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Kinematics of helical motion of microorganisms capable of motion
with four degrees of freedom

Hugh C. Crenshaw
Department of Zoology, Duke University, Durham, North Carolina 27706

ABSTRACT The kinematics of helical nal axes, but can translate only in the translational and rotational velocities of
motion are described for an organism direction of one axis. In particular, the microorganism, correcting, and
with four degrees of freedom, relative equations are developed for calcu- expanding the analysis of Gray, J.
to the organism's frame of reference. It lating the pitch, radius, and angular (1955. J. Exp. Biol. 32:775-801).
can rotate about any of three orthogo- frequency of the helical path from the

INTRODUCTION

The motion of many free-swimming microorganisms is
helical. Gray (1955) first used the mechanics of rigid
body rotation to analyze helical motion. Gray assumes the
organism has only three degrees of freedom relative to the
organism's frame of reference (one component of transla-
tional velocity and two components of rotational velocity),
and obtains two equations describing the radius and pitch
of an organism's helical trajectory as functions of its
speed and rate of rotation. Unfortunately, Gray does not
present derivations of his equations, and the present
analysis demonstrates they are incorrect.

Brokaw (1958) repeated Gray's analysis, using the
same assumptions. He presents a series of equations
describing an organism's translational and rotational
velocities in terms of the radius, pitch, and angular
frequency of its trajectory and vice versa. These equations
disagree with Gray (1955), and the present analysis
confirms Brokaw's results.

This paper describes the kinematics of helical motion of
an organism with four degrees of freedom, relative to the
organism's frame of reference: one component of transla-
tional velocity and all three components of rotational
velocity. In particular, equations are developed for calcu-
lating the pitch, radius, and angular frequency of the
helical motion from the rate of rotation and the speed of
the organism. These equations correct Gray's equations
as well as provide the additional degree of freedom.
Finally, the orientations of the translational and rota-
tional velocity vectors, with respect to the body of the
organism and to the helical path, are discussed.
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Sum of yaw and pitch (= w2j + w3k)
Curvature
Torsion
Rotational velocity of organism
Arclength of one revolution of helix ( Vp2 + 47r2r2)
Pitch of helical motion
Radius of helical motion
Arclength of curve
Time
Speed (= ds/dt = lVi)
Unit binormal vector
Position vector for helical motion
Reference frame fixed to organism
Reference frame fixed in space
Axis of helical motion
Unit normal vector
Unit tangent vector
Translational velocity of organism.

INTRODUCTION TO HELICES

Righthand helical motion is described by the following
vector function:

H(t) = r cos ("yt)I + r sin ('yt)J + 2-) K, (1)

where IJK is a righthand reference frame fixed to the
helix such that K is the axis of the helix. p is the pitch, r is
the radius, and y is the angular frequency (radians/
time).'
Some helpful relationships emerge from the geometry

of the cylinder formed by one revolution of the helix. If
the cylinder is split down the side, parallel to K, and laid

GLOSSARY

y Angular frequency of helical motion
0 Angle between axis and tangent of helix

'For lefthand helical motion the sine and cosine terms are interchanged.
This analysis uses the equation for a righthand helix, but the results
apply equally well to lefthand helices.
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flat, the wall of the cylinder forms a rectangle. The length
of the sides parallel to K equals p. The length of the other
sides equals the circumference of the cylinder (27rr). The
arc of the helix for one revolution is the diagonal, with
length equal lp2 + 47r2'r. This quantity appears so

frequently it is referred to as 1. The angle 0 formed by the
diagonal and the side parallel to K also arises in later
discussion. The diagonal is the arc of the helix, so 0 is the
angle formed by K and any line tangent to the helix. is
given by

2irr
tan6 =-

p

Kinematics

Motion of ijk relative to IJK
ijk is fixed to the organism such that the origin of ijk is
placed at the organism's center of mass. i is the anterior-
posterior axis, pointing anteriorly; j is the left-right axis,
pointing left; and k is the dorso-ventral axis, pointing
dorsally (Fig. 1 a).
The motion of ijk relative to IJK is fully defined by V

and w (Beatty, 1986). This analysis assumes V has only
one nonzero component, which I arbitrarily constrain to
be in the i direction (Fig. 1 b). If the organism moves with
speed U, then

