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ABSTRACT A simple, general, and effi- is described. The method is applied to comitantly with a conformational transi-
cient method for calculating the a four-state membrane transport en- tion. The calculation is done both for
response of a set of coupled first-order zyme that is electroconformationally enzymes in a planar membrane and for
(or pseudo-first-order) chemical reac- coupled to an ac field, i.e., the enzyme enzymes in the spherical membrane of
tions to an arbitrarily large periodic field has electric charges that move con- a cell or vesicle in suspension.

INTRODUCTION

When a membrane transport enzyme is electroconforma-
tionally coupled to an oscillating electric field it can

transduce energy from the field to transport substrate
against a concentration gradient. This has been shown
experimentally (1) and theoretically (2, 3). The theoreti-
cal work is restricted to a two-state model, which cannot
describe as many features of a transport enzyme as a

multiple-state model. Numerical work has also been done
to calculate the response of a four-state enzyme to an

oscillating electric field. In one case (4), the nonlinear
differential equations (with no steady-state approxima-
tion for the concentration of substrate and product) were

solved by integrating forward in time, and the field-
induced concentration gradient was calculated as a func-
tion of time. This technique uses excessive amounts of
CPU time and is impractical for systematic investigation
of the response of a realistic system. Subsequent steady-
state numerical calculations (5) were done starting from
field-off initial conditions. The method failed at higher
frequencies because too many cycles had to be integrated.
Up to now no simple general method has been described
for calculating the steady oscillating response of a multi-
state enzyme in a periodic field of arbitrary amplitude.
We describe an easily understandable but rigorous

general method for solving realistic linear kinetic models
in a periodic field without having to approximate. This
represents an extension of classical relaxation kinetic
methods (6) to allow for arbitrarily large-amplitude peri-
odic perturbations of coupled linear chemical reactions.
Such large-amplitude perturbation techniques are partic-
ularly important for membrane enzymes subjected to
external oscillating electric fields because even a small
applied field leads to large fields within the lipid bilayer.
The induced nonlinear behavior contains a wealth of
kinetic information. Our computational method can be

used e.g. to analyze a multistate enzyme in an oscillating
field of arbitrary frequency, which could not be done by
previous methods.
The field could be e.g. a periodic ligand concentration

that modulates the activity of a receptor (7), an oscillat-
ing substrate concentration that supplies energy to an ion
pump (8), or an externally applied electric field that
causes an enzyme to transduce free energy from the field
to its output reaction (9, 10). Here we solve a four-state
model for an enzyme-catalyzed transport through a mem-
brane in an ac electric field. Our approach brings into
focus the physical reasons for energy transduction from
the ac field.
To simplify exposition, we first consider an enzyme in a

planar bilayer membrane. At the end of the paper we
extend the calculation to the spherical symmetry relevant
to suspensions of spherical cells or vesicles.

FOUR-STATE MODEL

Consider a large number of identical enzyme molecules in
a planar bilayer membrane. Each is oriented in the same
way in the membrane, and the average distance between
the molecules is large enough that enzyme-enzyme inter-
actions may be ignored. The enzyme catalyzes the trans-
port reaction SI = S2. It has two electrically distinct
conformational states (10), E with the binding site for the
substrate SI on one side of the membrane, and E* with the
binding site for the product S2 on the other side. For
simplicity we assume that SI and S2 are constant concen-
trations and that the reaction SI S2 is not electrogenic.
The interaction with the electric field occurs only by
electroconformational coupling, i.e., the E* forms have a
different arrangement of charges than the E forms. Our
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analysis can easily be generalized to electrogenic reac-
tions.
We assume that all interconversions between states

may be treated as either unimolecular or pseudo-first-
order transitions. Then, a simple cycle for the enzyme can

be described by the four-state kinetic model,

SE, v

a b a

SI-

cq5

b c / 0

bco

=- E*S3

a a b

E*
4

(I)

We describe the parameters of this model first without an

electric potential turned on, so that for the moment X
reduces to 1. We have chosen the remaining rate coeffi-
cients to have reflection symmetry for simplicity. The
parameter a is a scaling factor for the association-
dissociation steps, b is a bias factor that is a measure of
the difference in affinity of the enzyme for substrate on

the two sides of the membrane, and c is a scaling factor for
the conformational change steps. This is a reasonable
model for a membrane transporter.
When an electric potential 4l is turned on, the energy of

the state El'S is changed relative to the state SE2 by qi,

where q is the effective enzyme charge that moves across

the membrane during a conformational change and is
the potential difference across the membrane. Thus the
electric potential causes the equilibrium constant for the
reaction SE2 E*S to be multiplied by exp (q4l/kT).
The equilibrium constant equals the ratio of the rate
coefficients. For simplicity we apportion half of the
exponential factor to each rate coefficient. Thus the effect
of the electric potential on the transition SE2 .-v E*"S in
Eq. 1 is given by the factor,

