell can
be evaluated as

1
at¢? = - C_ iion(d’?’ E)
’ (26)
1 2 0
=" 2ac, | Tenl®?+ Ed.cos 6) do.

In this example, the cell initially is at rest, so ¢? = V, = 0.
The increase of ¢? toward the excited state V, is initiated by
applying an electric field E that raises 9, ¢? high enough for
the rest state V, and the threshold V,, to coalesce and dis-
appear. With 9, ¢? positive in the vicinity of the rest state and
to its right, the intracellular potential is forced to increase.
After ¢ passes the threshold value V,, the excitation con-
tinues even if the external field is terminated. The value of
the transmembrane potential is not relevant: ¢ changes with
the position on the membrane and with the strength of the
electric field.

The above analysis, conducted for a single cell, resembles
that of a membrane patch (Fig. 4 b). The main difference is
that b contains the transmembrane potential ®_ and its time
derivative, while a contains intracellular potential ¢ and its
time derivative. In addition, for the membrane patch, electric
field E merely moves 9, ®,, up or down,; in a cell, E not only
raises 9, ¢? but also changes its shape. Finally, for the mem-
brane patch, a positive electric field raised 9, ¥, while a
negative field lowered it; in a cell, an electric field raises
9, ¢? independent of the polarity. Thus, the excitation of a
single cell can be achieved with either direction of the ex-
ternal field.

Figs. 5 and 6 use the realistic membrane dynamics (Beeler
and Reuter, 1977) to facilitate quantitative comparison be-
tween a single cell and a membrane patch. Numerical so-
lutions for these figures were obtained by integrating equa-
tions Egs. 21 and 22 using the Euler method with a time step
of 1 us. The macroscopic ionic current was computed by
dividing the circumference of the cell into 64 equipotential
patches, computing ionic current I,, for each patch, and

(@ (®)

FIGURE 4 Mechanism of excitation of a single cell (2) and a membrane
patch (b). In a, the time derivative of the intracellular potential 9, ¢? is
plotted as a function of ¢?. In b, the time derivative of the transmembrane
potential 3, ®_, is plotted as a function of ®,,. For the electric field E = 0,
both curves are similar to the current-voltage relationship of Fig. 2. E,
denotes the smallest external field required for excitation.
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FIGURE 5 The time course of excitation in a single cell and in a mem-
brane patch. (a) Intracellular potential ¢? for the single cell and the trans-
membrane potential & for the membrane patch. (b) Macroscopic ionic
current i, for the single cell and the pointwise ionic current /1, for the

ion

membrane patch.

using the trapezoidal rule to evaluate the integral. The elec-
tric fields were 0.18 - 107> and 16 V/cm for the membrane
patch and single cell, respectively, and were kept on for the
entire duration of the simulation.

As expected on the basis of qualitative analysis of Fig. 4,
the time courses of ¢? and ®_ are very similar. At time ¢ =
0, the external field is turned on raising 9, ¢? (respectively,

Biophysical Journal

Volume 66 June 1994

8, ®_) above the horizontal axis so that the rest state and
threshold disappear. However, these phenomena are not im-
mediately reflected in the ¢? (®,) since at # = 0%, both
remain at rest state V. The first feature on the graph is a slow
increase of ¢? (®,). In a single cell, this increase is due to
the macroscopic current i, , flowing inward (Fig. 5 b, dashed
line). In a membrane patch, the increase is due to charging
of the membrane by the external current o, E. The ionic
current [, (Fig. 5 b, solid line) flows outward and opposes
the depolarizing influence of the external current.

The mechanism behind the increase of ¢! is illustrated in
Fig. 6. The electric field is turned on and, at time ¢ = 07, the
initial polarization is completed. (Recall that now ¢ is meas-
ured on the scale of milliseconds, not microseconds.) This is
immediately reflected by the pointwise transmembrane po-
tentials @2 that jump to their maximum values (Fig. 6 a),
even though the intracellular potential ¢? remains at rest
(Fig. 5 a). The inward macroscopic ionic current (Fig. 5 b)
initially comes only from the hyperpolarized end of the cell
(Fig. 6 b, curves 3 and 4, Fig. 6 ¢, curve 0%). Thus, at time
t = 0% the hyperpolarized end of the cell is not a “load”
counteracting excitation. On the contrary, the current enter-
ing through the hyperpolarized end is instrumental in initi-
ating the movement of ¢? toward the excited state, and it is
the depolarized part of the membrane that acts as a “load”
(Fig. 6 ¢, curve 07).

Soon after the onset of the stimulus, the current in the part
of the cell membrane that is depolarized above V,, switches
inward and assists excitation (Fig. 6 b, curve 0). However,
the current in the parts of the membrane that is depolarized
between V, and V,, remains outward and opposes excitation.
This can be seen in Fig. 6 ¢, which shows the distribution of
the ionic current around the circumference of the cell. Ten
ms after the onset of the stimulus (Fig. 6 ¢, curve 10), the
current in the right, depolarized half of the cell has changed
inward. At the same time, the left, initially hyperpolarized
half has been raised above V,, and the current has switched
outward, becoming a “load” counteracting excitation. How-
ever, by this time the success of the excitation is sealed:
¢? is above V,;, and its further rapid increase quickly raises
the transmembrane potential of the entire membrane above
threshold.