(2)
V = Ui. (3)

All three components of w are assumed to be nonzero,
thus

If the endpoint of H(t) is some point on an organism, and
if r, p, and -y are known, the trajectory of the organism is
known. These parameters can be measured by observing
the motion of an organism. r, p, and -y, however, are

parameters that are remote from the behavior of the
organism. Of more biological interest is the organism's
translational and rotational velocities (V and w, respec-

tively).
I use three reference frames in this analysis. The first,

IJK, is fixed in space as described for Eq. 1. The second,
ijk, is fixed to the organism. The final reference frame,
TNB, is one conventionally used to describe the geometry
of 3D curves.

The goal of this analysis is to describe the trajectory of
an organism (i.e., of ijk) relative to Eq. 1. This is
accomplished by first describing the motion of ijk in terms
ofV and w. Next, the motion ofTNB is described in terms
of r, p, and y. The relationship between these descriptions
of motion is then discussed, permitting the development of
equations describing r, p, and y as functions of V and w

and vice versa.

a b

Avi

c

= (ll + A2i + WX3k, (4)

where w has units of radians/time (Fig. 1 c).2 Therefore,
if U, WI, W2, and I3 are known, the motion of the organism
is defined by Eqs. 3 and 4.

Motion of TNB relative to IJK
TNB is a reference frame used in differential geometry
(Gillett, 1984, ch. 16.2) and the kinematics of a particle
(Beatty, 1986, ch. 1). T is the unit tangent vector; N is the
unit normal vector, and B is the unit binormal vector. The
orientation and motion of TNB relative to IJK can be
calculated from Eq. 1. I present only the relationships
needed in later discussion.

T dH/ds
IdH/dsl

N dT/ds

IdT/dsl

B = T x N

(5)

(6)

(7)

IHU=dH yl

dt 2-7r

dT 47r2r
K= -l= 2

ds

dB 2irp
Td= 12'2

(8)

(9)

(10)

FIGURE 1 The orientation of ijk with respect to body axes and the
components of V and w. (a) Orientation of ijk. i is the anterior-posterior
axis, pointing anteriorly. j is the left-right axis, pointing left. k is the
dorso-ventral axis, pointing dorsally. (b) Components of velocity, rela-
tive to ijk. The i component (VI) is the only nonzero component. (c)
Components of rotation relative to ijk. w1 is the i component, W2 is the j
component, and W3 is the k component.

where s is the arclength, K iS the curvature, and -r in the
torsion of the curve.

2w, is sometimes called "roll"; W2 iS "pitch" (not to be confused with the
pitch of the helix), and W3 is "yaw".

100BohsclJunl oue5 oebr18
1030 Biophysical Journal Volume 56 November 1989



Relationship between the motions
of ijk and TNB
I proceed from here in two steps. First, I describe the
orientation of ijk relative to TNB. Next, I describe the
relationship between the rate of rotation of ijk, which is
given by w, and the rate of turning ofTNB, which is given
by Kand r.

The center of mass of the organism is the point that is
being tracked. The origin of ijk is the organism's center of
mass, so this point traces the trajectory. The origin of
TNB also traces the trajectory, so the origin of ik is the
origin of TNB.
The speed of ijk is the same as the speed of TNB, the

latter given by Eq. 8. The velocity of ijk has only one

component, which is in the i direction, so from Eq. 5,

T (11)

N, given by Eq. 6, is, therefore,

N Idilds. (12)

Because i does not change direction with respect to the
organism's body, di/dt is simply w x i, thus,

di di dt I di w x i
(13)

ds dt ds U dt U

This relationship can be simplified by using a second
rotation vector

7 = W2j + w3k

from Eq. 18 that

(19)IB=I

Eqs. 11, 18, and 19 describe the orientation of ijk relative
to TNB.

