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ABSTRACT Formulae for calculating served low-frequency modes at 22 oscillations excited in the intact seg-
low-frequency twist-like and accordion- cm-' for the A-form octanucleotide ments of B- and A-DNA's, respectively.
like modes of DNA molecules have (d[CCCCGGGGI) and at 18 cm-' for Frequency shifts in the low-frequency
been derived using a quasi-continuum the B-form dodecanucleotide modes observed when DNA molecules
model. The formulae can be employed (dICGCAA ATTTGCGI) may result from undergo conformational changes
in essentially all (viz. A, B, C, D, E, and accordion-like motions, while those among different forms are also dis-
Z) forms of DNA. Calculated results observed at 12 cm-' and 15 cm-' may cussed in terms of the current model.
indicate that the experimentally ob- result from combinations of twist-like

1. INTRODUCTION

Recent spectroscopic work in a number of laboratories
has provided evidence for the existence of low-frequency
motions in proteins (Brown et al., 1972; Genzel et al.,
1976; Painter et al., 1982) and DNA molecules (Painter
et al., 1981; Urabe and Tominaga, 1982; Urabe et al.,
1983; Lindsay et al., 1984; Wittlin et al., 1986; Lamba et
al., 1989). Meanwhile, a number of models have been
proposed and theoretical studies carried out to charac-
terize these interesting internal motions (Suezaki and Go,
1975; Chou and Chen, 1977; Levitt, 1978; Brooks and
Karplus, 1982; Chou, 1983; Tidor et al., 1983; Chou,
1984; Levy et al., 1984; Ramstein and Lavery, 1988). An
understanding of the nature of these motions, which
generally involve the collective movement of many atoms,
is an important prerequisite to understanding the molecu-
lar nature of macroscopic conformational changes and
other related biochemical phenomena (Chou and Chen,
1977; Chou, 1988).
Recent work in our laboratory (Chou and Maggiora,

1988; Chou and Mao, 1988) based on a quasi-continuum
model (Chou, 1986) has been concerned with exploring
the nature and role of standing waves that may be excited
within intact segments of DNA (Chou, 1984). These
standing waves were shown to possess frequencies that, in
general, lie in the region of the prominent 30 cm-' Raman
band observed by Painter et al. (1981). The narrow range
of frequencies provides the possibility for resonance cou-

pling amongst neighboring intact segments, which can
lead to "quake-like" motions that may cause separation of
the DNA strands sufficient to allow intercalation of very

large drug molecules (Chou and Maggiora, 1988; Chou
and Mao, 1988).

Raman bands lying below 30 cm-' have also been
observed in DNA molecules (Urabe and Tominaga, 1982;
Urabe et al., 1983; Lindsay et al., 1984; Genzel et al.,
1986; Lamba et al., 1989), indicating the existence of
other types of low-frequency motions. The present work
seeks to extend the quasi-continuum model used in our

earlier work to the description of these motions, by
considering twist- and accordion-like modes in DNA. As
has been demonstrated in the previous work (Chou, 1986;
Chou and Maggiora, 1988; Chou and Mao, 1988), quasi-
continuum models provide a more macroscopic and thus
global view of low-frequency, collective motions. Hence,
an understanding of these motions may provide important
insights into the molecular nature of many functions of
biomacromolecular systems.

II. "RIBBONS-AND-SPRINGS" MODEL
OF DOUBLE HELICAL DNA

For a biomacromolecule, the intramolecular interactions
vary greatly in their strengths, as do the internal motions
in their timescales. For example, the force-constant of a
hydrogen bond is about two orders of magnitude smaller
than that of a covalent bond, while the frequencies of
fluctuating covalent bonds are two to three orders of
magnitude greater than those of low-frequency collective
motions (Chou and Chen, 1977). Thus it is possible, and
sometimes desirable, to use different models to describe
the high- and low-frequency internal motions of bio-
macromolecules.
When investigating high-frequency molecular motions
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FIGURE 1 The "ribbons and springs" double twiner used to describe a
DNA double helix structure from the viewpoint of quasi-continuum
model. The two polynucleotide chains are compared with two helical
ribbons intertwining around the Z-axis, and hydrogen bonds within a
pair of complementary bases (denoted by hatched rectangles) are
compared with a spring. The ribbons are held together by the springs
which are related to one another by a rotation of an angle of Oh around
and a translation of Zh along the Z axis.

