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Pattern Recognition and Classification of Images of Biological
Macromolecules using Artificial Neural Networks

R. Marabini and J. M. Carazo

Centro Nacional de Biotecnologia (CSIC), Universidad Auténoma, Campus de Canto Blanco, 28049 Madrid, Spain

ABSTRACT The goal of this work was to analyze an image data set and to detect the structural variability within this set. Two
algorithms for pattern recognition based on neural networks are presented, one that performs an unsupervised classification
(the self-organizing map) and the other a supervised classification (the learning vector quantization). The approach has a direct
impact in current strategies for structural determination from electron microscopic images of biological macromolecules. In this
work we performed a classification of both aligned but heterogeneous image data sets as well as basically homogeneous but
otherwise rotationally misaligned image populations, in the latter case completely avoiding the typical reference dependency
of correlation-based alignment methods. A number of examples on chaperonins are presented. The approach is computationally
fast and robust with respect to noise. Programs are available through ftp.

INTRODUCTION

The range of problems associated with detecting and rec-
ognizing patterns is vast. It is therefore not surprising that the
number of approaches that have been proposed over the years
is large. Focusing the attention on the field of electron mi-
croscopy of biological macromolecules, the problem we ad-
dress here may be described by the following sequence
of events: given a sample containing either a biochemically
homogeneous population of macromolecules or a heteroge-
neous one, obtain electron microscope images of these
specimens and extract the maximum amount of relevant two-
dimensional and/or three-dimensional biological informa-
tion by means of image processing operations performed on
the whole set of images (for a review, see Frank, 1990).
Images are in general very noisy, so the processing tech-
niques have to be very robust.

Two main questions related to pattern classification appear
when addressing this type of problem. The first one is the
assessment of the homogeneity of the image data set (note
that a biochemically homogeneous population does not nec-
essarily render a homogeneous set of images, since different
two-dimensional views of the same three-dimensional struc-
ture may exist). If a number of different image classes are
detected at this stage, it is then necessary to devise methods
to classify the original data set into these classes. This step
is usually carried out by tools such as multivariate statistical
analysis (MSA) or the related principal component analysis
(PCA) (for a review, see Frank et al., 1988b).

The second main problem appears after this classification,
since now the classes must be aligned in such a way that an
averaging process performed over the images within each
class renders new information with an enhanced signal-to-
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noise ratio. The alignment is usually carried out by cross-
correlation with respect to a reference image. Unfortunately,
a clear-cut separation between these two problems appar-
ently does not exist.

The difficulty that arises when trying to separate the prob-
lem of classification from the one of alignment is that dif-
ferences between images may be due either to genuine dif-
ferences or to positional factors, such as rotation and
translation. Ideally, we would prefer to classify an image data
set without considering the latter as genuine differences. In
principle, methods to define a description of an image in-
dependent of its relative position are possible, but they do not
seem to work for general cases involving very noisy images
(Schatz and Van Heel, 1990; Frank et al., 1992; Marabini and
Carazo, signal proc., in press). It is therefore necessary to first
“align” the images before classification; however, aligning
is only well defined within a homogeneous data set. Clearly,
the problem is recursive and the single practical approach
to date is to iterate between alignment with respect to
some reference, an always potentially problematic step
(Boekema et al., 1986), and a posteriori classification.

Topics of recognition and classification have been previ-
ously treated in this context by van Heel (1986), using
hierarchical ascendant classification; Frank et al. (1988a),
using a hybrid k-means and ascendant classification ap-
proach; Wagenknecht et al. (1989) and Carazo et al. (1989),
using directly MSA to analyze rather continuous structural
changes; and Carazo et al. (1990), using fuzzy sets, among
other authors (for a review, see Frank, 1990).

The approach we propose in this work is conceptually
different to previous ones in that it uses principles of neural
networks to accomplish the classification task (for a review
of neuronal networks see Lippmann, 1987). In essence, we
use a particular type of neural network known as the self-
organizing map (Kohonen, 1990) and we show that this
method works remarkably well when confronted with a va-
riety of tasks, from the classification of a heterogeneous im-
age data set after a first cycle of refinement, revealing subtle
structural variations, to the direct reference-free alignment
of a homogeneous set of particle images through a
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classification-based angular assignment. The method is very
fast, taking only a few minutes on a modern workstation to
classify hundreds of images.

