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ABSTRACT We investigate the sensitiv-
ity of measurements of muscle birefrin-
gence to cross-bridge dynamics in the
resting, active, and rigor states. The
theory of form birefringence is re-
viewed, and an optical model is con-
structed for the form birefringence of
muscle. Values for the parameters in
the model are selected or deduced
from the literature. As an illustration of
the use of the model, plausible distribu-

tions for the orientations of cross-
bridges in the resting, active, and rigor
states are constructed using a model
for cross-bridge dynamics suggested
by Huxley and Kress (1985). The gen-
eral magnitude of the predictions of our
model is comparable with that of pub-
lished measurements of muscle bire-
fringence. However, the precise values
of the predicted birefringence for the
resting, active, and rigor states are

sensitive to the assumed orientations
of cross-bridges. We also investigate
the dependence of muscle birefrin-
gence on sarcomere length and on
disorder in the orientation of the myo-
filament array. We conclude that mea-
surements of muscle birefringence can
play a useful role in distinguishing
between proposed models of cross-
bridge dynamics.

. INTRODUCTION

Several different experimental techniques have been used
in the past decade in an effort to provide a description of
the structural dynamics of myosin cross-bridges during
muscle contraction (see review by Cooke [1986]). X-Ray
studies indicate that most myosin heads are in the vicinity
of the actin filaments during isometric contraction, but
that no more than a third of the heads are attached to
actin in a specific orientation (see overview in Huxley and
Kress [1985]). Whereas the technique of x-ray scattering
has yielded a great deal of structural information in
relaxed and rigor muscle, the decrease in structural
periodicity during contraction lessens the sensitivity of
scattering patterns to the position and orientation of
cross-bridges. Studies using paramagnetic and optical
probes seem to be quite sensitive to the orientation of
cross-bridges (see review by Thomas [1987]). However,
the useful probes are extrinsic, and their use requires
considerable care. Moreover the probe studies indicate
significantly different values for the fraction of myosin
heads attached to actin in a specific orientation during
isometric contraction (20-80%) (compare Cooke et al.
[1982]) with Burghardt et al. [1983]). It is clear that
further experimentation is required using a variety of
complementary and overlapping techniques before a con-
sensus can be reached regarding the general structural
behavior of cross-bridges during contraction.

In the present paper we examine the potential sensitiv-
ity of optical birefringence measurements to the orienta-

tion of cross-bridges in resting, active, and rigor muscle.
Structural periodicity does not play a significant role in
muscle birefringence; in that sense birefringence mea-
surements have an advantage over x-ray scattering. In
addition, birefringence measurements can be performed
on both intact and skinned fibers, and hence they have an
advantage over extrinsic probe studies. However, birefrin-
gence techniques lack molecular specificity, and it is
difficult to extract model-independent information. Nev-
ertheless, we have found that measurements of birefrin-
gence can play a useful role by providing additional
constraints and consistency checks on a proposed model of
cross-bridge dynamics.

In Section II of the present paper we review the theory
of form birefringence and construct an optical model of
muscle. Section III consists of a series of tables in which
values are derived for parameters in the optical model. In
Section IV we adopt plausible orientational distributions
for cross-bridges in the resting, active and rigor states,
and compare the predictions of our model with published
measurements of birefringence. We conclude that more
complete measurements of birefringence could yield a
great deal of information about orientations of cross-
bridges in the three states. We also investigate the depen-
dence of muscle birefringence on sarcomere length and on
disorder in the orientation of the thick and thin filament
array.
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Il. THEORY OF THE FORM
BIREFRINGENCE OF MUSCLE

We shall follow the treatment of form birefringence
developed by Wiener (1912). A readily accessible discus-
sion of Wiener’s theory is contained in the paper by Bragg
and Pippard (1953), who studied the form birefringence
of hemoglobin crystals. In applying Wiener’s theory to
muscle, it is important to identify approximations which
may limit the validity of the results. Hence we shall
outline the theory, starting with the fundamentals, and
relegate details of the calculations to an appendix.

Form birefringence occurs in a heterogeneous dielec-
tric medium comprised of two or more linear (i.e., the
polarization vector is linearly proportional to the electric
field), homogeneous, isotropic dielectric materials. In the
case of muscle the principal constituent dielectrics are the
thick and thin filaments and the sarcoplasm in which they
are immersed. The dielectric constant (or polarizability or
refractive index) of these protein filaments is greater than
that of the sarcoplasm. The molecular structure of the
filaments may lead to some anisotropy in their polariz-
ability, but this anisotropy contributes to the so-called
intrinsic birefringence of muscle which must be added to
the form birefringence to obtain the total birefringence.
In modeling the form birefringence of muscle we shall
assume that the thick and thin filaments are composed of
a linear, homogeneous, isotropic dielectric material.

On a molecular level the phenomenon of form birefrin-
gence is simply the anisotropic shielding of a molecule
from the electric field of an incident light wave by the
remaining molecules in the system. The anisotropy of the
shielding is due to the anisotropy of the macroscopic
shapes formed by the remaining molecules. In the case of
muscle, a molecule in the interior of a thick filament will
experience a larger electric field if an incident field of
strength E, is polarized parallel to the fiber axis rather
than perpendicular to it. Formally this anisotropy
emerges from the boundary conditions on the electric
field at the interfaces of the various constituent dielectrics
(see treatment by Born and Wolf [1970]).

To illustrate Wiener’s theory we shall calculate the
form birefringence of a crude model of muscle, consisting
of long parallel cylinders (thick and thin filaments)
immersed in a liquid (sarcoplasm). We shall add refine-
ments, notably cross-bridges, later. We assume that the
protein cylinders and the sarcoplasm are composed of
linear, homogeneous, isotropic dielectric materials, and so
the electric field and electric displacement vectors in
these materials are related by:

D. = C‘E, and Dr = épEf, (1)

where the subscripts s and f refer to sarcoplasm and

filaments, respectively, and ¢, and ¢, are the permittivities
of the sarcoplasm and protein, respectively. The refractive
index is related to the permittivity by

n?=¢/e, and n: =& /€, (2)

where ¢, is the permittivity of the vacuum.

To facilitate an optical description of our heteroge-
neous model for muscle, we define an effective (fictitious)
linear and homogeneous medium that is not isotropic. If
the incident electric field is polarized parallel or perpen-
dicular to the fiber axis, we define the E and D fields of
the effective medium to be the spatially averaged fields of
our heterogeneous model for muscle:

(E) = fi(E,) + fi(Es) 3
(D) = niec fi(E,) + myeo fi{Er), O]

where the angle brackets ( ) denote a spatial average,
and the f’s are the volume fractions of the dielectric
components (here f; + f; = 1).