that arise from strong interactions between atoms and
involve relatively small displacements, it is necessary to
follow the detailed motions of individual atoms. Hence, it
is necessary to use a discrete model. Low-frequency
atomic motions, on the other hand, appear as collective
motions of larger effective mass and include the motions
of many atoms over larger distances. A detailed knowl-
edge of the nature of high-frequency motions is relatively
unimportant in low-frequency motions, because many
fluctuations of a given atom about its average position will
take place before a change in its average position occurs

due to low-frequency collective motions (cf. Mao and
McCammon, 1983). Therefore, low-frequency motions
can be treated adiabatically and separated from the
high-frequency fluctuations of individual atoms. Thus,
discrete atomic models are unnecessary for describing
low-frequency collective motions, and quasi-continuum
models can provide a suitable means for treating such
adiabatically separable systems. Moreover, quasi-con-
tinuum models afford a global and physically intuitive
picture of low-frequency collective motions; and they
provide a practical means for studying these motions in
very large macromolecular systems.

In terms of the quasi-continuum model, the essential
factors dominating low-frequency collective motions of
biomacromolecules lie in the distribution of mass, in the
arrangement of weak bonds, and in the overall system
conformation. Within the quasi-continuum model a DNA
double helix can be described by a "ribbons-and-springs"
duplex (Chou, 1984; 1986) as shown in Fig. 1. In this
model, the two polynucleotide chains are schematically
depicted as helical ribbons intertwined about the Z axis,
with the set of hydrogen bonds within a pair of comple-
mentary bases depicted as a mass-negligible spring which
holds the double ribbons together. Each spring is related
to its neighbors by a rotation h about and a translation Zh

along the Z axis. The sign and magnitude of these
parameters depend on the type of DNA; e.g., for B-DNA
Oh= ir/5 and Zh = 3.4 A, while for Z-DNA Oh = - r/6 and
Zh = 3.7 A. Positive values of Oh correspond to right-
handed helical ribbons and negative values correspond to
left-handed helical ribbons. Through-space interactions
between neighboring "springs" are neglected since contri-
butions from such interactions need not be included as

shown earlier (Chou, 1984). The classical work of Eysler
and Prohofsky (1974) provides supportive evidence that
through-space interactions between adjacent base pairs
along a polynucleotide chain do not significantly
influence the frequencies of low-frequency modes.
The double-helical ribbons can each also be viewed as

ribbons which wrap around the surface of a virtual
cylinder, as shown on Fig. 2. Thus, the curve which lies
along the central line of each ribbon is given in Cartesian
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Define S as the absolute length of the ribbon, and L as
the axial length measured by the Z-coordinates of the
helical ribbon between its two ends. In the quasi-
continuum model, the absolute length of the ribbon does
not vary during an oscillation. Thus, it follows from Eqs. 1
or 2 that

S = fdS = f ,I(dx)2 + (dy)2 + (dz)2

=fL /2 /1 + r2O2dz
-L/2

= ~fi+ r202 L = const.

The relationship among r, 6, and L depends on the type
of oscillatory mode considered, and as will be shown in the
following sections the internal displacement of the ribbon
can generally be expressed in terms of the three compo-
nents of a cylindrical polar coordinate system, viz.

FIGURE 2 The DNA double-helical chain can also be compared with
two ribbons wreathing around a virtual cylinder.

r = Ur(z, t)

uoi = Uo,(z, t) .

Uz = uz(z, t)J

coordinates by the following equations

x[ = rcos (Oz + a,) x2 = rcos (Oz + a2)

y, = r sin (Oz + a) , Y2 = r sin (Oz + a2)

Z1 = Z Z2 = Z

(_L s z <-) (1)

or in cylindrical polar coordinates by the equations

[r r r2=r
|fl = OZ + a], [02 - OZ + a2] L-2< Z '< 2) (2)

LZ1 = Z J Z2 == Z

where r is the sum of the radius of the virtual cylinder and
half of the thickness, if any, of the ribbon and

2r
0H=

H

Ill. TWIST-LIKE OSCILLATIONS

When a DNA segment undergoes a twist-like oscillation
as illustrated in Fig. 3 a,

(7)u, = 0

and hence Eq. 6 reduces to

Ur Ur (z, t)

uo = U,(z, t) .