The use of neural networks is increasing in all those areas
where, as in image processing, many solutions can be si-
multaneously tested and large computer resources are
needed. The intrinsic parallel processing of the data and the
ability to adapt makes the neural network potentially faster
and more robust than the classical sequential process. Fur-
thermore, the self-organizing maps are not parametric and
need very little a priori knowledge.

The algorithm we present here possesses a number of in-
teresting properties that may solve some of the problems
encountered when following the procedures described
above. As we will show, if the image data set is homoge-
neous, then the method is able to directly analyze sets of
images that have not been rotationally aligned, by perform-
ing a classification based on the particle rotation angle, there-
fore eliminating the reference problem. Alternatively, if the
population of images is heterogeneous but they are known to
be correctly aligned, then the algorithm concentrates on
genuine particle differences by performing a classification
without any prior data reduction step.

THEORETICAL BACKGROUND

The self-organizing algorithm maps a set of n-dimensional
vectors onto a two-dimensional array of nodes in such a
way that vectors projected onto adjacent nodes are more
similar than vectors projected onto distant ones. Note that
this algorithm does not work like the usual n-dimensional
onto two-dimensional mapping programs (Radermacher
and Frank, 1985) in the sense that the emphasis is not on
approaching the mathematical distances between the vec-
tors but in plotting similar vectors close to one another in
the output space. In the same way, the self-organizing al-
gorithm could be interpreted as a nonlinear projection of
the probability density function of the n-dimensional input
onto an output array of nodes. Accordingly, distances in
the output space must be interpreted with caution, because
they are not directly related to metric distances in the
n-dimensional space.

The mapping is obtained iteratively by a sequence of steps.
Each step requires the presentation of an input vector to the
array of output nodes (each node has assigned a certain vector
that we will refer in the following as “code vectors™). The
input vector is used as argument to an activation function that
estimates the similitude between the input and the code vec-
tors. Finally, the most similar code vector as well as its neigh-
borhood are adjusted such as to improve its response to any
other similar input vector.

Following the description above, the input of the self-
organizing map is the set of our experimentally obtained
images, while the output is a two-dimensional array of
nodes, with an image assigned to each of them. These as-
signed images start with some arbitrary value but, as the
algorithm proceeds, will tend to approximate the probabil-
ity density distribution of the input data (Kohonen, 1990).
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In this way, we always have two pieces of information
within this scheme: one is provided directly by the m;’s
(the code vectors), and the other is the final assignment of
each input data to a given code vector, which results in a
classification of the data set.

Kohonen (1990) showed that this algorithm has some
interesting properties. First, it represents most faithfully
those dimensions of the input space along which the vari-
ance in the sequence of inputs x; is most pronounced.
These will often correspond to the most important features
of the inputs. Second, it tries to preserve continuity, i.e., it
maps similar inputs x; to neighboring locations. Finally,
it reflects differences in the sampling density of the in-
put space in a natural way: regions from which inputs
have occurred more frequently are mapped onto larger
domains and therefore with better resolution.

The basic idea of the self-organizing algorithm is as
follows.

Step 0: Assume a sequence of input vectors x(¢) with a
probability density function &, where ¢ is the “time” coor-
dinate. The input vectors x(¢) are images randomly selected
from our experimentally obtained images that are sequen-
tially presented to the algorithm. Note that the expression
x(t) does not refer to a change in the images themselves, but
to a temporal evolution of the input data. In our application,
this evolution refers to the sequential presentation of input
vectors to the network. In this way, x(0)(x(¢), ¢ = 0) refers
to the first image presented to the network, x(1)(x(¢), ¢ = 1)
refers to the second image, etc.

Step 1: Assume a set of code vectors my(¢) assigned to
the output nodes. Suppose that my(¢) has been initialized in
some way.

Step 2: Each vector x(¢) is now presented to the output set
of code vectors at each successive instant of time.

Step 3: x(¢) is compared simultaneously with each m,(¢),
for example using a distance dj. Note that although the dis-
tance d; is a critical factor in the mapping algorithm, the re-
sults will not reflect the mathematical distance in the
n-dimensional space between input images.

Step 4: The best matching my(¢) is then selected.

