Supporting Text

In these notes we outline the main steps of the derivation of the results.
Let us firstly focus on the limit by = dy = 0 when the process reduces to a
Galton - Watson branching process. Without loss of generality, we can set
di =1 and b; = « in what follows. Introducing the characteristic function

o0

G(z,t) = Z P,(t)z", (1)

n=0

the birth and death equation can be transformed in a first-order p.d.e. for
G(z,t)
HG(w,1) = (aa® +1 — (o +1)2)3:G(x, 1). (2)

This equation can be integrated using, for example, the characteristic method
(see ref. 1). Taking as initial condition G(z,0) = z, which corresponds to
Eq. 4 in the main text, the complete solution is

(1-z)— (1 - az)ed-*
a(l—z) — (1 - az)el-a)t’

G(z,t) = (3)

from which we obtain

1— e(l—a)t

P(0,2) = G(0,t) = PR GRS T (4)

and, taking the time derivative of this, we derive Eq. 7 of the main text. It

is also easy to see that in the scaling limit, i.e. for t* =1/(1 —a) > 1 and
t/t* fixed, p(t) can be cast in the scaling form 8.

In order to deal with the general case, we make a Laplace transform with

respect to time of the generating function and define
. o) 00 S
G(z,5) = / dte™" Gz, 1) = / dte™* S P, (t)s". (5)
0 0 n=0

Then the equation of the dynamics becomes

[az? + 1 — (a+ 1)z] 9,G(z, s) +
+ [boz+ %2 — by —do — 5] [G(z,5) — go(s)] = sg0(s) =z, (6)

where we defined go(s) = G(0,s), which is the Laplace transform of Py(t),
the function we wish to compute. Defining F(z,s) = G(z,s) — go(s) and



using the fact that go(s) does not depend on z, we obtain the following
equation for F(z,s):

0. F(z,8) + p(z, s)F(z,s) = q(z, s), (7)
where
(.Z‘S) _ @_bo—do&_ S
P8 =% l-az (1-az)(l-1)
sgo(s) —z
a(w;s) (1-az)(l-x) (8)

Eq. 7 should be solved with the boundary conditions

F(Ls) = ~—gols) 9

F(0,s) = 0. (10)

Due to the presence of singularities at z = 0 and z = 1, some care must be
taken when imposing these conditions on the general solution of Eq. 7. Our
strategy is that of solving Eq. 7 with a modified initial condition (Eq. 9)
atz=1—¢€

F(1—¢,s) zé—go(s). (11)

Then we will impose condition 10 on the resulting expression, which leaves
us with an equation for gg(s). Finally, we shall restore the boundary con-
dition 9 by taking the limit ¢ — 0. Such an e-“regularization” procedure
allows us to circumvent the problem of dealing with the singularitiesat x = 1
of Eq. 7. Notice that, as long as @ = by < 1 = dy, one has limy_,, Py(t) =1,
i.e. the probability of being asymptotically extinct approaches 1.
The generic form of the solution of Eq. 7 with boundary condition 11 is
F(z,s) = ofe dr'p(s) [1

S

1—e U ,
—go<s>] —/ da'q(a’, s)ele WPE) (12)
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The resulting expression is rather complex and it will be considered later
on. We shall first specialize to the particular case by = dy = r and o = 1
discussed in the main text, which describes the crossover between the two
power law regimes, and then the sub-critical case a < 1.

For by = dy = r and a = 1, the coefficients take the simpler form

p(z,5) = & —

g, s) = HLLE. (13)



Up to the leading order in ¢, the solution is

-2 1 1—e g,590(8)—t,r —125
e <(go(s) —5) — Jp "di=g—pzt'e T
Fla,s) = (90(s) = 5) — . Sy _ (14)

rTe 1-=z

Since the denominator diverges when z — 0, in order to have F'(0,s) = 0,
we have to impose that the numerator should be equal to zero. After taking
the limit € — 0, this yields an equation for go(s), which reads

Sg() s
-t = (). 1
/dt 1_t i — (15)

Finally, upon making the substitution ﬁ = y and rearranging terms, we
arrive at our main result, Eq. 11 of the main text with N(s,r) given by

Nis,r)= [~ Pemma 2y, (16)
1Y )

For r fixed and s < 1, the integral in N(s,r) is dominated by the region

y ~ 1/s and hence N(s,r) ~ —logs; the application of the Tauberian

theorem (see ref. 2) finally demonstrate the t=2 asymptotic behavior of the

lifetimes. In order to derive Eq. 12 of the paper, in the limit s < 1 with rs

fixed, we make the change of variables x = \/gy in Eq. 16 , exponentiate

the term (1 — 1/y)" in the integral and make a power expansion

N(s,r)_/‘” d:v - s(m—i—%—\/gx%—l—...)’ (17)

33

which, neglecting corrections of order /s/r leads to Eq. 12 of the main
text. When rs > 1, i.e. for t < r > 1, we can use the asymptotic
expansion for the modified Bessel function, Ky (see Eq.12 of the main text)
or, more directly, we can estimate the integral with the saddle point method:
the maximum of the argument of the exponential occurs at z* = 1 and,
expanding it to second order around z* = 1, we find

o D
N(s,r) ~e 2V /\/_ dze V@1 o 672\/E(TS)7%. (18)

Hence
1

sgo(s) —1= = - ,
9o(s) dslog N (s, ) \/g_l_%s

which means that for s — 0, sgo(s) — 1 ~ —/s corresponding, according to
the Tauberian theorem, to the random walk behavior Py(t) ~ 1/4/t. The

(19)



fact that the scaling variable in the derivation above is rs, implies that the
crossover time should be proportional to r. Indeed using Egs.11 and 12
of the main text and the inverse Laplace transform one derives the scaling
form

p0)= 57 (1), (20)

where the function f(z) ~ y/z for small value of the argument (i.e. when
z < 1) and approaches a constant when z becomes large.

Finally, let us discuss the sub-critical case by < dj. Using exactly the
same strategy as for the critical case, we find that the condition F'(0,s) =0
leaves us with the following equation:

1
/ ditd (1 — at)bo/a—do=s/(=a)=1(1 _ l/(=e)=1(gq0(s) — ) = 0. (21)
0

Now, we substitute y = 1 — ¢ and solve for go(s)

f()l dy (1 — y)do [1 —al - y)]bo/a—do—s/(l—a)—l ys/(l—a)
Jo dy (1= y)®[1 — a(1 — y)Jbo/a—do=s/(1-a)=1 ys/(1-a)~17
(22)
The integral on the numerator is finite when s — 0, whereas that on the
denominator has a leading singularity of order (1 — «)/s. This implies that
sgo(s) ~ —A/[1+ st*], with A constant and t* ~ 1/(1 — «), which is exactly
the Laplace transform of a distribution of the form

sgo(s) — 1=

p(t) ~ e M.
This confirms both the asymptotic exponential decay of p(¢) and the scaling
of the cutoff time t* ~ 1/(1 — ).
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