Uz =

L 0 L Z
T

(3)

H being the pitch of the helical ribbon, i.e., the axial rise
per turn. In Eq. 1 a1 and a2, the phase angles of ribbons 1

and 2, respectively, satisfy the following conditions: b

(8)

0.972w, for A-DNA

a2 -Cal| == t = ~0.783r, for B-DNA

0.7617r, for Z-DNA,

which were derived from the work of Saenger (1984).

L
T

(4)

L -Z

FIGURE 3 Illustration showing a DNA segment undergoing (a) the
twist-like oscillation, and (b) the accordion-like oscillation.
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In this case, the twist amplitude is greatest at the two ends
and zero at the center of the double helix. If one assumes
that the greatest twist angle (in radians) is X, then
displacement of the 4 component along the DNA segment
is given by

distance zi, is given by

PAZ duV PAZ 2+a2max (ATj) = 2 max (dt = 2 max [(rUa)2 + U2]

= 2pr2X2W2X L2 + IAZ .

(9)

where co is the angular frequency. On the other hand,
from Eq. 7, we have

AL= L/2 d(Az) f L/2 du =f L/2 Odz = 0, (10)
-L/2 -L/2 L/2

which shows that the axial length of the double helical
ribbon, L, does not vary during torsional oscillations.
Thus, according to Eq. 5, we have rO = const., or

rOL = rt = const., ( 11)

where

=f L/2 d X L/2 2dz = OL =-L
-L/2 L/ 2 H

(12)

is the total polar angle counted from one end of the ribbon
to the other. Assuming that the variation in 4) due to a

twist-like oscillation is AM, it follows from Eq. 11 that

A4=
Ar -r

From Eq. 9 we have

The total maximum kinetic energy of a DNA segment
with axial length L is then given by

max T lm, max (A 2pL/2 z2 + L~ dz
[ T.)] L/2 L L2

pr2w2LX2 12]

='°6L [I + ,2 (18)

On the other hand, as shown in Fig. 4, a variation in r will
change the length of the hydrogen bonds between comple-
mentary base pairs by

AQ(t) 2Arsin() sin () in (t). (19)

Therefore, if the potential at the equilibrium position is
assumed to be zero, the maximum potential due to such
twist-like oscillations should be

m nkb..r[max (AQ)]2 8nkb sin2 (Q/2) r2X2
-2 (20)

where kw. is the stretching force constant of the base
pair, and n the number of base pairs. According to energy

A4i(t) = L/2d(AO) = L/2 d ( J= 2X sin (wt) (14)
L/2 L/2 r

so that

Ar(t) = u,(z, t) = -- sin (cot). (15)

Substitution of Eqs. 9 and 15 into Eq. 8 yields

2Xr
u = - -< sin (ct)

u = L sin (cA)t)

uz = 0

(16)

If p is the mass per unit length along the axis of the double
helical ribbons, then the maximum kinetic energy of a

mass element pAz of the double helical ribbons, at a

FIGURE 4 Illustration showing the variation AQ, of the length of a
complementary hydrogen bond due to the variation of r, the sum of the
radius of the virtual cylinder and half of the thickness of the ribbon (Fig.
2).

-9 B-pyia ounlVlm-5 uut18

(17)
2zX L LU,O (Z,t) = sin (wt) -- l< z l<

L 2 2

(13)
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conservation, max T = max U, and thus it follows that

2 48nkba sin2 (Q/2)
pL(1.2+ 12) (21)

Combining Eqs. 12 and 21 yields

w 2 sin (Q/2) 3baw
2-7rc c \ pL( l + 12)

sin (Q/2) | _3kb_ g(n), (22)

V (im) [1 + (3/l.2)g2(n)]

where t is given by Eq. 4, c is the speed of light in
vacuum,

m)=pL =total mass of the DNA molecule
(in) = n total number of its base pairs

and (Saenger, 1984)

(23)

the double helical ribbons is a, the displacement of the
ribbon in the z component due to the accordion-like
oscillation is given by

u.(z,t) = 2 sln (.t) ( - 2) (27)

When a helical ribbon undergoes accordion-like motion,
however, it follows from Eq. 25 that

= f L/2 d(AO)
f L/2 du = f L/2 Odz = 0, (28)