I can now relate t of ijk to K and r of H(t). Eq. 9 gives K.

dT/ds (=di/ds) was derived in Eq. 15, SO K is known:

K = = |' X
us Uiu

Substituting Eq. 19 into Eq. 10 yields

ds ) U dt 1))

(20)

(21)

The derivation of the last term is given in Appendix A,
yielding the result

T = W)1 + |w;2 (22)

In summary, this equation describes the rate of change of
direction of X in IJK space. q changes direction with
respect to IJK both when ijk changes orientation in IJK
space and when X changes direction with respect to ijk.
The term wI/U is the rate of change of direction of qj due
to the organism rotating around its anterior-posterior
axis. The rest of this equation describes the change of
direction of ?, with respect to ijk. If the direction of X with
respect to ijk is constant, this term equals zero, leaving

(14) cOjWI
U

=- (23)

il x i = w x i because the i component of the rotation does
not affect i. Therefore,

di rlxi (15)
ds U'

and

N-= X . (16)
I x il

This can be simplified further using the relationship

In x il = IX1 Iii sin i,t = I,ii (17)

where i,t, the angle between 71 and i, is 900. Inserting this
into Eq. 16 yields

Xixi Xi
N = F= x 1.(18)

From the cross-product relationships of the axes of right-
hand coordinate systems (N = B x T = B x i), it follows

The direction of X remains constant if W2 = 0, W3 = 0, or

W2= a&.3 for some constant a. Each of these conditions
effectively leaves the organism with only two degrees of
rotational freedom: w, and one component perpendicular
to w1.

Relating r, p, and to U and IwI

It is now possible to obtain equations for r, p, and y in
terms of U, W1, W2, and W3. Equating eq. 9 with eq. 20 and
equating 10 with 22 yields

2irU(@2 + W2)[21(w + W2) + w2w - ww3 )
(27W+c ~3 [WI(w~ + W2W'3 -W;W31

2(w 2 3w2)- (24ba

(C2 + C03)3 + [)1(wO2 + W2) + w2 - 1w3]2

[(W2+ W2)3 + (1l(W2+ w) +W2'3-w2w3)2] 1/2
2 3

2w~ 3~
.

WW3 '
(24c)

There are too many unknowns in Eq. 24a-c to derive
explicit expressions for wl, W2, and W3 in terms of r, p, and
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y. However, if the direction of X with respect to ijk is
constant, as discussed after Eq. 22, then the derivatives in
Eq. 24a-c drop out, leaving

2irUw1 2irUwl
p = (W2 + 1X112) =

'
- Y2+ 1X112) - IW12

Iy=;(Z + 1t12 = 1<SX1

(25a)

(25b)

(25c)

Again, I must emphasize that if the direction of q is
constant with respect to ijk, then the organism effectively
has only two degrees of rotational freedom.

Eq. 8, which gives U in terms of r, p, and y, now can be
combined with Eq. 25a-c to obtain expressions for w1 and
I1tl in terms of r, p, and 'y:

WI = p,l (26a)

17tl=2 r. (26b)

Thus, if r, p, and y are known, then U, w1, and 1jX are

known.

Orientation of V and w with respect to H
Eqs. 8, 25c, and 26a and b give the magnitudes of V and
w. They do not give their directions. If, however, the
orientation of the organism (i.e., of ijk) is known with
respect to the helical path (i.e., with respect to IJK) then
the directions of V and w can be determined.
The direction of V is given by Eqs. 3 and 11 which say

that V of an organism located at some point P on the helix
points in the direction of T at P.
w is a rotation, so both the axis of rotation and the sense

of rotation must be determined. This discussion uses
conventional righthand rotation. Appendix B demon-
strates that the axis of the helix K is parallel to w.

Therefore, from Eq. 25c,

w = ±yK.

K

I
9 11 W X IV

FIGURE 2 The rectifying plane of the helix and its relationship to V and
w. The rectifying plane is parallel to K and tangential to the cylinder
formed by the helix. a and b present two orthogonal views. V, w, and 1 all
lie in the rectifying plane. N (which is parallel tow x V) is perpendicular
to the rectifying plane, points towards K, and is perpendicular to K.

parallel to w x V (and to Xl x V, a result also obtained by
Eq. 18). This means the point at which w x V emerges
from the body of the organism faces the axis of the helix.
If the direction of w x V does not change, one side of the
organism always faces the axis of the helix.
The direction of V, with respect to ijk, is constant (Eq.