CONCLUSION

The theory and computer simulations presented here suggest
that the cell responds to an external electric field as a unit and
does not have to be viewed as a collection of separate mem-
brane patches. The dynamics of a cell as a whole is governed
by a first order ordinary differential equation similar to that
of a space-clamped membrane, but formulated in terms of the
intracellular potential ¢} rather than the transmembrane po-
tential. This result greatly simplifies computer simulations
which, to date, required solving a boundary value problem
with nonlinear boundary conditions. Furthermore, the meth-
ods of nonlinear dynamics can now be applied to the problem



Krassowska and Neu Single Cell in an External Field 1775
® ®)
1 T I
I?l — I I I l I — T T T T T T T T
(mV) 4000 - Lon ool .
- 4 (nA/m?) -
20,00 - i 0.00
0% 4.00 - .
i 7] 800 .
2000 - . i ]
B T -12.00 - m
-40.00 . L |
- — -16.00 |- -
-60.00 |- i - i
- a .20.00 - -
-80.00 |- i - i
L | 24.00 - N
40000 [Lommem T e 4 _ oo i
L 4e-==""" i 28,
! { 1 1 1 1 | 1 o . | l . -1
Y Y Y 4, +
00 2@ 40 60 RO 100 200 40 000 200 400 600 800 1000 1200  14.00
time (ms) time (ms)
(©)
[ian
2 T of | T T T T T
(wA/cm®) R e
0.00 2 = st
05 -
. p
-4 ’
S0 .- -4 K , -
II ’
- ~ II
-10.00 - N , ' i
\ . 1
\ P ] !
\ /9 ] ]
-15.00 - [ N ! —
- \ L ' !
------ b\ )
20,00 - \ 110 ! N
=~ \ ,’ ]
N \ i 1
AN v l
2500 |- N , ) .
AN (11
A 1
30.00 \ h ;
\ 1
\ 1
35.00 - \ ! .
\ 1
\ [
40.00 - \ a
vy
Nz
-45.00 k=L | 1 1 1 | 1
0.00 050 1.00 1.50 200 2.50 3.00
angle (rad)

FIGURE 6 Transmembrane potential (a) and ionic current (b) plotted as a function of time for five points around the circumference of the cell (g, inset).
After initial polarization, point 0 has maximum depolarization and point 4 has maximum hyperpolarization. (c) Ionic current plotted as a function of the
position along the circumference of the cell, with 0 corresponding to point 0 and 7 corresponding to point 4. The six curves correspond to different times

after application of the stimulus: 0%, 0.5, 4, 9, 10, and 11 ms.

leading to qualitative insight into the basic mechanism of the
interaction of a single cell with the external electric field.
The computer simulations confirm that during excitation
the time evolution of ¢? in a cell in many ways parallels the
time evolution of ®_ in a membrane: both start from the rest
value V, and both increase with the same time constant. Ex-
citation is assured when the respective state variable crosses
the threshold value V,,. The difference is in the driving force

that causes ®_, and ¢! to increase: for the membrane patch,
it is the competition between the inward, depolarizing current
maintained by an external field and the outward, counter-
acting ionic current. For a single cell, it is the inward, mac-
roscopic ionic current that draws upon the charge stored in
the membrane during initial polarization. Hence, the dynam-
ics of excitation in both cases are similar but not identical.
These similarities and differences between a membrane
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patch and a single cell hold true for a cell of any shape, for
any membrane dynamics, and not only for excitation but also
for the prolongation of action potential and for any other
active response caused by an external field.

Finally, the results of this study offer an interpretation of
the measurements of transmembrane potential made with fluo-
rescent dyes (Dillon, 1991). Notice that the normalization con-
dition (Eq. 5) implies that the intracellular potential ¢? is equal
to the average transmembrane potential, defined as

1
0 = f $0(x, 1) da. @)
r

With Eq. 27, the macroscopic ionic current (Eq. 19), and, con-
sequently, the time evolution equation governing the active re-
sponse of a cell (Eq. 21) can be expressed also in terms of the
average transmembrane potential v?,,

Cmatvg: = _iion(vgn E). (28)

Comparing Egs. 21 and 28 demonstrates that either intracellular
potential ¢! or averaged transmembrane potential v°, can act as
a state variable. The choice is arbitrary. This paper uses ¢? as a
state variable because ¢? is a real, physically existing potential
that can be directly measured with a microelectrode. However,
V%, can also be measured, although only indirectly, through op-
tical signals from fluorescent dyes which are considered pro-
portional to the spatially averaged transmembrane potential.
Since either quantity, ¢ and v, is a legitimate state variable for
the whole cell, the optical signal should be interpreted as re-
flecting the macroscopic dynamics of the tissue.
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