-L/2 L/2 -L/2

which means that 4) should remain invariant; i.e.,

4) = OL = const. (29)
Thus, according to Eq. 5,

S2 = L2 + r2O2L2 = L2 + r24)2 = const. (30)

Assuming the variation in L due to accordion-like motion
is AL, it follows from the above equation that

for A-DNA

for B-DNA

. for C-DNA

Since from Eq. 27

AL(t) = L/2 dAz = L/2 duz = 2a sin (wt)
-L/2 L/2

(24) it follows that
for D-DNA

for E-DNA

12
for Z-DNA.

n

IV. ACCORDION-LIKE OSCILLATIONS

Accordion-like oscillations in DNA segments depicted in
Fig. 3b, represent another important class of low-
frequency motions. In this case (cf. Eq. 7), we have

(25)u, = 0

and hence Eq. 6 reduces to

Ur = u (Z, t)

uz = uz(z, t)

Assuming that the maximum stretch at the two ends of

(26)

Substitution of Eqs. 27 and 33 into Eq. 26 gives

u - 2La sin (wt)

u, = 0

= 2asin (wt)
L

Following the same procedure used in deriving Eq. 18,
the maximum kinetic energy of a DNA segment in
accordion-like motion is given by

max T= lim PZmax Idu)
Az-O, 2 \dt,1

fL/2 z2 L2\dpr 222Lo-2( 1 2L2\

=fL/2 L2 rr2V4) 6 r24V4)

As a consequence of the variation in r, the lengths of
the complementary hydrogen bonds will vary in a manner

similar to that which occurs in twist-like motions. Thus,

Chou et al. Low-Freciuency Motions in DNA

g(n) = L

LAL
Ar = -2.

10
n

9.33
n

8
n

7.5
n

(31)

(32)

2La-
Ar(t) = u,(z,t) = - W sin (wt). (33)

(34)

n
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variations in the length of the hydrogen bonds is given by
(see Fig. 4 and cf. Eq. 19)

AQ(t) 2Ar sin () in () in (wt). (36)

Therefore, the maximum potential due to such an accor-

dion-like oscillation becomes

m
nkb.. [max (A9)]2 8nkb sin2(2/2) L2u2

2 r

As energy conservation holds, it follows that max T =

max U, and

2 48nkb.L sin2(2/2) (38)

pr2V ( 1+ r2L)

The corresponding wave number is then given by (cf. Eqs.
12 and 23)

must be either poly (A:::T) or poly (G.:..C). Therefore, we
have:

[2k-h = 0.26 x I05 dyn/cm for poly (A:::T) DNA

t3k'h = 0.39 x IO0 dyn/cm for poly (G..C) DNA,

where k' is the stretching force constant of a hydrogen
bond (Itoh and Shimanouchi, 1970), and

I615 g/N for poly (A:::T) DNA

616 g/N for poly (G...C) DNA,
(43)

whereN is the Avogadro constant. However, for a general
DNA segment in which

[A] + [T]
[G] + [C]

(44)

we instead have

2 sin(/2)
2irc rcr4.2

sin Q/2) IHX
c t2r)

(2I T
3nkbasL

VP(1+~)
(45)

(m)

3kb,,s g(n), (39)

m + 4 (2r ]
Specially, when r = 1, i.e., [A] + [T] = [G] + [C], we
have

where g(n) is given by Eq. 24, t by Eq. 4, and

(1.49, for A-DNA
H

2.06, for B-DNA , (40)

2.79, forZ-DNA

which were derived based on the following data (Saenger,
1984):

H 28.2 A, 2r = 18.9 A, for A-DNA

H=33.8A, 2r = 16.4 A, for B-DNA (41)

[H 44.4 A, 2r = 15.9 A, for Z-DNAJ

V. FORCE CONSTANT EVALUATION

The required force ("spring") constants, kbase, are com-
puted based on the well-known feature of purine and
pyrimidine base pairs in DNA that adenine (A) is bound
to thymine (T) by two hydrogen bonds, and guanine (G)
to cytosine (C) by three hydrogen bonds, as expressed
schematically by A:::T and G C, respectively. Owing to
these constraints, a homo-DNA double-helix structure

[kba.e = 2.5 k' = 0.325 x 0I dyn/cm

L (m) = 615.5 g/N J
(46)