3). Therefore, the direction of w x V can change in only
four ways. (a) V changes sign. If w does not change sign,
the direction of w x V is reversed, and the handedness of
the helix is the same. (b) co changes sign. In this case the
direction of w x V is reversed, and the helix changes
handedness. (c) changes sign, but not direction. In this
case, the direction of w x V is reversed, and the handed-
ness of the helix is unchanged. (d) X changes direction
with or without changing sign. For example, if W2> 0 and
W3= 0, then j is parallel to , and -k is parallel to N, i.e.,
the ventral side of the organism faces K (Fig. 3). If w2 = 0

and W3 > 0, then k is parallel to q , and j is parallel to N,
i.e., the lefthand side of the organism faces K (Fig. 4). If
W2> 0 and W3 > 0 then X lies somewhere between j and k
in the jk plane. Finally, if W2 and w3 can change sign, can
rotate 3600 in the jk plane.

a b c

(27)

The sense of w is given by the handedness of the helix. For
a righthand helix, w is positive. For a lefthand helix, w is
negative.

If we consider the plane formed by V and w, some
interesting relationships arise. V is tangent to the helix,
and w is parallel to K. Therefore, V and w define a plane
that is both tangent to the helix and parallel to K. This is
the "rectifying plane" used to describe 3D curves (Fig. 2).
By definition, B lies in the rectifying plane, so from Eq.
18, also lies in this plane. N is perpendicular to the
rectifying plane (Fig. 2 b), so N is perpendicular to K and

K _L
e> ,

-k

3

FIGURE 3 The orientation of an organism with respect to K when W2 > 0
and (w3 = 0. When wJ3 = 0, V - .02i. Therefore, the ventral side of the
organism faces K. The "organism" in this picture has stripes on its
anterior end and its ventral side. a-c present three orthogonal views of
the organism.
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a b c

V
K a

k

FIGURE 4 The orientation of an organism with respect to K when W2 =0
and w3 > 0. When W2 - 0, - W3k. Therefore, the lefthand side of the
organism faces K. The "organism" in this figure has the same markings
as in Fig. 3. a-c present three orthogonal views of the organism.

DISCUSSION

Eq. 24a-c disagree with those of Gray (1955). Gray
assumed that W3 equals zero and that w2 is constant and
obtained

UW2 I27rUP= 2 @2 2, (28)

in the present notation. The formula for p requires that W2
be less than w1, unless p is a complex number, neither of
which is correct. I can only obtain Gray's equations by
incorrectly defining X as IdN/dsl.

Brokaw (1958) repeated Gray's analysis. Assuming
w = yK, Brokaw used an approach different to the present
analysis, and reported

WI = IWI COS 0, W2 = IWI sin 0 (29a)

l
Y, rl=1U12 (29b)

2irU cos 0
P= 1wl (29c)

in the present notation. Substitution of Eqs. 29a into 29c
yields 25a. Eqs. 29b are Eq. 25b and c for W3 = 0.
Therefore, the present analysis agrees with Brokaw.

Keller and Rubinow (1976) analyze the motion of an
organism that propagates helical waves down a single
flagellum. They calculate V and w from the moments on
both the flagellum and the body of the organism. They
present equations for r, p, and U in terms of the V and w
(their p. 158). They calculate that W2 and W3 are small
relative to w, for such an organism. If this result is
substituted into Eq. 28a and b, and if the assumption V2 =

V3 = 0 is substituted into their equations, we obtain the
same result.
The present results also agree with various equations

presented by Naitoh and Sugino (1984), Fenchel and
Jonsson (1988), and Sugino and Naitoh (1988).

Eqs. 25-27 can be easily used to determine w and V of
microorganisms moving with constant r, p, and y (Cren-
shaw, 1989a). However, if r, p, and y are not constant,
then these equations can be applied only if the organism
moves with two degrees of rotational freedom.
The present analysis is limited. First and foremost, it

describes the motion of an organism with only one degree
of translational freedom. For many microorganisms,
though, the assumption that V has only one component
appears correct. If V2 = V3 = 0, the organism (a) always
moves with one axis of its body tangential to the helix, i.e.,
one part of its body always faces forward during forward
locomotion, and (b) one point on the cell always faces the
axis of the helix if r, p, and y are constant. Most
microorganisms appear to move in this manner (Jennings,
1904; Bullington, 1925; Kamiya and Witman, 1984;
Ruffer and Nultsch, 1985).
The second limitation of this analysis is that Eqs.