This “mean field” or “effective medium” approach
requires that the wavelength of the incident light be large
compared with the size and spacing of optical inhomoge-
neities in the medium, a condition which also reduces
calculations of form birefringence to problems in electro-
statics. In a cross-section of muscle perpendicular to the
fiber axis, the thick filaments form a hexagonal lattice
with a spacing of 45 nm, i.e., staggered rows of thick
filaments are separated by 27.5 nm. Assuming the inci-
dent light wave is a helium-neon laser beam, the wave-
length in muscle will be 633 nm/1.38 = 459 nm, where
1.38 is the average refractive index of muscle. Hence at
any particular time the incident electric field will vary in
phase by (45 nm/459 nm) 27 = 35° over three staggered
rows of thick filaments and the accompanying interdigi-
tating thin filaments. We shall neglect this variation in
phase.

In a cross-section of muscle parallel to the fiber axis,
the spacing and lengths of the thick and thin filaments are
certainly not less than the wavelength of light; on the
contrary, they are 1-2 um, several times the wavelength
of light. We must consider whether these sarcomeric
dimensions, in addition to causing an optical diffraction
pattern, will thwart our attempt to model muscle with an
“effective medium.” We will argue that, for light
detected on the zero order of the diffraction pattern, the
thick and thin filaments can be modeled to a good
approximation by infinitely long filaments. Interestingly,
the effective medium approach is valid for infinitely long
filaments; the problem simply reduces to that of a uniax-
ial crystal.

Consider an incident beam polarized parallel to the
fiber axis. The primary consequence of the finite length of
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the thick and thin filaments is that polarization charge
will form on their ends. In particular, equal but opposite
polarization charges will form on opposite ends of the
thick filaments that comprise a single myofibrillar A-
band. We must appraise the depolarizing effect of these
polarization charges on the field in the A-band (or in the
adjacent I-bands). Because the incident electric field
varies sinusoidally in time, the charges on opposite ends of
the thick filaments will exchange sign at optical frequen-
cies. At time ¢, the field at a point in the middle of the
A-band depends upon the magnitude and sign of the
polarization charges on the ends of the thick filaments at
the retarded time ¢ — r/c, where r is the distance to the
polarization charges. If the field at time ¢ in the middle of
the A-band is “depolarizing,” then points A/2 away on
either side experience a “polarizing” field due to the
polarization charges on the ends of the thick filaments. In
general, the A-band (and the adjacent I-bands) consists
of alternating strips of axial width A /2, which experience
opposing effects due to the presence of the polarization
charge on the ends of the filaments. It can be shown that
the contribution of the polarization charge on the ends of
filaments is <1% of the form birefringence of muscle.
Therefore we model the thick and thin filaments as
infinitely long cylinders, and treat our calculation of the
form birefringence of muscle as a problem in electro-
statics.

Let us return to the application of Egs. 3 and 4 to an
array of infinitely long filaments. The spatial average
operation in Egs. 3 and 4 is trivial if E, and E;are uniform;
otherwise some method of calculating a spatial average
must be devised, perhaps involving an approximation. For
example, if the incident field is polarized parallel to the
fiber axis, E, and E; are uniform, and the brackets in Eqgs.
3 and 4 can simply be dropped. Indeed, in this case,

(Ef>para= (Es>pan’ (5)

independent of the volume fractions f; and f;. Because our
effective medium is by definition linear and homoge-
neous, we can define an effective refractive index for light
beams polarized parallel to the fiber axis:

2 <D>Pm
" " e (E) pure

If, however, the incident field is polarized perpendicular
to the fiber axis, E; is not uniform and the values of
(E;) perp and (E;) ., depend in general on the volume
fractions f; and f; and on the packing symmetry of the
parallel array of protein cylinders. A common approach
to this problem is to assume a dilute solution of cylinders
(f; < 1), and then to make the plausible assumption that
the average fields (E ) perp and (E;) .., are given by their
values in the case in which a field is applied to a single

=nlf, + nify (6)

cylinder immersed in an infinite medium of sarcoplasm.
Pugh and Pugh (1960) calculate the fields for a single
(infinitely long) cylinder immersed in an infinite
medium:

Eerp = Eo + Egipoie/meier  and  Eqer, = Eo/[1 + (An)(1/2)],

where E, is the field applied perpendicular to the cylinder
axis, and Egpye/meter 18 the field in the sarcoplasm due to a
polarization dipole moment per unit length on the axis of
the cylinder with magnitude

dipole/meter = 27 R%€e,E,(n} — n?)/(n} + n?),

where R is the radius of the cylinder. The factor (1/2) in
the denominator of Eg,,, is called the “depolarizing
factor” in the radial direction for a cylinder (see Appen-
dix A and Osborn [1945] and Stoner [1945]), and
An = (n} — n})/n’. Note that the field Eq,,, in the cylin-
der is uniform, so that performing the spatial average of
this field is trivial. However, the field E,,, in the sarco-
plasm is the sum of the (uniform) incident field £, and the
nonuniform field Egoe/meer- The average of the dipolar
field over the volume of the sarcoplasm vanishes. Hence
if, for the moment, we adopt the dilute solution approxi-
mation, we have for the spatially averaged fields in the
sarcoplasm and cylinders:

(Edperp = Eo and  (Ep)per, = Eo/[1 + (An)(1/2)]. (7)

For a dilute solution of cylinders we can then define an
effective refractive index for light beams polarized per-
pendicular to the fiber axis:

P L) M Y ] R 0 L)) B
P & (E) perp L+ A1+ @an)(1/2)]

Using the relation f; + f; = 1, we can put this expression
in the form of Eq. 3 of Bragg and Pippard (1953):

2 _ .2 Se(ny — n})

®
Notice that as f;— 0, 1y, — ny, and as f; — 0, 1y, — n,,.
Notice also that if the radial depolarizing factor (1/2) is
replaced by zero, Npe, — Ny, as it should because the
depolarizing factor in the axial direction for a cylinder is
zero. The birefringence of this dilute solution of cylinders
is positive:

Bﬁlamcnu = Npara — Nperp > 0, (10)

where n,,, and n,,, are given by Eqs. 6 and 8.

The dilute solution approximation requires justifica-
tion. Rayleigh (1892) presented a rigorous solution for
the case of square or rectangular arrays of parallel
cylinders. His predicted birefringence for a square array
differs by <0.1% from the dilute solution result (Egs. 6, 8,
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and 10) for volume fractions <0.36 (and n, ~ 1.35,
n, ~ 1.53). Because the total volume fraction of muscle
protein is <0.13, the dilute solution result would be more
than adequate for a muscle model employing a square
array of cylinders. Stokes (1963) presented without deri-
vation an expression for the birefringence of a hexagonal
array of parallel cylinders. The expression seems to
include the leading correction provided by Rayleigh’s
method to the dilute solution result. Stokes’ predicted
birefringence for a hexagonal array differs by <0.1%
from the dilute solution result for volume fractions <0.44.
Hence we shall adopt the dilute solution approach.