Step 5: The selected nodej, that will be called node,, is
used to set a center around which a neighborhood N of nodes
is defined by some function A(r, ¢) that decreases with r and
t, where r is the distance between nodes in the output plane
(this means that the value of /& will be higher the closer to
node_ we are, and that the neighborhood decreases in size as
the algorithm proceeds). All the code vectors within this
neighborhood will now be modified in such a way that they
will tend to x(¢) even more closely. Obviously, since A(r, ?)
decreases with the radius r from node_, nodes closer to node,
will be more strongly modified. To make the whole proce-
dure more stable, another function a(¢) is also introduced.
The action of this a(z) is to set an upper limit to the mag-
nitude of the changes allowed at each presentation, and it
decreases with . a(t) takes values between 0 and 1; for a(z)
close to 0 the magnitude of the changes will be very small,
while for a(z) close to 1 the change will be so big as to almost
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force the code vector m (¢) to become equal to x(z). a(t) and
h(r, t) control the speed of the code vector updating. a(z)
fixes an upper limit to the modification of m(¢) in each step,
avoiding the formation of locally but not globally ordered
regions in the output plane. On the other hand, h(r, ) is a
sigmoidal function that incorporates a lateral inhibition act-
ing over nodes that are some distance apart, causing the near-
est nodes to be more strongly updated. The inhibition in-
creases with the time.

Step 6: The procedure continues at step 2 for each x(¢)
until convergence.

See Table 1 for a summary of the procedure.

Mathematically, the self-organizing map algorithm can be
described as a Markov process (Ritter and Schulten, 1988)
whose states are the code vectors m; and the transitions,
which are described in step 5 (Table 1), are determined by
the probability density distribution 8 of the input x(¢). The
necessary and sufficient conditions to guarantee the conver-
gence of the process are:

t
lim f a(t) dt = © lim a(f) = 0
t—o 0 t—

A full discussion on convergence and topological prop-
erties of the self-organizing map can be found in the work
of Cottrell and Fort (1986) and Ritter and Schulten (1986,
1988).

When the number of steps is finite, as in all the real cases,
the convergence is not fully guaranteed. Ritter and Schulten
(1986) have reported the appearance of two different kinds
of instabilities. The first type is related to the final position
of the code vectors on the outplane, while the second one
affects the code vector features themselves.

TABLE 1 Self-organizing map algorithm

Step
no. Process

0 Convert the images /; into vectors x(z).
1 Initialize the m; code vectors.
Initialize the code vectors my associated with each output node to
random values.
2 Present one input vector x(z).
3 Compute distance to all nodes at time ¢.
Compute the distance d; between the input vector x(t) and each
output node j using d; = ||x(z) — my(0)||
4 Select output node with minimum distance.
Select the output node as that node associated with the code
vectors my(¢) that minimizes d.
5 Update code vectors for node j and its neighborhood.
m; are updated for node j and all nodes in a neighborhood N
whose radius is defined by some function A(r, f) decreasing
with r and .
my(¢+1) = my(t) + a(t)h(r, £)(x(¢) — my(t))
where aft) is a decreasing function that controls the magnitude
of the changes with the time (0 < a(f) < 1) and h(r, ) is a
sigmoidal function that controls the neighborhood of the node j
in which the code vectors are updated.
6 Repeat (go to step 2) until process converges.
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As to the first type of instability, it should be noted that
for practical applications these smooth, fluctuating distribu-
tions over a large spatial scale are usually not very disturbing,
as one is interested mainly in preserving the correct neigh-
borhood relationships along the most important feature di-
mensions. As to the second type, the fluctuations follow the
variance of the input data. If this variance exceeds some
critical value, the associated nodes become unstable and a
reconfiguration can occur. The calculation of this critical
value is theoretically provided, for some very simple cases,
by Ritter and Schulten (1986). In essence, and translating the
mathematical ideas behind this possible source of instability
into simple terms, the theory is telling us that if the variance
among the images is very large or the number of images is
very small, then the algorithm would be unstable, which is
a logical result.

Centering our attention on the real data applications to
electron microscopy to be presented later in this work, we
have never encountered any convergence problems of this
second class when analyzing the data sets used here, a fact
that indicates that there is a good trade-off between vari-
ability and number of images in typical electron microscopic
applications.

We note that the projection of the input data onto the out-
put plane does not require any a priori knowledge of the
number of classes present in the input data. It is, however,
obvious that a decision on the total number and spatial dis-
tribution of output cells has to be done before hand and that,
since the code vectors tend to follow the probability density
distribution 6 of the input data, there is a relationship between
the number of output code vectors and both the number of
input images and 8. Still, and as we note in the section pre-
senting the examples, simple decisions on the number of
code vectors have been sufficient to perform the studies pre-
sented in this work.