Finally it is well to point out that although Eqs. 22 and
39, which describe low-frequency twist- and accordion-
like modes, respectively, are derived based on isolated
DNA segments containing n base pairs (cf. Fig. 3, a and
b), they also can be used to calculate low-frequency
motions of DNA segments that are part of much larger
DNA duplexes if the segment is effectively isolated from
the remainder of the molecule due to the rupture or

deformation of hydrogen bonds at its two ends. Such
deformations can arise from kinks in DNA, which persist
for a time generally much longer than the periods typi-
cally observed for the low-frequency motions of interest in
the current work (Levitt, 1978; Ramstein and Lavery,
1988). Intact segments in DNA molecules as defined in
previous papers (Chou, 1984, 1986; Chou and Maggiora,
1988; Chou and Mao, 1988) are examples of such
segments.

VI. RESULTS AND DISCUSSION

Tables 1 and 2 list the frequencies (in cm-') of twist-like
and accordion-like oscillations calculated by Eqs. 24 and
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TABLE 1 Wave numbers of twist-like motions
calculated for A-, B-, and Z-DNA

Wave number ; (cm-')

n* A-DNA B-DNA Z-DNA

A:::Tt G...C Mix' A:::Tt G...C MIXI A:::Tt G..-.C MIXI
6 38.0 46.5 42.6 34.2 41.8 38.1 36.9 45.2 41.2
8 32.3 39.5 33.9 28.6 35.0 32.0 31.8 38.9 35.4
10 27.7 33.9 31.0 24.4 29.8 27.2 27.5 33.6 30.7
12 24.1 29.5 27.1 21.1 25.8 23.5 24.0 29.4 26.9
15 20.1 24.5 22.4 17.4 21.3 19.5 20.1 24.6 22.5
18 17.1 20.9 19.1 14.8 18.1 16.5 17.2 21.0 19.2
24 13.1 16.0 14.7 11.3 13.8 12.6 13.2 16.2 14.8
38 8.4 10.3 9.4 7.3 8.9 8.1 8.5 10.5 9.6
50 6.5 7.9 7.2 5.6 6.8 6.2 6.6 8.1 7.3

*The number of base pairs in the DNA segment concerned.
tPoly(A:::T) DNA segment.
SPoly(G...C) DNA segment.

lPoly(MIX) DNA segment with r -
[

1 (cf. Eqs. 44-45).[IG + [C]

38, respectively, for various types and lengths of DNA
segments. As will become evident in what follows, the
data in the tables provide a basis for analyzing a number
of features of the low-frequency motions of A-, B-, and
Z-form DNAs.

First, examination of these tables shows that accor-
dion-like oscillations have lower frequencies than twist-
like oscillations generated in comparable DNA segments.
For accordion-like oscillations, under similar conditions,
the frequencies generated in A-DNA segments are lower
than those in the B-DNA segments; while the frequencies
generated in the B-DNA segments are lower than those in
Z-DNA segments. For twist-like oscillations, however,
the tendency is more complicated: under similar condi-
tions, the frequencies generated in B-DNA segments are
always lower than those in A- and Z-DNA segments,
while the magnitudes of the frequencies between the A-
and Z-DNA segments depend on n, the number of base
pairs in a segment. In other words, if VA, VB, and vZ

TABLE 2 The wave numbers of accordion-like motions
calculated for A-, B-, and Z-DNA

Wave number i (cm-')

n* A-DNA B-DNA Z-DNA

A:::T$ G.-.-.C Mix' A:::Tt G.-.-.C MIXI A:::Tt G.-..C MIXI
6 23.1 28.3 25.9 26.1 31.9 29.1 34.9 42.7 39.0
8 18.1 22.2 20.3 20.8 25.4 23.2 29.5 36.1 33.0
10 14.8 18.1 16.6 17.2 21.0 19.2 25.3 30.9 28.2
12 12.5 15.3 14.0 14.6 17.8 16.3 21.9 26.8 24.5
15 10.1 12.3 11.3 11.8 14.5 13.2 18.2 22.3 20.3
18 8.5 10.3 9.5 9.9 12.2 11.1 15.5 18.9 17.3
24 6.4 7.8 7.1 7.5 9.2 8.4 11.8 14.5 13.3
38 4.0 5.0 4.5 4.8 5.9 5.3 7.6 9.3 8.5
50 3.1 3.8 3.4 3.6 4.5 4.1 5.8 7.1 6.5

*.&1lSee the corresponding footnotes to Table 1.

represent the low-frequency wave numbers excited in A-,
B-, and Z-DNA segments, respectively, all the other
conditions being similar, then

For twist-like oscillations:

For accordion-like oscillations:

B <VZ <VA, whenn<12]

VB<vA VZ, whenn>12) .