One noteworthy consequence of the applicability of the
dilute solution result is that the ratio of the electric field
inside a thick or thin filament to that in the sarcoplasm is
independent of the filament volume fraction and the
filament packing symmetry. In particular this field ratio
is the same throughout the sarcomere, despite the slight
variation in volume fraction and packing symmetry which
occurs in moving from the overlap region to the H-zone or
the Z-band. From Eqs. 3 and 4 it follows that the form
birefringence of the muscle filament array depends only
on the average filament volume fraction in the sarcomere.
Therefore the contribution of the filament array to the
form birefringence of an intact muscle fiber should be
independent of sarcomere length, because changes in
sarcomere length maintain constant sarcomere volume.
Of course the orientation of cross-bridges may be dif-
ferent in the overlap and nonoverlap regions of the
sarcomere, thus giving rise to some dependence of the
birefringence on sarcomere length. We shall come back to
this point in Section IV.

To refine our optical model for muscle we must add
cross-bridges. We consider a cross-bridge to be comprised
of two pieces: the myosin head (S-1), which we model as a
spheroid, i.e., an ellipsoid of revolution, and long S-2,
which we model as a thin, rodlike, prolate spheroid.
Actually we have used depolarizing factors for the S-2
spheroid which are appropriate to a very elongated pro-
late spheroid, i.e., an infinitely long cylinder. We assume
that a universal joint connects S-1 to S-2. Fig. 1 depicts
this model of a cross-bridge and parametrizes the orienta-
tion of the components with respect to the fiber axis.

It should be emphasized that only the shapes and
orientations of S-1 and S-2 in Fig. 1 are relevant to our
calculation of the form birefringence of muscle. The size
and relative positions are irrelevant. For example, the
volume fraction f; of S-1 spheroids could equally well
consist of twice as many spheroids, each with half the
volume, and positioned randomly with respect to the S-2
spheroids and the filament array. Only the axial ratio of
the S-1 spheroid (ratio of semiaxis along the axis of
revolution to semiaxis normal to the axis of revolution)

A
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FIGURE 1 Angles defining the orientation of a cross-bridge. The S-1
spheroid is drawn with an axial ratio of 18.5 nm/4.5 nm = 4.1 (see
Elliott and Offer [1978]). The ratio of the volume of the S-1 spheroid to
the volume of the S-2 cylinder is drawn to be f;/f, = 0.023/0.009 (see
Table 6). The ratio of the length (major axis) of S-1 to the length of S-2
is drawn to be 18.5 nm/66.2 nm. (For the length of S-1, see Elliott and
Offer [1978]. We calculate the length of long S-2 by 0.15 nm per residue
times 441 residues for rat myosin; see Strehler et al. [1986].) Only the
shapes and orientations of S-1 and S-2 are used in our calculation of
birefringence; the size and relative positions are irrelevant.

and the orientations of the spheroids play a role in the
calculation. Similarly, as a consequence of our dilute
solution approach to the birefringence of the filament
array, only the volume fraction f; of the array is relevant.
The radii and number of filaments is irrelevant; there is
no distinction between thick and thin filaments.

To include the effect of cross-bridges in the calcula-
tions of 7., and n,.,, (Eqs. 6 and 8), we must add terms to
the starting Eqs. 3 and 4. We have:

(E) =fi(E) + fi{E) + fi(E) + foi(E,) (11)

(D) = nle, fi(E,)
+ ":%[fr(Er) +fi{E) + f2(E;)], (12)

where f, and f, are the volume fractions of S-1 and S-2,
respectively, and we have taken the refractive index of the
protein comprising the cross-bridges to be the same as
that of the filaments. The values of the average fields
(E,) and (E,) in S-1 and S-2, respectively, for an
incident field polarized parallel or perpendicular to the
fiber axis are derived in Appendix A. The results are
contained in Eqs. A7 and A8 and pertain to a general
spheroid, either S-1 or S-2. We apply the results here:

(E, )pm/(E:)pm =4, - (4, - Bl)<5i“2 0,) (13)

(E: ) perp/ {E; Yperp = By + (1/2)(A, — B,) (sin’©,) (14)
where O, is the polar angle describing the orientation of
the S-1 spheroid (see Fig. 1), 4, = [1 + (An)L,]7!, B, =
[1 + (An)M,]7", An = (n} — n?)/n?, and L, and M, are
the depolarizing factors of the S-1 spheroid parallel and
perpendicular to the axis of revolution, respectively. L,
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and M, are determined by the axial ratio of the S-1
spheroid (see Appendix A and Osborn [1945] and Stoner
[1945]). Analogous equations hold for the S-2 spheroid;
the subscript 1 in Egs. 13 and 14 is simply replaced with a
subscript 2. The angle brackets in (sin’®,) (and
(sin?@®,)) in Eqgs. 13 and 14 indicate an average over ©,
(and ©,) according to the orientational distribution
appropriate to the state of the muscle fiber: resting,
active, or rigor.

The derivation of Eqs. 13 and 14 for the average fields
in the cross-bridge employs another dilute solution
approximation. We have assumed that the average fields
in a cross-bridge spheroid are given by their values in the
case in which a field is applied to a single spheroid
immersed in an infinite medium of sarcoplasm. The field
in a particular cross-bridge may be affected by the
proximity of other cross-bridges and by the proximity of
the thick and thin filament array. Our approximation
neglects such interaction effects. Whereas this approxi-
mation is similar to the dilute solution approach used in
calculating the average fields in the filament array, the
disorder in cross-bridge position and orientation renders
the present approximation difficult to evaluate and justi-
fy. It seems reasonable to assume that these interaction
effects will be small and that they will average to zero
over the muscle fiber.

There is one final addition to our optical model for
muscle. Some structural protein and other nonsoluble
solids in muscle contribute isotropically to the refractive
index either because their structures are spherical or
because their non-spherical structures are oriented isotro-
pically. We must add another term to Eqs. 11 and 12 to
include the contribution of these effectively isotropic
structures:

(E) = fi{E.) + fi(E()
+fiE) + f1(Ey) + fidE) (15)
(D) = nle, fi(E,)
+ e[ fi{Ee) + fi{Er) + fo(E,) + fi(E)], (16)
where we have taken the refractive index of these struc-
tures to be n,. The expression for the average fields (E;)

is taken to be that for a single dielectric sphere immersed
in an infinite medium of sarcoplasm.

(Ei>pm = (Ei)perp = (E)/[1 + (An)(1/3)], 17)

where the depolarizing factor for a sphere is 1/3.