Self-organizing maps could be presented as a “kind” of
k-means clustering algorithm, in the sense that this is con-
sidered its most similar “classical” method (Lippmann,
1987). There are, however, clear differences between the two
approaches, such as the notion of neighborhood code vector
updating, that is not present in k-means, and the fact that in
self-organizing nets each input vector is presented only once
(if the number of samples is greater than the number of
iterations), while in k-means algorithms each image is pre-
sented once for each iteration.

Learning vector quantization (Kohonen, 1990), a variant
of the described algorithm, has been used to implement a
supervised pattern classification tool; by supervised we mean
that a set of already classified vectors is necessary.

This latter approach is different from the one described
before; instead of trying to approximate the code vectors to
the input vectors (or their probability function), we wish to
obtain vectors that effectively represent each class and pro-
duce optimal decisions. This second method has two distinct
stages.

First is the training procedure, in which a set of classified
vectors is needed. We present the classified input vectors x(¢)
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to the network as in the previous algorithm, but the updating
is done in a different way. First, no neighborhood is taken
into account. Second, if the input vector x(¢) is well clas-
sified, then the code vector m; is updated to match it more
closely, while if the classification fails, then m, is updated in
such a way that the distance d; is increased.

The updating strategy is basically the same one as in the
previous case of unsupervised classification in that code vec-
tor m; is modified by a quantity proportional to the difference
between the node and the last assigned input, i.e., to the term
(x(#) — my(#)). However, there are two important differences
in the exact way of proceeding. The first one is that no neigh-
borhood is taken in account and that, therefore, the function
h(r, t) is not considered. The second one is that the quantity
(x(¢) — my(?)) is added or subtracted to the vector m; de-
pending on whether the classification was considered correct
or incorrect. If correct, this term is added and the updated
code vector m; becomes more similar to the assigned input
x(#). If incorrect, then this term is subtracted and m; becomes
less similar to x(¢) than it was before.

Second is the classification itself, which is accomplished
by calculating the distance between the unclassified vectors
and the tuned code vectors and selecting that vector (that
class) which is the closest in some defined way.

It can be proved that the described strategy gives an op-
timum classifier in the Bayesian sense (Kohonen, 1990). The
training procedure is summarized in Table 2.

HOW THE SELF-ORGANIZING ALGORITHM
WORKS

We have defined mathematically how the self-organizing
map deals with general input vectors x(¢). We now present

TABLE 2 Learning vector quantization training algorithm

Classification of Images of Biological Macromolecules

Step
no. Training procedure

0 Convert the classified images I, into vectors x(¢).
1 Initialize the m; vectors.

Initialize the code vectors m; associated with each output node
to an initial value (for example, to some of the already
classified images).

2 Present one input vector.
3 Compute distance to all nodes at time ¢.

Compute the distance d; between the input vector x(¢) and each
output node j using d; = [|x(z) — my(#)]|

4 Select output node with minimum distance.

Select the output node as that node associated with the code

vector my(¢) that minimizes d,.
5 Update code vectors in node j.
m; are updated in the following way:

my(t+1) = m(t) + a(t)(x(t) — my(?))
if x is correctly classified
my(r+1) = my(z) — a(2)(x(6) — my(1))
if x is incorrectly classified
m(t+1) = my(r) if k is different from j.
where a(t) is a decreasing function that controls the magnitude

of the changes with time (0 < () < 1).
6 Repeat (go to step 2) until the process converges.
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a more conceptual explanation of how the algorithm behaves
when confronted with a set of different images, acting as x(¢)
vectors. We are mainly interested in showing, through a
simple example, how the output code vectors evolve and how
images are assigned to these vectors through their evolution.

The case study we are going to use in this section corre-
sponds to the classification of a set of lateral views obtained
from a biochemically pure preparation of the cytoplasmic
chaperonin Tailless Complex Polypeptide-1 side view (see
example 2 for a full description of the data set). The het-
erogeneity within the processed population of images comes
from the fact that, intentionally, the original images have
been centered but not rotationally aligned. The evolution of
the code vectors at different iterations is shown in Fig. 1.

Fig. 1, I presents the code vectors before any tuning. These
initial code vectors have been calculated using the following
equation:

CV;; = min(f;) + (max(/;) — min(/;))*rand_number; (1)

that is, the value of pixel i of code vector j is a random num-
ber lying in the interval [min(/}), max(/;)], where /; refers to
an image randomly selected from our data set that is different
for each code vector.