24a-c, 25a-c, and 26a and b are only correct to the extent
that the organism's center of mass does not change
position within the organism's body. The present analysis
presents the trajectory of the center of mass, which is the
origin of ijk. A living organism is not a rigid body. It
deforms, so the center of mass moves within the organism.
The trajectory described by this analysis, therefore, is not
the trajectory of a single point in the organism. However,
the center of mass for most free-swimming organisms
probably does not change position greatly, so this analysis
errs only slightly.
The third limitation is that the restriction required tc

produce Eq. 25a-c from 24a-c (the direction of X remains
constant) is quite severe. As discussed earlier, this restric-
tion effectively limits the organism to two degrees of
rotational freedom. Analyses of the flagellar beat of
Chlamydomonas reinhardtii indicate w is variable in
these cells (Kamiya and Witman, 1984; Omoto and
Brokaw, 1985; Riiffer and Nultsch, 1985, 1987). The
flagellate Dunaliella bioculata changes w (Schoevaert et
al., 1988). Ciliates change w by altering the direction of
ciliary beat (Naitoh and Sugino, 1984; Sugino and Nai-
toh, 1988; Machemer and Sugino, in press). Furthermore,
a large body of evidence, beginning with Gray (1955),
documents changes in w of spermatozoa with changes in
flagellar beat (Rikmenspoel et al., 1960; Brokaw, 1979;
Brokaw et al., 1974; Goldstein, 1977; Okuno and Brokaw,
1981). The kinematics of motion with varying r, p, and -y
(and thus V and w) are addressed elsewhere (Crenshaw,
1989b; Crenshaw, H. C., and L. Edelstein-Keshet, manu-

script in preparation).
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APPENDIX A

Derivation of I(d/dt)/(,q/IjI)I:
By the quotient rule:

d t Itilt' - t|ut'
dt Jls t12

(co + coY' ((w2 + .02)1/2(Cot + A)2i + 03k + W3k')
-(w2j + CA3k)(wo + co2)-1/2(W2W"2 + W3W3)]

- (w2 + W32)-3/2 [(W2 + W2)

,W'2j +w'3k+ [W22(WX j)] + [W3(WXk)])
- (W2j + W3k)('2,2 + W<3W'3)]
2( + co2)-3/2[(w + co2) [COj + ,w'k + (w x if)J
- (W2j + W3k)(w2w2 + w3(3)]

(- 2 + co 2j + wlw'3k + w2(ci xq)

+ WW2 j +W+2(W X i) _ W24j

- W2(3W3j - W2W2W3k - c2'3k]

2(w0 + W2) / [(W2 + 2) (W X

+ (W24d3 - Cd2W3)(W2k - W&j)J

[Note:
c

(W2k - W3j) - w ?1]

2(w + W32)-/2(W X q) [(W2 + w3) +-(W2W - 2W3)]

d ( 2)| + 2)-312 [(W2 + 02) + - (W23 -_ C23)JlW X '|

(W2 + W2)-3/2[(w + w2) + (C2,13 't

CO (02 + co2)1/2

( -W2W)3-°43) (2W-3 W'2W3)
(W2

+ w2) I+ 12

APPENDIX B

Let 4 be the angle between V and c and let 9 be the angle between T and
K. I will demonstrate that w is parallel to K by showing that (a) V is
parallel to T, (b) equals 9, and (c) 0 and 9 behave similarly.

First, T is parallel to V by definition (Eq. 1 1).
Second, 9, which is constant for a helix of constant radius and pitch, is

given by Eq. 2 as tan 9 - 2Tr/p. In the following equations I
demonstrate that tan O also equals 2Trr/p:

V.w in x VI
+lVI101 + |~VIIc@I
lwx VI lwx uil

tan40 LAV-* @ Ul*

Iw x il In x il uln
i * W i * w co,

Substituting Eq. 26a and b into this last equation yields tan O - 2wrr/p,
soo - 0.

Finally, the two angles behave similarly. When 0 - 00, the organism
rotates around V, resulting in a path that is a straight line, which is a
helix with r -0, soO - 00. When 4 - 900, the organism rotates around
an axis perpendicular to V, resulting in a path that is a circle, which is a
helix with p - 0, soe - 900.
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