We now summarize our procedure for calculating the
form birefringence of muscle. The definition of the form
birefringence of a muscle fiber is

Biorm = Npara — Nperp (18)

The effective refractive indexes for light polarized paral-

lel or perpendicular to the fiber axis are defined to be

. D . . (D)
e e0<E>pm P ‘O<E>m

Using the definitions of the average fields (E) and (D)
in our optical model (see Eqgs. 15 and 16), we can write

and

(19)

2 nffl"'n:(ffrfpan +flrlp.ra +f2’2|nra +fi’ip‘n)
Npara = (20)
fs+ffrl’pnn +flrlpun +f2r2p‘n +ﬂripnn

nz =n12f:+n|2)[ffrfperp +flrlperp +f2r2perp +firiperp]' (21)
g S+ SiTtperp + S1T1pep + 2P 2perp + SiTiperp

The ratios of the average fields in the thick and thin

filament array to those in the sarcoplasm can be written

with the help of Egs. 5 and 7:

Tian = [1+ (An)L]™" and  ree, = [1 + (An)M;]™" (22)

where An = (n? — n?)/n?, and the depolarizing factors for
(infinitely long) cylinders parallel and perpendicular to
the cylinder axis are L; = 0 and M; = 1/2. The ratios of
the average fields in the S-1 spheroids to those in the
sarcoplasm can be written with the help of Egs. 13 and
14:

Fipars = Ay — (4, — By) (sin’8,)
and  ripep = B, + (1/2)(4, - B)) (sin’@,), (23)

where 4, = [1 + (An)L,]"" and B, = [1 + (An)M,]~".
The depolarizing factors L, and M, for the S-1 spheroid
depend only upon the assumed axial ratio (see Osborn
[1945] or Stoner [1945]). The angle brackets in
(sin? @, ) represent an average over an assumed orienta-
tional distribution for the S-1 spheroids. Analogous equa-
tions hold for 7y, and ry..,; we have taken for the
depolarizing factors L, = 0 and M, = 1/2, which are
appropriate for a long, rodlike prolate spheroid, i.e., an
infinitely long cylinder. Finally the field ratios for the
effectively isotropic matter follow from Eq. 17:

Tipara = Tiperp = [l + (An)(l/:;)]_l’ (24)

where we have used the depolarizing factor (1/3) for a
sphere.

In Section III we calculate values for the volume
fractions in these equations and select literature values for
the refractive indexes of sarcoplasm and protein. In
Section 1V we adopt plausible orientational distributions
for the cross-bridges in resting, active and rigor muscle.
The final calculations are performed by computer.

lil. VALUES FOR PARAMETERS IN THE
OPTICAL MODEL OF MUSCLE

We have calculated values for the volume fractions and
refractive indexes involved in our optical model of muscle.
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Tables 1-6 outline our calculations, including references
and consistency checks. The final values are listed in
Table 6. The tables are heavily commented and are
intended to be self-explanatory.

Most of the data on muscle proteins has come from
mammalian skeletal muscle, namely rabbit and rat. The
relevant measurements of refractive indexes have been
performed on frog skeletal muscle. Clearly the appropri-
ate values for volume fractions and refractive indexes will
depend somewhat upon whether rabbit or frog muscle
birefringence is being studied, and especially upon
whether intact or demembranated muscle is used. The
sensitivity of the predicted birefringence to variation in
the values of parameters listed in Table 6 is discussed in
Section IV.

IV. RESULTS AND DISCUSSION

We now use the optical model developed in Section II to
calculate the form birefringence of muscle in the resting,
active, and rigor states. The essential quantitative rela-
tions of the optical model are contained in Eqs. 18-24.
Values for the parameters in the model are listed in Table
6 or appear in Fig. 1. However, we also need plausible

TABLE 1 Composition by weight and volume of 1 g of
whole skeletal muscle

Specific
Substance Weight volume Volume
g ml/g ml
Water
Total 0.80* 1.00 0.80**
Extracellular water 0.13¢ 1.00 0.13
Intracellular water 0.67 1.00 0.67**
Solids Total 0.20* 0.73' 0.146**
Total protein 0.18¢ 0.73' 0.131
Soluble protein 0.061! 0.73' 0.044
Structural protein 0.119 0.73' 0.087**
Other solids 0.02 0.73' 0.015

*See Table 1 (p. 4) of Dubuisson (1954).

" See Boyle et al. (1941).

$See Table 2 (p. 5) of Dubuisson (1954).

ISee Table 5 (p. 256) of Hanson and Huxley (1957).

*The specific volume of the thick filament is 0.73 ml/g. See Table 1 of
Godfrey and Harrington (1970); we also acknowledge a personal
communication from M.E. Rodgers and W.F. Harrington. For conve-
nience we have used 0.73 ml/g as the specific volume for all proteins and
solids in skeletal muscle. See also p. 377 of Cohn and Edsall (1943), who
cite a value of 0.74-0.75 ml/g for protein in general.

**The volume of 1 g of whole muscle is then 0.80 ml water + 0.146 ml
solids = 0.946 ml, which gives a density of 1.057 g/ml, in agreement
with the generally quoted value of 1.05-1.06 g/ml. The intracellular
volume is 0.67 ml water + 0.146 ml solids = 0.816 ml, and hence the
intracellular volume fraction of structural protein is 0.087/0.816 ml =
0.107.

TABLE 2 Intracellular volume fractions of structural
proteins
Structural Percent by weight Intracellular
protein of total volume fraction
Total structural protein 100 0.107*
Actin 22* 0.024
Troponin 5* 0.005
Tropomyosin 5¢ 0.005
Myosin 43 0.046
C-, X-, H-, and M-protein,
and creatine phosphoki-
nase 4t 0.004
Titin 10 0.011
Nebulin _ st 0.005
Subtotal of proteins com-
prising anisotropic struc-
tures 94 0.101
Form-isotropic proteins 6 0.006

*See note ** of Table 1.
See Table 8 (p. 138) of Yates and Greaser (1983).

descriptions of the orientations of the cross-bridges during
the resting, active, and rigor states to evaluate the orienta-
tional averages (sin’ @, ) and (sin’@®,) for the S-1 and
S-2 spheroids (see Eq. 23).

To illustrate the use of the model, we choose orienta-
tional distributions for S-1 which are appropriate to a
model for cross-bridge dynamics suggested by Huxley
and Kress (1985). We could equally well choose orienta-
tional distributions appropriate to any other hypothetical
model for cross-bridge dynamics and compare the predic-
tions of our model with published measurements of bire-
fringence. The Huxley-Kress model, however, is particu-
larly interesting because it combines into a single picture
the information yielded by x-ray studies (e.g., Huxley et
al. [1982], Haselgrove and Huxley [1973]), paramag-
netic probe studies (e.g., Crowder and Cooke [1987],
Cooke et al. [1984]), and optical probe studies (e.g.,

TABLE3 Contributions of myosin heavy chains (MHC)
and light chains (LC) to the molecular weight of myosin

Total contribution

Molecular  Number per to myosin
Myosin chain weight  myosin molecule molecular weight
kD kD
MHC 224* 2 448
A-1LC 20.7¢ 1 20.7
A-2LC 16.5* 1 16.5
DTNBLC 19.0¢ 2 38.0
Myosin molecule 1 523

*See Strehler et al. (1986).
#See review by Wagner (1982).
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TABLE4 Contributions of myosin subfragments to the molecular weight of myosin

Subfragment Total MHC Total LC Subfragment
(No. per myosin molecule) contribution contribution molecular weight
’ kD kD kD
S-1(2) 192* 75.2} 267
S-2(2) 102* 102
LMM (1) 154* - 154
Myosin molecule (1) 448 75.2 523

*See Strehler et al. (1986).
iSee Table 3.