It is clear that the initial code vectors generated in this way
are all different, and that it is almost impossible to recognize
any characteristics of the images under analysis in them.
Other forms of code vector initialization have been tested,
but we have not found any difference in the final results of
the algorithm.

At any rate, there is always one code vector that has mini-
mum “distance” from a certain view of the particles under
analysis. Let us assume that this code vector is the encircled
one (Fig. 1, 1). After some iterations, this code vector and
its neighborhood are constrained to resemble this view more
closely (Fig. 1, 2).

The code vectors surrounding code vector a8 are not sub-
ject to similar forces, because while the upper right corner
(code vector a4) is going to be changed to match mainly
vectors with this particular view, the lower left (code vector
al2) is surrounded by other code vectors that are not well
defined, so it is not going to be modified to resemble only
a single view. What finally happens in this step is that a4 will
be better defined than a2 and its surroundings.

The immediate consequence (Fig. 1, 3) is that the code
vector al2 is going to receive less and less influence from
the particular view that began the classification because its
distance to this view is larger than the distance between this
same specimen view and code vector a4. Furthermore, after
this initial modification, a4 and a2 are going to attract dif-
ferent views, which in this case means rotated views, im-
mediately forcing a12 and a4 to rotate in opposite directions.
Of course, al2 influences its neighborhood just as a8 did.

Fig. 1, 4 shows how the best defined code vectors migrate
toward the corners, or borders, of the output plane. At the
same time that this migration occurs, the code vectors rotate
following the mechanism described in Fig. 1, 3.
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FIGURE 1 Code vector evolution during
the classification procedure of a set of 404
images corresponding to side views of the
chaperonin TCP-1 complex that have been
centered but not rotationally aligned. In all
the cases presented in this work, images were
of dimensions 64 X 64 pixels and were ana-
lyzed within a circle of radius 22 pixels. The
labels attached to each code vector are their
unique image names used within our image
processing system. (1) Code vectors before
any tuning. The circled particle (labeled as
a8) is going to minimize the distance to a
particular view. (2) Code vectors after 50 it-
erations. The upper right area begins to match
a particular view. (3) Code vectors after 100
iterations. The code vectors start to differen-
tiate. (4) Code vectors after 150 iterations.
The best matching code vectors migrate to
the border of the output plane and complete
their differentiation.

Itis a central result in self-organizing theory that the output
code vectors tend to follow the probability density distribu-
tion 8 of the input data (Kohonen, 1990). It is therefore pos-
sible in those cases in which & presents well defined peaks
(for example, when the sample under analysis presents two
clear clusters) that the meaningful code vectors lie in oppo-
site corners of the map and the rest of the output map remains
mainly empty.

FIELDS OF APPLICATION

We propose to use the self-organizing maps mainly for two
purposes: after a translational and rotational alignment of
macromolecules, and after a translational (but not rotational)
alignment of macromolecules.

Translational and rotational alignment of
macromolecules

The classification focuses on intrinsic differences among the
images. In a homogeneous population only minor changes
are to be anticipated, usually related to small deformations
of the particles or inhomogeneous staining (example 2,
Fig. 3). On the other hand, if we have a heterogeneous
population of views or specimens, then the self-organizing
map approach would separate the different classes (example
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3). Furthermore, in populations with impurities, self-
organizing maps help to distinguish between the specimens
and the impurities.

Translational (but not rotational) alignment of
macromolecules

If we start from a basically homogeneous data set that is not
rotationally aligned, then the classification will group images
according to their relative orientation (examples 1 and 2). It
is therefore possible to use the code vectors as an interme-
diate step toward reference-free rotational alignment, and
even to use one of the code vectors as a reference if a ref-
erence is needed.

The second algorithm performs a supervised classifica-
tion, that is, a set of preclassified vectors is needed. Although
we have not used this approach for any real application in our
laboratory, we believe that it might be useful for some special
cases. To provide the reader with an example of how this
other algorithm works, we will present in example 4 a real
data application of the method.