- I
VA<VB<VZ

(47)

For DNA segments of the same type (e.g., A, B, or Z) and
length (n), a poly (A:::T) DNA segment generates lower
frequencies for both twist-like and accordion-like motions
than the corresponding poly (G...C) DNA segment. This
follows because each base pair in poly (G.:..C) DNA
contains three hydrogen bonds, but each base pair in poly
(A:::T) DNA contains only two hydrogen bonds. As the
effective force constants of the base pairs, which hold the
double helical ribbons (cf. Fig. 1), are relatively larger in
G:..C rich DNA segments than in A:::T rich ones, it
follows that poly (A:::T) DNA is more flexible than poly
(G...C) DNA, and hence the former will produce lower
frequency twist-like and accordion-like oscillations.

Second, in a recent Raman study (Lamba et al., 1989)
low-frequency peaks at 22 ± 2 cm-' and 18 ± 2 cm-'
were observed in crystalline A-DNA [d(CCCCGGGG)]
and B-DNA [d(CGCAAATTTGCG)] oligomers, re-

spectively. According to the results presented in Table 2,
the poly (G..*C) A-DNA segment with n = 8, which
corresponds to the A-DNA [d(CCCCGGGG)] oligo-
mers, possesses a low-frequency accordion-like oscillation
with the wave number at 22.2 cm-', while the poly (Mix)
B-DNA segment with n = 12 and T = 1, which corre-

sponds to the B-DNA [d(CGCAAATTTGCG)] oligo-
mers, possesses a low-frequency accordion-like oscillation
at 16.3 cm-'. Both results are in excellent agreement with
the experimental observations. However, for Z-DNA
[d(CGCGCG)] oligomers, which according to the quasi-
continuum model correspond to poly (Gi..C) Z-DNA
segments with n = 6, the calculated low-frequency accor-

dion-like mode occurs at 42.6 cm-', while the correspond-
ing observed value is 30 cm-' (Lamba, et al., 1989). The
inconsistency may be due to the inaccuracies in either the
theoretical model or in the experimental observation. If
the error comes from the theoretical model, it may be due
either to the fact that it is more difficult to determine the
parameters t and r accurately for Z-DNA making the
result less reliable, or to the fact that a DNA segment
with only six base pairs may be too short to be treated by
the quasi-continuum ribbons-and-springs model.

Third, according to the report by Lindsay et al. (1984)
low-frequency Raman bands at 12 cm-' for B-DNA and
15 cm-' for A-DNA have been observed. Such observa-
tions can be elucidated in terms of the quasi-continuum
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model as follows. As discussed earlier, the formulae
derived here can also be employed to calculate the low-
frequency motions of a DNA molecule if it is assumed
that the DNA is made up of smaller intact segments. An
intact segment is defined as a tract of double stranded
DNA whose hydrogen bonds are intact, viz. not signifi-
cantly distorted from their equilibrium states, and whose
boundaries are formed by ruptures or substantial struc-
tural distortions in the complementary base pairs (Chou,
1984, 1986; Chou and Maggiora, 1988; Chou and Mao,
1988). Assuming that under the condition of the observa-
tions a typical intact segment has 24 base pairs (Mandel
et al., 1979) and an equimolar mixture of A:::T and G:.-.:.C
base pairs (i.e., n = 24 and r = 1, respectively), twist-like
motions should, according to the quasi-continuum model,
possess low-frequency oscillations of 12.6 cm-' and 14.7
cm-' for B- and A-form DNAs, respectively (see Table
1), both of which lie close to the corresponding observed
values of 12 cm-' and 15 cm-' (Lindsay et al., 1984).
Hence, the origin of the two observed low-frequency
peaks may be due to twist-like oscillations of many such
intact segments (Chou and Maggiora, 1988; Chou and
Mao, 1988) in B-DNA and A-DNA, respectively.