= exp ( /2q4j/k T),

FIGURE 1 Energy of the enzyme vs. reaction coordinate for (a) zero
potential, (b) positive potential, and (c) negative potential. The rate
constants a, b, and c are from the model in the text. We have used S, =

S2 = S, and A and C are frequency factors, so that In (A/a) and
In (C/c) are activation energies in kT units. Ln d = q,1/2kT is the
energy of interaction with the electric field. These graphs show qualita-
tively why net pumping occurs (see analysis in text).

(2)

in the rate coefficients for that transition. Similarly, the
energy of the state E4* is decreased relative to the state El
by q4i, and the effect of the electric potential on this
transition is also given by Eq. 2 in the rate coefficients.

ANALYSIS OF MODEL

Fig. I illustrates qualitatively how an ac field can cause
the enzyme to pump substrate against a concentration
gradient. The basic free energy of this enzyme is plotted
vs. the reaction coordinate in Fig. 1 a for zero electric
potential. The curve shown describes a very poor enzyme,
with large activation barriers and low-energy interme-
diate states (I 1, 1 2). When the potential is positive, the

energies shift as shown in Fig. I b, where E* is seen to be
more stable than SE2. The system must relax toward a

new equilibrium corresponding to the new energy levels,
and so SE2 must be converted to E*. Because the activa-
tion barrier for the transition via E*'S is now lower than
for the transition via El, the reaction goes mostly through
El'S, thus releasing more S2 than SI. When the potential
is negative, the energies shift as shown in Fig. I c, where
SE2 is more stable than E*, and so E* must be converted
to SE2. Because the activation barrier for the transition
via El this time is lower than for the transition via E*S,
the reaction goes mostly through E1, binding more SI than
S2. This process repeats with the net transport of S, to S2
accumulating on every cycle.

Uphill pumping occurs clockwise only when the affin-
ity of E for S, is greater than the affinity of E* for S2. This
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occurs when b > 1. If b < 1, uphill pumping by the ac
electric potential can occur only in the counterclockwise
direction. No uphill pumping occurs when b = 1.
To describe the pumping quantitatively, we write the

differential equations that the enzyme state probabilities
must satisfy, as specified by Eq. 1. Since the four proba-
bilities must sum to unity,

E, + SE2+ E*S + E* = 1, (3)

we can work with just three of them. We express the rate
equations in matrix form. The state probability vector,

E= SE2 ' (4)

E3S

satisfies the matrix equation,

where Vt0 is the average or dc potential and {t1 is the
amplitude of the ac potential, which oscillates at fre-
quency w/2ir. Although to be specific we have chosen a
sinusoidal potential, the following also holds for any
periodic potential.
When the potential (Eq. 8) is substituted into Eq. 2, the

coefficient of E and the right side of Eq. 5 will then be
periodic with period equal to 2ir/w. Hence after any
transients have decayed, the steady oscillation in the state
probability vector E will also be periodic with the same
period. We need to solve these equations over only one
period. We divide the period into m equal time incre-
ments,

At = 2x/mw, (9)

and substitute

t=kkAt, k=1,2,...,m (10)

dE/dt + GE = F,

where G is the rate coefficient matrix,

abS, + bc + c/l+ c/¢-a c/o
G = - abS, co + a - bclrk

aS2 aS2 - c) bc/k + ab + aS2

(5) for the time. Then Eq. 5 becomes the set of algebraic
equations,

E[(k + l)At] - E[(k - I)At]
2At

(6)

and the right side is the column vector,

c/o
F= 0 . (7)

aS2

The matrix Eq. 5 is convenient for expressing subsequent
calculations in a concise way.

SOLUTION FOR COUPLED REACTIONS
IN A PERIODIC POTENTIAL

We have described a specific four-state kinetic model of a
transport enzyme in order to have a concrete example for
the application of our method. However, the following is
valid for an arbitrary system of linear equations, includ-
ing, but not restricted to, the n simultaneous equations for
n + 1 coupled chemical reactions in an arbitrarily large
periodic field.