EXAMPLES

In this section we illustrate the use of the self-organizing map
in addressing four different classification problems. The



Marabini and Carazo

following protocol has been followed from the algorithmic
point of view. 1) A hexagonal topology has always been used
for the output plane (output nodes are represented on a square
grid just for display purpose). 2) The total number of nodes
ranged from 25 to 100. 3) Two rounds of particle presentation
were applied, the first one containing 1000 presentations and
the second one 10,000 (as the total number of original images
was about 400, presentations were iterated over the data set.
That is, each image was presented 10,000/400 = 24 times,
approximately). 4) Values of a(0) = 0.05 and (0) = 0.01
were used in the two rounds of presentations, respectively.
The explicit form of the function a(t) was:

n.iterations — t
n.iterations

a= a(O)(l -

where n.iterations is the number of iterations. 5) The neigh-
borhood function A(r, ¢) had a Gaussian profile, starting as
the whole output plane in the first round and about half of
it in the second round. The explicit form of A(r, 1) is:

h(r, 1) = exp('—’—| r20_(t;; ")

where

n.iterations — t
n.iterations

00) = 1+ Ry — 1)(
n.iterations is the number of iterations; R, is the initial
neighborhood radius; and ||, — r|| is the distance between
the node j and the node i. 6) In all cases, images were of
dimensions 64 X 64 pixels, and they were analyzed within
a circular mask of radius 22 pixels.

We should note that typical computing times were from 5
to 10 min on a Silicon Graphics Indigo 4000 workstation and
that the general behavior of the method changed very little
when different choices of a and neighborhood were used.

The first two examples involve samples from which ho-
mogeneous image sets were obtained and preprocessed. The
preprocessing amounted to a translational, but not rotational,
alignment of the particles. The goal is to demonstrate that the
method is able to correctly order the different images as a
function of their rotational angle.

Example 3 deals with the case of a biochemically hetero-
geneous sample giving rise to a set of images showing dif-
ferent views. In this case, the images were translationally and
rotationally centered and the goal was to differentiate among
the biochemically distinct classes.

Finally, example 4 uses the learning vector quantization
algorithm to automatically classify the images obtained from
the biochemically heterogeneous sample already used in the
previous example. An initial classification had to be per-
formed to provide the algorithm with the needed preclassi-
fied training set.

Example 1

The specimen used is B. subtilis GroEL (Carrascosa et al.,
1990). GroEL is a member of the so-called chaperonins, a
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family of proteins that plays an active role in the translation,
folding, and assembly of polypeptides (for a review, see
Gatenby and Ellis, 1990). A total of 307 translationally but
not rotationally aligned images corresponding to the top view
of the aggregate have been used in this example for classi-
fication. Fig. 2 summarizes the results. Figure 2, 1 shows
input data.

Fig. 2, 2 and 3 show the final (“tuned”) code vectors,
which effectively represent all the possible different views of
a rotationally unaligned set of particles (in this type of analy-
sis the meaningful code vectors are located at the periphery
of the output map). Fig. 2, 4 shows some of the actual images
assigned to each code vector.

As a comparison with another already well established
approach in this field, we also present the first four eigen-
images from the PCA performed over the input data set
(Fig. 2, 5). While PCA is able to detect a trend of variability
which is indicative of the presence of a sevenfold symmetry,
no explicit classification is performed at this step. The self-
organizing map, by contrast, directly group the images ac-
cording to their relative angles and renders code vectors that
can be very easily interpreted.

Example 2

The aim of this second example is to show the versatility of
the method when applied to another specimen with a sym-
metry less evident than in the previous case.

The specimen used is the TCP-1 complex (side view) (Gao
et al., 1993; Marco et al., manuscript submitted). The TCP-1
complex is a cytoplasmic chaperonin that contains the
t-complex polypeptide TCP-1 among several other related
polypeptides.

The general image processing approach, as well as the lay-
out of the corresponding figure (Fig. 3) presenting the results,
are basically the same as in the previous example. A total of
404 images were translationally but not rotationally aligned
before being used as input to the self-organizing map.

As before, while it is very difficult to discern any pattern
in the input images (a representative gallery is shown in
Fig. 3, 1), the tuned code vectors at the borders of the map
clearly show different rotated versions of the TCP-1 complex
side view (Fig. 3, 2 and 3). Besides the ensemble information
provided by the code vectors themselves, we also have the
list of individual images assigned to each vector (see gallery
in Fig. 3, 4). We have therefore assigned rotational angles to
the input images directly through this classification scheme.

The first four eigenimages from PCA are also presented
in Fig. 3, 5, resulting in basically the same situation as the
one shown in the previous example.