Burghardt et al. [1983], Yanagida [1981]). An excellent
review of the probe studies has recently appeared
(Thomas [1987]). Huxley and Kress (1985) suggested
that two types of binding of myosin heads to actin occur in
the active state of muscle: (@) a strong binding in which
S-1 is rotationally immobile, and which is responsible for
tension generation and is similar to the binding in rigor,
and (b) a weak binding in which S-1 is nearly rotationally
free. Evidence for such a weakly attached state has been
provided by a paramagnetic probe study of S-1 cross-
linked to actin. Svensson and Thomas (1986) reported
microsecond rotational motion of S-1 in a cross-linked
actomyosin preparation during steady-state ATPase
activity. They concluded that “myosin heads may rotate
on actin after all, although it seems likely that they are
predominantly in a weakly attached state that precedes
force generation.”

Huxley and Kress further suggested that during iso-
metric contraction roughly 20% of myosin heads are
strongly bound and 80% are weakly bound. Huxley and
Kress designed their model to be consistent with two types
of x-ray data taken during isometric contraction: (a)
observations of equatorial reflections (Haselgrove and
Huxley [1973]) indicate that up to 90% of myosin heads
have moved out to the actin filaments, and (b) the
intensities of actin layer line reflections indicate that
probably no more than 30% of myosin heads are attached
to actin in a specific orientation (Huxley et al. [1982]).
The model is also designed to be consistent with paramag-
netic probe studies (Cooke et al. [1982]) which indicate

TABLE 5 Intracellular volume fractions of myosin
subfragments

that in isometric contraction only 20% of myosin heads
are rotationally immobile, whereas 80% are oriented
nearly isotropically. It is worth noting here that not all
probe studies report the 20/80% figures (Thomas
[1987]). For example, one optical probe study (Burghardt
et al. [1983]) suggests that roughly 65% of S-1 has a
specific orientation in active muscle.

Cross-bridge orientations in the
optical model

Employing the model proposed by Huxley and Kress, we
have adopted the following orientational distributions for
S-1. In the active state under conditions of full overlap
between the thick and thin filaments, the 20% of S-1
which are strongly bound make a specific angle @, with
the fiber axis, whereas the remaining 80% possess an
orientational distribution which is either “uniform”
(equal weighting in ©, between 0 and 180°) or isotropic in
0,. Note that a “uniform” distribution of ©, for weakly
bound S-1 means that the average (sin’©, ) in Eq. 23 is
equal to 1/2, whereas a truly isotropic distribution yields
an average of 2/3.

(5in’ 81 Yontom = (1/7) [ (sin ,) d6y — 1/2

(8in? ©; Y isotropic
- (1/4x) jo' - jo'  (sin? ©,) sin ©, do, dO, = 2/3.

We have considered a uniform distribution in token
recognition of the steric hindrance which may limit the
azimuthal rotational freedom of S-1. However, we have
plotted the results in Fig. 2 for both uniform and isotropic
distributions. In the rigor state of muscle we assume that
all S-1 are oriented at the same 0, as the strongly bound
S-1 in active muscle.

In resting muscle we assume that the orientational
distribution of S-1 is either uniform (equal weighting in
0,) or isotropic in @,. This assumption is motivated by the
finding that paramagnetic probes are oriented nearly iso-
tropically in resting muscle (Thomas et al. [1980],
Thomas and Cooke [1980]). It is important to remember,

Fraction of
Subfragment myosin molecular weight ~ Volume fraction
Myosin molecule 1.00 0.046*
S-1 0.51* 0.023
S-2 0.20* 0.009
LMM 0.29¢ 0.014
*See Table 2.
See Table 4.
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TABLE6 Values for parameters in the optical model of
muscle

Volume fraction of S-1 = f; = 0.023*

Volume fraction of S-2 = f, = 0.009*

Volume fraction of filaments = f; = 0.069*

Volume fraction of form-isotropic solids = f; = 0.024}

Volume fraction of sarcoplasm = f, = 0.875

Total volume fraction = 1.000

Refractive index of sarcoplasm = n, = 1.35"
Effective refractive index of hydrated protein = n, = 1.53**

*See Table 5.
; = 0.101 (volume fraction of protein comprising anisotropic
structures, from Table 2).

-h —fo
§f. = 0.006 (volume fraction of form-isotropic structural protein, from
Table 2).
+0.018 (volume fraction of other form-isotropic solids; calculated
from Table 1 as 0.015 ml other solids/0.816 ml intracellu-
lar volume).
ICalculated from Table 1 as (0.67 ml intracellular water + 0.044 ml
soluble protein)/0.816 ml intracellular volume.
YThe value n, = 1.35 is calculated using Table 1 and the value 0.185
ml/g for the specific refractive increment of protein (see Barer and
Joseph [1954] and Davies et al. [1954]). The calculation is n, = 1.333
(refractive index of water) + 0.185 ml/g x 0.061 g soluble protein/
(0.67 ml intracellular water + 0.044 ml soluble protein) = 1.349. Note
that the mean refractive index of a muscle fiber can be calculated in a
similar manner: ng,, = 1.333 + 0.185 ml/g x 0.20 g solids/0.816 ml
intracellular vol = 1.378. This value is identical to the mean refractive
index measured by Huxley and Niedergerke (1958) for eight fibers
immersed in their neutralized protein solution.
**See Bragg and Pippard (1953) and p. 406 of Barer and Joseph
[1954].

however, that probe studies measure the angle between
the fiber axis and a specific axis of the probe, and that the
probe axis is not in general parallel to the long axis of S-1.
Mendelson and Wilson (1982) have shown that in cases in
which the probe axis is not parallel to the axis of S-1 there
may be partial order in the orientations of S-1 even
though the observed probe orientations are nearly isotro-
pic. For the moment we shall ignore this possibility and
simply take a uniform or isotropic distribution for the
orientations of S-1 in resting muscle.

We have adopted an orientational distribution for S-2
which is simple but somewhat arbitrary. In resting muscle
we have taken 0, to be 0°, indicating that S-2 lies on the
surface of the thick filament. In active and rigor muscle
we have taken 0, to be 8°, roughly the angle required for
long S-2 (66.2 nm in length) to bridge the surface to
surface distance (9.5 nm) between thick and thin fila-
ments.