According to the observations of Urabe and his co-

workers (Urabe and Tominaga, 1982; Urabe et al., 1983),
however, when DNA undergoes a conformational change
from A to B form, the 22 cm-' mode of the A-DNA
changes to the 16 cm-' mode of B-DNA. A comparison
between Lindsay et al.'s results and Urabe et al.'s results
indicates a common tendency: the magnitude of observed
low-frequency value increases in going from B- to A-
DNA. Such a tendency is fully reflected by the calculated
results (cf. Table 1) for twist-like oscillations. The rela-
tively higher values observed by Urabe et al. (1983)
suggests that the intact segments may be relatively
shorter (Table 1) than those investigated by Lindsey et al.
(1984), i.e., there is more disorder in the double-helix
under the experimental conditions used by Urabe, et al.
(1983). This can be rationalized by the different experi-
mental conditions under which the low-frequency modes
were observed by Urabe et al. (1983) and by Lindsay et
al. (1984). The average length of the intact segments will
be changed in different conditions because it is deter-
mined by the equilibrium constant between open base
pairs and closed base pairs (Chou, 1984). From the
calculations and discussion the following two important
features emerge that support twist-like rather than accor-

dion-like oscillations as those responsible for the low-
frequency motions observed by Urabe et al. (1983) and
Lindsay et al. (1984): (a) the magnitude of calculated
values for twist-like oscillations increases in going from B-
to A-DNA as observed (Urabe et al., 1983; Lindsay et al.,
1984), while the opposite is true for accordion-like oscilla-
tions, and (b) the size of the intact segments required for

accordion-like oscillations with frequencies comparable
with those observed (Urabe et al., 1983; Lindsay et al.,
1984) would be much shorter than has been observed for
such segments (Mandel, 1979).
A wide variety of experimental data (Horowitz and

Wang, 1984; Miller, 1979; Hagerman, 1988; Hurley et
al., 1980) have been interpreted by the elastic rod model
of DNA. The torsional force constant, or torsional rigidi-
ty, deduced from those studies lies in the region of 10"19
erg-cm (Horowitz and Wang, 1984; Miller, 1979; Hager-
man, 1988; Hurley et al., 1980). Using the torsional force
constant, the maximum potential energy of a DNA
segment due to twist-like oscillations can be expressed as

(Barkley and Zimm, 1979)

U kT max (At)2 2kTX2mxU=2 L LI (48)

where kT is the torsional force constant. Note that here kT
corresponds to the symbol C generally adopted by other
investigators (Horowitz and Wang, 1984; Miller, 1979;
Hagerman, 1988; Hurley et al., 1980). From Eq. 18
employing a similar procedure to that used in deriving
Eqs. 21 and 22 gives

2 12kT (49)

and

-1 3kTg(n)
M= =

'V n [mH rI+T2()

(50)

Based on experimental data, Horowitz and Wang (1984)
estimated a value of 3.0 x 10-19 erg-cm for kT, which
represents a lower limit. Miller (1979), using a purely
theoretical approach, proposed a value of 20 x 10-'9
erg-cm. However, substituting either value of kT into Eq.
50 produces frequencies (in cm-') significantly below
those observed experimentally. Even Miller's estimate,
which is generally larger than most, leads to values about
five times smaller than those observed experimentally for
twist-like oscillations. A possible source for this discrep-
ancy may be the fact that torsional force constant esti-
mates are generally inferred from experiments that
describe torsional motions indirectly. In addition, it is
generally assumed that values derived in those studies
represent lower limits to kT (Hurley et al., 1980).
To derive kT directly from torsional motion, it follows

from Eqs. 20 and 48 that

k ng(n) kb.Hr2 sin' 1)kT (51)
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which, upon substitution of Eq. 24, yields

kT =

k,Hr2 sin 2() for A-DNA

1r02 210

k,Hr2 sin for B-DNA
7r22

9.32 kbaseHr2sin 2 forC-DNA

kba,Hr sin2 for D-DNA

7.5 kbaeHr2 sin2 , for E-DNA

-1 2kb.Hr2 sin2 for Z-DNA

where {, H, and r are given by Eqs. 4 and 41 and de
on the type of DNA. Thus, from Eq. 52 it is possib
calculate the torsional force constants for various typ
DNA directly using a quasi-continuum approac