A question raised is how the method would perform if
applied in the following three-step procedure. First, a cycle
of rotational angle assignment by classification is carried out
(Fig. 3, 1-4). Second, the angle so found is applied to each
input image. Third, a second cycle of classification on the
already aligned images is accomplished.
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FIGURE 2 Unsupervised classification
of B. subtilis GroEL chaperonin (fop
view). A total of 307 translationally but not
rotationally aligned images have been
used. The external diameter of the particles
in this characteristic view is ~14.5 nm. (1)
Gallery of particles translationally but not
rotationally aligned. (2) Tuned code vec-
tors showing that the main difference be-
tween the particles is a rotational misreg-
istration. (3) Tuned code vectors, detail.
(4) An image randomly chosen among
those assigned to the code vectors shown
in Fig. 2, 4. Note that there were no images
assigned to the central code vector a60 and
that, therefore, the image that is shown at
the center marked with a dot is not an origi-
nal image but the code vector a60 itself.
(5) First four eigenimages obtained by
PCA. The first two suggest a sevenfold
symmetry.

» -
¥
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The results of such a double classification scheme is pre-
sented in Fig. 3, 6, clearly proving that the algorithm now
classifies images according to subtle variations, such as dif-
ferences in contrast at the left side of the view.

Example 3

In this example we analyze a data set formed by an already
translationally and rotationally aligned set of 420 images,
corresponding to top views obtained from a biochemically
heterogeneous sample containing the TCP-1 complex
(Gatenby and Ellis, 1990; Gao et al., 1993) and the TCP-
1/actin binary complex. In this case, the aim is to detect
this biochemical variability within the aligned set of
images.

That this data set does not lend itself to an obvious clas-
sification is evident from the gallery of images presented in
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Fig. 4, 1. However, the tuned code vectors shown in Fig. 4,
2 clearly present a pattern of variability at the center of the
particle, providing a direct interpretation of the global vari-
ability of the data set. The final assignment of the input im-
ages to the code vectors is presented in Fig. 4, 3, which is
actually a classification of the input data set.

In this particular case a PCA approach, while useful, was
more difficult to interpret than the self-organizing map
(Fig. 4, 4). In essence, the first eigenimage detected a vari-
ability at the center of the particle, but even in this image, and
certainly in the other three eigenimages shown here, the pat-
tern of variability is rather complex.

Example 4

The purpose of this example is to test the learning vector
quantization algorithm for supervised classification. We
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FIGURE 3 Unsupervised classification of
TCP-1-complex (side view). A total of 407
translationally but not rotationally aligned
images have been used. The maximum di-
mensions of the particles in this view are
~15.3 X 16.3 nm. (I) Gallery of particles.
(2) Tuned code vectors. (3) Tuned code vec-
tors (detail). (4) An image randomly chosen
among those assigned to the code vectors
shown in 4. Note that the image marked with
a dot, originally assigned to the central code
vector a535, is not a lateral view but a top one.
(5) First four eigenimages obtained by prin-
cipal component analysis. (6) Code vectors of
the same initial image set after rotational
alignment.

have used the same images as in example 3. By visual in-
spection, approximately 200 particles were classified, 100
as TCP-1 alone and the other 100 as TCP-1/actin (the re-
mainder of the 420 particles are not easily classified). This
manually classified data set was then divided into two
groups of equal size, each one containing 50 particles of
the two classes. The first group was then used to tune the
code vectors (Fig. 5, 3), while the other one was used as
the test data set. The accuracy of the subsequent classifica-
tion of the test data set was 92-96%, depending on the
choice upon the tuning subsets.

Figs. 5, 1 and 2, are galleries of TCP-1 with and without
actin. Fig. 5, 3 shows the tuned code vectors. From this

Classification of Images of Biological Macromolecules 1811

output vector map it is evident that virtually all the influ-
ence has been received by only one code vector of each
class (a3/al3).

DISCUSSION

In this work we present the application of a particular type
of neural network, known as the self-organizing map, to a
number of interesting problems in the field of macromo-
lecular structure determination by electron microscopy and
image processing. More precisely, we address those situa-
tions in which crystals are not available and the structural
determination has to be based on the analysis of a large
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FIGURE 4 Unsupervised classification of
TCP-1 and TCP-1/actin complexes (top
view) performed from a set of 420 images.
The external diameter of the particles in this
characteristic view is ~16.5 nm. (1) Gallery
of particles translationally and rotationally
aligned. (2) Tuned code vectors (detail). (3)
An image randomly chosen among those as-
signed to the code vectors shown in 2. (4)
First four eigenimages obtained by principal
component analysis. The first eigenimage,
labeled as 0.vec, showed a clear variability
located at the center of the particle, but the
general pattern was difficult to interpret.