Comparison with published
measurements of birefringence

There is some evidence from paramagnetic probe studies
(Thomas and Cooke [1980], Thomas et al. [1975]) that

[o] 50 100 150
01 of Strongly Bound S—1 (Degrees)

FIGURE 2 Calculated form birefringence of muscle in the resting,
active, and rigor states as a function of the angle 8, which strongly
bound S-1 makes with the fiber axis. The axial ratio of the S-1 spheroid
has been taken to be 4.1. Resting birefringence is independent of 6,
because we assume that no cross-bridges are bound to actin, and that the
unattached S-1 are oriented with a uniform distribution of 8, between 0
and 180° (solid line) or oriented isotropically (dashed line). Active
birefringence is calculated assuming that 20% of S-1 are strongly bound
at a single value of ©,, whereas the remaining 80% are oriented with a
uniform distribution of 8, between 0 and 180° (solid line) or oriented
isotropically (dashed line). Rigor birefringence is calculated assuming
100% of S-1 are strongly bound at a single value of 8,. We have assumed
that S-2 makes an angle 8, = 0° with the fiber axis in the resting state,
but that ©, = 8° in the active and rigor states.

strongly bound S-1 makes an angle 0, ~ 68° with the fiber
axis. It is interesting to investigate whether the predic-
tions of our model in conjunction with published measure-
ments of muscle birefringence can provide independent
support for this value of ©,. We have plotted in Fig. 2 our
calculated form birefringence of muscle in the resting,
active, and rigor states as a function of @, of strongly
bound S-1. The general magnitude of the predicted values
is in agreement with observed values of muscle birefrin-
gence. For example, Eberstein and Rosenfalck (1963)
reported a value of 1.92 + 0.03 x 10~* for intact frog
fibers at rest, and a value 8.2 + 1.2% lower for isometri-
cally contracting fibers. Taylor (1976) reported values of
1.67 + 0.05 x 1073 for resting and 1.46 + 0.08 x 103 for
rigor fibers from rabbit psoas muscle which was treated
with triton and glycerol solutions. It should be noted that
our model does not include a contribution from intrinsic
birefringence, as will be discussed later.

Notice in Fig. 2 that for 50° < 0, < 130° the predicted
birefringence decreases during activation of muscle and
continues to decrease during the transition to rigor.
Several groups of researchers have reported decreases in
birefringence in the resting to active and resting to rigor
transitions (Eberstein and Rosenfalck [1963], Taylor
[1976], Yanagida [1976], Irving and Peckham [1986],
Irving et al. [1987]). Unfortunately birefringence has not
been measured in the sequence of transitions, resting to
active to rigor, in the same muscle preparation. Recent
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preliminary reports (Irving and Peckham [1986], Irving
et al. [1987]) indicate that rigor birefringence may be
slightly greater than in isometric contraction, but full
details of these measurements have not been published. It
is clear from Fig. 2 that our orientational distributions for
S-1 lead to a conflict between a value of @, = 68° for
strongly bound S-1 and a birefringence in rigor which is
higher than that of active muscle. In fact, our orienta-
tional distributions for S-1 are incompatible with values
for rigor and active birefringence which are approxi-
mately equal and are also substantially less than that for
resting birefringence. It would clearly be useful to per-
form measurements of birefringence in resting, active,
and rigor states in intact fibers and in demembranated
fibers.

If indeed rigor birefringence is comparable with or
greater than active birefringence, we may want to recon-
sider our uniform or isotropic distribution for S-1 in
resting muscle. If we assume that the orientational distri-
bution of S-1 in resting muscle has considerably more
order than the paramagnetic probe studies indicate
(Thomas et al. [1980], Thomas and Cooke [1980]), we
can raise the predicted birefringence of resting muscle. It
is noteworthy that fluorescent probe studies (Wilson and
Mendelson [1983]) have indeed indicated the presence of
some cross-bridge order in resting muscle. Cantino and
Squire (1986) presented a model for resting muscle based
on electron microscope images of rapidly frozen frog
fibers. In their model S-1 makes an angle with the fiber
axis of ©, = 20-40°. A value of ©, = 30° leads to a
predicted birefringence of resting muscle of 1.87 x 10~°
(compare with Fig. 2). Note that now a value of ®, ~ 50°
for strongly bound S-1 leads to predicted values for rigor
and active birefringence which are comparable, and yet
both values are substantially less than that for resting
muscle. Another consequence of a value of 8, ~ 50° for
strongly bound S-1 is that measurements of birefringence
would be insensitive to the relative proportions of myosin
heads that are strongly or weakly bound in active mus-
cle.

In our discussion thus far we have modeled S-1 as a
spheroid with axial ratio 4.1 and have assumed that it
maintains this shape in the resting, contracting, and rigor
states. We have considered only the effects of rotations of
this spheroid. There is some evidence that during the
power stroke S-1 may undergo a conformational change
involving a rotation of the portion of S-1 distal to actin,
whereas the portion of S-1 proximal to actin remains
rigidly attached (see review by Cooke [1986], also High-
smith and Eden [1986]). Whereas a shape change in S-1
will affect our predicted birefringence for the active and
rigor states, it will not lead to values which are substan-
tially less than the predicted resting value unless substan-
tial order of cross-bridges is assumed in the resting state,

as in the model of Cantino and Squire described above.
This is an interesting point, but strong statements regard-
ing the orientation of resting cross-bridges cannot be
made until more extensive muscle birefringence data is
available.

Dependence on sarcomere length

Our model can be used to predict the dependence of the
form birefringence of muscle on sarcomere length in the
resting, active, and rigor states. In the case of intact
fibers, changes in sarcomere length maintain constant
sarcomere volume. We pointed out in Section II that for
constant sarcomere volume our model predicts a contribu-
tion of the filament array to the birefringence which is
independent of the sarcomere length. However, the orien-
tation of the cross-bridges will certainly depend upon the
degree of filament overlap in active or rigor muscle,
leading to some sarcomere length dependence of the
birefringence.

The predictions of our model are plotted in Fig. 3. The
solid lines are calculated assuming that the S-1 in the
nonoverlap region have an orientational distribution
which is uniform in ©, between 0 and 180°. The dashed
lines are calculated assuming a truly isotropic distribution
for the nonoverlap S-1, illustrating the effect of greater
rotational mobility for these myosin heads than for the
weakly bound (active state) or unattached (resting state)
heads in the overlap region. It should be noted that the
curves for the active state in Fig. 3 lie closer to the resting

FIGURE 3 Calculated form birefringence of muscle in the resting,
active, and rigor states as a function of sarcomere length. Values for
parameters in the model are the same as those in Fig. 2, but we have
chosen ©, = 70° for strongly bound S-1. The weakly bound or
unattached S-1 in the overlap region are oriented with a uniform
distribution of O, between 0 and 180°. The unattached S-1 in the
nonoverlap region are oriented with a uniform distribution of 8, between
0 and 180° (solid lines) or oriented isotropically (dashed lines). We
have taken a sarcomere length of 2.2 um to be 100% overlap and 3.6 um
to be 0% overlap of thick and thin filaments.
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curves than the rigor curves because we assume only 20%
of S-1 are strongly bound in active muscle. If we assume,
for example, that 80% of S-1 are strongly bound in the
active state, then the active curves would lie proportion-
ately closer to the rigor curves.