described above.
Stretching force constants can be obtained simil

Assuming ks is the stretching force constant of an ii
DNA segment with unit length, then the maxii
potential energy of such a segment due to accordion
oscillation can be expressed as

max U= ks [max (AL)2 2kkse22 L L L
Combining the above equation with Eq. 37 yields

n=g(n) kbH3 sin2

which upon substitution of Eq. 24 gives

4I 22 k,b.J3 sin2 (

21r2r2 k,a-1 sin2

422 k MH3 sin2

Table 3 lists the torsional and stretching force con-

stants for A-, B-, and Z-DNA calculated from Eqs. 52
and 55, respectively, which shows that the torsional force
constant, kT, is about two orders of magnitude greater
than the lower limits estimated in references 21 and 23.
Also it can be seen that B-DNA has smaller values of the
torsional force constant than either A- or Z-DNA. For the
stretching force constant, however, Z-DNA has larger

(52) values than B-DNA, and B-DNA has larger values than
A-DNA.

Overall, the quasi-continuum model provides a concep-

tually simple picture of the mechanical properties of
DNA (and RNA) duplexes in the low-frequency regime.
It should be pointed out, however, that the current model
is a linear one, and thus nonlinear effects are not included,
which is not to say that such effects are unimportant. In
fact along with reductions in symmetry of the physical

pend system (which can occur, e.g., by bending along the helix

le to axis), nonlinear effects can serve to couple the twist-like
es of and accordion-like modes described here. Nevertheless,

h as as the frequencies of two types of modes for a given DNA

duplex are not in resonance, we feel that coupling effects
larly. will not dominate but rather will tend to modulate the two

ntact oscillatory modes.
mum

i-like

(53)

(54)

for A-DNA

for B-DNA

for C-DNA

2

k,,kbH sin (2), for D-DNA

42 k,,H3 sin (), for E-DNA

3

kb.,H3 sin2 (-) for Z-DNA,

where (, H, and r are also dependent on the type of DNA
(cf. Eqs. 4 and 41).

VIl. SUMMARY AND CONCLUSIONS

In addition to low-frequency standing waves excited in
the intact segments of DNA molecules, it is seen that
twist- and accordion-like oscillations represent two other
types of low-frequency modes that can be excited in DNA
molecules as well. Accordion-like motions generated in
DNA segments have lower frequencies than twist-like
motions generated in equivalent segments. The experi-
mental lowest-frequency modes observed for octanucleo-
tide A-DNA [d(CCCCGGG G)] and dodecanucleotide
B-DNA [d(CGCAAATTTGCG)] crystals (Lamba,
1989) are very likely due to accordion-like motions. The
observed low-frequency modes of DNA molecules (Urabe
and Tominaga, 1982, Urabe et al., 1983, Lindsay et al.,
1984), however, might be due to the twist-like oscillations
excited in their intact segments. Finally, both the tor-
sional and stretching force constants for different types of
DNA have been derived. The torsional force constants

found here are about two orders of magnitude greater
than the lower-limits as usually estimated indirectly from
a variety of experiments such as fluorescence depolariza-
tion of bound ligands.

Thus, it appears that the quasi-continuum model can

provide a reasonable description of several of the most

important low-frequency modes undergone by double-
helical DNAs. Moreover, the simple mechanical picture
provided by the quasi-continuum model may be useful as

Chou et al Low-Frequency Motions in DNA 303

ks == .

Chou et al. Low-Frequency Motions in DNA 303



TABLE 3 The torsional and stretching force constants calculated for A-, B-, and Z-DNA

Type of
force constant A-DNA B-DNA Z-DNA

A:::T G C MIX A:::T G C MIX A:::T G.--C MIX
kr 7.28 10.9 9.11 5.32 7.98 6.65 7.68 11.5 9.60

(io-17 erg-cm)
k1s 1.82 2.72 2.27 3.36 5.04 4.20 9.48 14.2 11.8

(10-2 dyn)

*Torsional force constant per unit length of DNA.
tStretching force constant per unit length of DNA.
See the footnotes of Table 1 for further explanation.

a basis for interpreting complex physico-chemical experi-
ments designed to study the nature of the biologically
relevant low-frequency motions of this important class of
biomacromolecules.

Receivedfor publication 30 November 1988 and infinalform 7
April 1989.
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