FIGURE 5 Supervised classification of
TCP-1 complex and TCP-1/actin complex
(top view) performed from a total set of 420
translationally and rotationally aligned im-
ages of 64 X 64 pixels. (1) Gallery of TCP-
1/actin complex particles. (2) Gallery of
TCP-1 complex particles. (3) Tuned code
vectors. Notice that code vectors a3 and al3
have received most of the influence during the
tuning process.

collection of images of isolated particles. Recent examples,
such as the resolution of the three-dimensional structure of
the Escherichia coli ribosome (Frank et al., 1991) or of ad-
enovirus (Stewart et al.,, 1991), are good examples of the
biological potentials of this type of study.

The need for powerful classification tools is clearly rec-
ognized as a key problem, and much work has been devoted
to this problem in recent years (for a review, see Frank,
1990). We present in this work a totally new approach to this
problem that is based on a particular type of neural network
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and that is able to perform, in a rather simple way, many of
the main classification tasks. ’

We have used as examples a number of studies involving
chaperonins, in particular GroEL and TCP-1, to provide the
reader with a sense of the wide range of problems that can
be addressed with the approach we propose. On structural
biology grounds, we would like to further comment on the
results obtained when analyzing top views of the TCP-1 and
TCP-1/actin binary complexes (example 3). The methodol-
ogy we propose in this work is able to provide a very simple,
clear, and direct piece of information on the location of the
unfolded actin within the TCP-1 complex. It is evident from
an inspection of the code vectors shown in Fig. 4 that the
location of the actin is in the central channel of the aggregate,
suggesting a number of interesting hypotheses (a more in-
depth analysis is presented by Marco et al. in an accompa-
nying paper).

We have shown that if we start from a basically homo-
geneous population of views, then the neural network-based
approach is able to classify directly a set of rotationally mis-
aligned images into groups related to their relative orienta-
tion. Alternatively, if the population of views is potentially
heterogeneous but the images are known to be correctly
aligned, a classification centered on more intrinsic differ-
ences among the particles may be performed. The application
to negatively stained samples of GroEL and TCP-1 indicate
that the method works remarkably well in a variety of cases.

Placing this new work in the context of the methodology
commonly used in image processing, it is clear that it is
particularly valuable when addressing two vital steps, one
being the elucidation of the underlying ensemble structure
from a large collection of homogeneous misaligned images,
and the other the detection of different views among a col-
lection of aligned input images. As far as the analysis of a
set of misaligned images is concerned, this methodology of-
fers a way to perform a classification based on similarities in the
relative orientations of the views without any prior angular
correlation-based alignment. On the detection of structural dif-
ferences, the approach does not need an a priori knowledge of
the number of clusters present in the starting population.

Comparing this approach to others previously proposed in
this field for structure-based classification, we should mainly
comment on MSA. MSA is a very good method for data
reduction, capable of extracting the main patterns of vari-
ability within a given data set and, in many cases, enabling
us to understand the patterns of heterogeneity present in our
image data set, especially if coupled with some further clas-
sification step (for a review, see Frank, 1990). MSA has also
been recently used to perform an orientation classification
(Dube et al., 1993). The action of the neural network method
we propose here is quite different from MSA in that it directly
performs a classification (the assignment to specific code
vectors) while at the same time it offers a direct visualization
of the pattern of variability through an inspection of the code
vectors themselves. The algorithm is also very fast, since
typical computer times for the analysis of 400 particles
within a circle of radius 22 were on the order of 5-10 min
on a modern workstation. The classification process of our
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neural network approach is also very easy to understand
through inspection of the code vectors.

Taking into account the properties of the new approach
discussed above, we propose to use the self-organizing map
as a new routine tool for image classification that may, if
needed, be complemented by other tools, such as MSA. Con-
siderations on the speed of the neural network approach, the
simplicity and directness of the output results, and its ro-
bustness against noise, make it a valuable tool.

Author’s note—The programs used to perform this work, user’s guide, and

a complete example are available by anonymous ftp and gopher at gopher.
cnb.uam.es.
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