Eberstein and Rosenfalck (1963) measured a linear
decrease in birefringence accompanying activation of
intact fibers as the sarcomere length was increased. Their
data is consistent with the difference of either set of
resting and active curves in Fig. 3. Unfortunately they did
not report absolute values of birefringence for the resting
and active states, so their difference data cannot distin-
guish between the two models for nonoverlap S-1. There
seem to be no published data on intact fibers which can
directly test the predicted curves. Data on demembra-
nated fibers would suffice if carefully corrected for the
variation in volume fractions as the sarcomere length is
varied.

Effect of myofilament orientational
disorder

The array of thick and thin filaments in a muscle fiber is
not perfectly oriented along a single direction, particu-
larly in demembranated fibers. Thomas and Cooke
(1980) reported that paramagnetic probes in rigor fibers
(glycerinated rabbit psoas) were highly ordered, but
nevertheless were oriented in a cone with a half-angle
of ~7.5°. This slight disorder may represent a true range
of attachment angles with which S-1 may bind to actin, or
it may simply reflect some orientational disorder of the
myofilament array. We have used our model for muscle to
investigate the effect of myofilament orientational disor-
der on the predicted form birefringence in the resting,
active, and rigor states.

We have assumed that portions of the filament array in
a fiber point with equal probability in a cone of half-angle
A, centered on the average orientation © = 0°. The effect
of this disorder is discussed quantitatively in Appendix B.
The predicted birefringence is plotted in Fig. 4 for no
disorder (A®, = 0°, solid lines) and for disorder compara-
ble with that reported by Thomas and Cooke (1980) for
paramagnetic probes in rigor fibers (A®, = 7.5°, dashed
lines). The dominant effect is a slight decrease in birefrin-
gence contributed by the filament array; the disorder in
the orientation of S-1 and S-2 contributes a much smaller
amount.

Intrinsic birefringence

Our present model does not include a contribution from
intrinsic birefringence. Imbitition studies (see the analy-
sis by Sato et al. [1975] of the imbibition data of Noll and
Weber [1935]) suggest that the intrinsic component may

~—
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. FIGURE 4 Calculated form birefringence of muscle as a function of 6,

in the presence and absence of myofilament disorder. The solid curves
are identical to the solid curves in Fig. 2. The dashed curves include the
effect of myofilament disorder; the filaments are assumed to point with
equal probability in a cone of half-angle 7.5°.

comprise 30% of the total birefringence of skeletal mus-
cle. The imbibition technique requires fixation of the
muscle to achieve reproducible birefringence changes as
the imbibing medium is cycled; the fixation procedure
generally alters the birefringence (for example see Taylor
[1976]). Our model predicts a value for the form birefrin-
gence of resting muscle of 1.73 x 10~ (uniform, see Fig.
2) or 1.63 x 107* (isotropic) which is roughly 90% of the
measured value for the total birefringence, 1.92 x 1073,
for intact frog fibers (Eberstein and Rosenfalck [1963]).

An intrinsic contribution to muscle birefringence could
come from an intrinsic anisotropy in the polarizability of
the filament array or of the cross-bridges. A contribution
from the filament array would result to first approxima-
tion in a single additive constant augmenting the values
predicted by our model for the resting, active, and rigor
states. However, an intrinsic anisotropy in the polarizabil-
ities of S-1 or S-2 could result in different additive
constants for the three states with their different orienta-
tional distributions for cross-bridges. A satisfying treat-
ment of these intrinsic contributions will have to wait for a
more detailed knowledge of the intrinsic polarizability
matrix of S-1 and S-2.

Sensitivity of the predicted
birefringence to values for
parameters in the model

The equations of the model (Eqs. 18—-24) are not trans-
parent functions of the various parameters in the model.
We have therefore tabulated the effects on the predicted
birefringence of small variations in the model parameters
about their standard values listed in Table 6. Since the
effects of variations in the volume fraction and axial ratio
of S-1 will depend upon the assumed orientational distri-
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TABLE 7 Sensitivity of the predicted birefringence to
values for parameters in the model

AB, (isotropic S-1)* AB (8, = 70°)*

% %
Afe = £5% +4 +4
Afy = £5% +0.1 +0.5
AR = +30! — +1
A©, = £10° — +4
Afy = +5% +0.5 +0.6
AO, = +8° -0.3 +0.7
Af, = +5% +0.1 0.1
An, = +0.3% +5 +5
An, = +0.7% +12 +12

*Using the parameter values listed in Table 6, taking ©, = 0°, and using
an isotropic orientational distribution for S-1 yields B, = 1.63 x 1072
See dashed line in Fig. 2.

*Using the parameter values listed in Table 6, taking ©, = 8°, using an
axial ratio for S-1 of R = 4.1, and taking 8, = 70° for all S-1 yields
Biigor = 1.51 x 1073, See rigor curve in Fig. 2.

$The variation in axial ratio is R = 2.87-5.33.

bution of S-1, we list in Table 7 the effects on the
predicted birefringence of two states of muscle. First we
investigate the resting state with an isotropic distribution
of S-1; this state should be insensitive to variations in the
parameters associated with S-1. As a second state we
choose the rigor state with all S-1 oriented at ©, = 70°;
this state should be reasonably sensitive to S-1 parame-
ters.

The variations in parameters listed in Table 7 reflect
our rough estimates of the uncertainties in the parame-
ters. When the volume fraction of a particular protein is
increased, the sarcoplasm volume fraction is decreased by
an equal amount; the total volume fraction must, of
course, equal one. It is clear from Table 7 that the
calculated birefringence is most sensitive to the refractive
indexes for protein and sarcoplasm and to the volume
fraction of the filament array. In addition the birefrin-
gence is sensitive to the value of 0, in the rigor state. In
general, variations in O, are important when the average
value of sin’ ©, is significantly different from the isotropic
value of 2/3, i.e., when S-1 contributes significantly to the
birefringence. This last point is precisely the reason that
we feel studies of muscle birefringence can yield signifi-
cant information about the structure and orientation of
cross-bridges in resting, active, and rigor muscle.

APPENDIX A. CALCULATION OF THE
RATIO OF THE ELECTRIC FIELD INSIDE
A SPHEROID TO THE APPLIED FIELD
OUTSIDE THE SPHEROID

Consider a single spheroid of protein (modeling S-1 or S-2) oriented at
angles © and ¢ with respect to the z-axis (fiber axis) and with refractive

index n,. See, for example, Fig. 1. The spheroid is immersed in an
infinite medium of sarcoplasm with refractive index n,.

If we apply an external electric field E, along the direction of the axis
of revolution, the field inside the spheroid will be uniform and given by
(see Stratton [1941])

E,

Epe=——— - AE,,
*® "1+ (An)L (AD)

where An = (n2 — n?)/nl, L is the depolarizing factor along the axis of
revolution, and 4 = [1 + (An)L]"'. Although the field in the sarco-
plasm is not uniform, its spatial average is just equal to the applied field,
(E,) = E,. If the external field is directed perpendicular to the axis of
revolution, the field is again uniform and given by

E,

E,., - ————— = BE,,
PP+ (An)M °

(A2)

where M is the depolarizing factor perpendicular to the axis of revolu-
tion, and B = [1 + (An)M]~'. Again the spatial average of the field in
the sarcoplasm is equal to the applied field. Osborn (1945) and Stoner
(1945) give analytic expressions for L and M as functions of the axial

ratio R = a/b, where a is the semiaxis along the axis of revolution, and b
is the semiaxis perpendicular to the axis of revolution.

If the external field is applied along some arbitrary direction rather
than along one of the principal axes of the spheroid, then by superposi-
tion the field inside the spheroid is still uniform but is not necessarily
parallel to the applied field since, in general, L # M. The spatial
average of the field in the sarcoplasm is by superposition still equal to
the applied field.

For example, if the external field is applied along the fiber axis, we
can calculate the field inside the spheroid using the Euler angle
formalism described by Rose (1957). We have

Expara
Epara= Eypan =5:(_¢)B__y‘(_9)
E s
B 0 O 0
0 B O|R/(O)R,(#)|0 |, (A3)
0 0 4 E,
0
where E, = Ee, = |0
E,

The product of rotation matrices R,(8)R,(¢) projects the applied
field onto the principal axes of the spheroid, and the product
R.(—¢)R,(—O) projects the total electric field in the spheroid back
onto the fiber axes. According to Rose (1957) the rotation matrices are

cos® 0 —sin®
R,(©)x=| © 1 0
sin® 0 cos®
cos¢ sing O
andR,(¢) =| —sing cos¢ 0. (Ad)
0 0 1
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Multiplying the matrices we have

(A — B) sin® cos © cos ¢
Eow = E;|(A— B) sin®cosOsing|. (AS)
A - (4 — B)sin’@®

If the external field is applied perpendicular to the fiber axis, e.g., along
the x-axis, we calculate in a similar way:
B + (A — B)sin? 0 cos? ¢
(4 — B)sin’@sin¢ cos ¢|.
(A — B) sin © cos O cos ¢

Eperp = Eo (A6)

We shall assume that cross-bridges in a muscle fiber are oriented with
an effectively continuous and uniform distribution in azimuthal angle ¢.
Hence our results for a spheroid modeling some portion of a cross-bridge
should be averaged over ¢. Egs. A5 and A6 become

Epun/Eo = A — (A — B) sin?@ (A7)

Epp/E, = B + (1/2)(4 — B) sin’ @, (A8)
because the components of the field inside the spheroid which are
normal to the applied field average to zero. Eqs. A7 and A8 are
discussed in Section II as Eqgs. 13 and 14 and later as Eq. 23.

APPENDIX B. EFFECT OF
MYOFILAMENT ORIENTATIONAL
DISORDER ON THE CALCULATED
BIREFRINGENCE

Suppose the thick and thin filaments exhibit a distribution of orienta-
tions (A®, A¢) with respect to the average direction of the fiber axis, the
(unprimed) z-axis (@ = 0). This orientational disorder will affect the
contributions of the filament array (Eq. 22) and the S-1 and S-2
spheroids (Eq. 23) to the form birefringence of muscle. Let us rewrite
Eq. 22 for the filaments so that it is formally similar to Eq. 23 for the
spheroids:

rfpan = Ar - (Ar - Bf) sin? ef
and  Fiep = Br + (1/2)(A; — B;) sin’ @, (BI)

where A; = [1 + (An)L;]"', B = [1 + (An)M;]"', and the depolarizing
factors for (infinitely long) cylinders are L; = 0 and M, = 1/2. Without
disorder we take 6; = 0 so that Eq. B1 reduces to Eq. 22. To account for
the effect of disorder, we must replace sin’ 6, in Eq. B and sin’ 8, (or
sin? @,) in Eq. 23 with values of sin? ® which have been averaged over
the distribution of orientational disorder.

Let us assume that the thick and thin filaments are oriented with
equal probzbility in a cone of half-angle A@,_ centered on the average
direction of the filaments @ = 0 (or A® = 0, A¢ = 0). Then the value of
sin’ @ in Eqs. B1 and 23 must be replaced by its average over the solid
angle of the cone:

(1/4x) f 48 [ Isin? @] sin (A®) d(A8) d(Ad)
sin? @ — 0 =0 ,

(1/4) .[ se .(  Sin (A8) d(A8) d(Ad)

(B2)

where sin? @' is a function of its value sin’> © without disorder and of the
local deviation (A8, A¢) of the filaments from the average direction © =
0. We can evaluate sin? @ if we first note that sin> @ = x> + y* where
(x, y, z) is a point on the unit sphere, and then note that sin’ 8’ = (x')? +
(»)? where (x',y’, z') is the same point referred to coordinate axes
which have been rotated by the Eulerian angles (A8, A¢). Hence we
have the relation:

x' sin @' cos ¢’ sin © cos ¢
y'|=|sin @ sin ¢’ [ = R,.(AB)R, (A¢) | sin O sin ¢
4 cos © cos ©
X
=R, (A8)R,(A¢)[y], (B3)
z

where the rotation matrices R (A8) and R ,(A¢) are given in Appendix
A. After some tedious algebra, Eq. B3 yields the relation
sin?@’ = [cos? (A®) cos? (A¢) + sin®(A¢)] sin?O cos? ¢
+ [cos® (A8) sin? (A¢) + cos? (A¢)] sin?@sin’ ¢
+ sin? (A®) cos?©
— 2[1 — cos?(A®)] sin (A¢) cos (Ap) sin*O
- sin ¢ cos ¢
— 25sin (A®) cos (A®) sin (A¢) sin © cos O sin ¢

— 25in (A®) cos (AB) cos (Ap) sin@cosOcos¢p. (B4)

The average over A¢ in Eq. B2 takes the last three lines of the expression
in Eq. B4 to zero. Performing the average over A8, Eq. B2 becomes

sin? @ — (1) [cos (A8,) + cos? (A®,)] sin*©
+ (%) — (5) [cos (A8,) + cos® (A8,)]. (BS)

The substitution indicated in Eq. BS must be made in Eq. 23 for the S-1
and S-2 spheroids before the average is performed over the orientational
distributions of the cross-bridges indicated by the angle brackets (). The
substitution in Eq. B1 for the filaments consists only of the second line of
Eq. B5 because sin” ©; = 0. The dashed line in Fig. 4 was calculated
using these substitutions with A@, = 7.5°.
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