Applying an ac electric field normal to a planar mem-
brane gives rise to an oscillating membrane potential. If
the frequency of the field is small compared with the
relaxation rate of the membrane double layer ( 1O7 Hz),
the potential is given by

41 = 410 + Al, cos wt, (8)

+ G(kAt)E(kAt) = F(kAt), (1 1)

where k = 1, 2,..., m. Because E(t) is periodic,
E[(m + 1)At] in Eq. 11 can be replaced by E(At), and
E(O) can be replaced by E(mAt). This reduces the
number of unknowns to m, which is the number of
equations relating the unknowns.

Eq. 1 1 is a set ofm linear algebraic equations for the m
unknown column vectors E(kAt). In super matrix form
they become

GI H 0 0 ...

-H G2 H 0 ...

0 -H G3 H ...

0

0

H

0 -H G4 .. .

0 -H

0 0

0 0

0

0 0 0 * **Gm_1 H
0 0 0 * * * -H Gm

where Ek, Fk, and Gk are abbreviations for E(kAt),
F(kAt), and G(kAt), respectively,

H = hl, h = 1/(2At),

and I is the n x n unit diagonal matrix. Because of the
periodic boundary conditions, the time derivative of E at
t = At causes the submatrix -H to appear in the upper

right corner as well as the H just to the right of GI, and
the time derivative of E at t =mAt causes the submatrix
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0

F,
F2

F3

F4

Fm-I
Fm

(12)

El
E2

E3
E4

Emi

Em

(13)

Robertson and Astumian Kinetics of a Multistate Enzyme 691



H to appear in the lower left corner as well as the -H just
to the left of Gm.

The time dependence of E(t) is obtained by solving the
linear algebraic Eqs. 12. For small m and n, the m * n

equations could be solved numerically without taking
advantage of the sparseness of the matrix. However, the
method of Appendix A avoids the memory and computa-
tion time limitations that this brute force approach entails
and permits calculations of more complicated kinetic
models than Eq. 1. This solution can be performed easily
by a subroutine, which receives the successive n x n

submatrices Gk in turn, so that memory for the superma-
trix in Eqs. 12 need never be assigned.

0.5-

0.4-

0.3-

0.2-

0.1

0.

0.4i-

0.3-
FREE ENERGY TRANSDUCTION FROM
AN AC FIELD

The resulting time dependence of the state probabilities
for our four-state example is shown in Fig. 2. There we see

that the enzyme state probabilities oscillate, reaching
peaks successively clockwise. First El reaches its peak,
then SE2, then E*S, then E*, and the cycle repeats. This
is the sequence that corresponds to transport of SI into S2.
Transport occurs in this direction only if b > 1. If b < 1,
the sequence would reverse, and S2 would be transported
into SI, as shown in Appendix B.
The curves in Fig. 2 are highly distorted from sinusoi-

dal shape by the nonlinearity. The shapes depend on the
values of the parameters in the model. If the concentra-
tion gradient is so large that the energy in the field is not
enough to cause the enzyme to pump against the gradient,
the probability densities of states El and SE2 oscillate
together and 1800 out of phase with states E*'S and E*,
which oscillate together.

Transport is demonstrated explicitly by the rates. The
instantaneous net rates of the four transitions in the
model I are given by

J12 = abS, * El - aSE2 (14)

J23 = c/SE2 -bc-1 E*S (15)

J34 = abE*S -aS2 * E*

J41 = co- ' E -bc E,l. ( 17)

These can easily be calculated from the time dependence
of the state probabilities and are plotted vs. time in Fig. 3.
This figure shows that the net rates peak in the same

sequence as the state probabilities. The positive peaks are

larger than the negative ones, and the rates are positive
more often than negative. This demonstrates net pumping
caused by the field.

The time-averages of J12, J23, J34, and J41 can easily be
computed by averaging Eqs. 14-17 over one cycle, i.e.,
over k = 1, 2, . . . m. These averages equal each other as

0.2

0.1

o

1.0

0.8

0.6

0.4

0.2

0

E 3*S

0 0.5 1.0

TIME

1.5 2.0

FIGURE 2 Probabilities of the four enzymes states vs. time for two
cycles with a = 1, b = 10, c = 1,000, SI = 0.5, S2 = 1, q4' = 5, and w/
2r = 1. This figure along with Fig. 3 shows the sequence of events
associated with pumping of the substrate against a concentration
gradient.

they must, and they equal the average rate J of pumping
substrate from SI to S2. For the conditions of Fig. 3, the
average net rate is 0.43, which, since it is positive, is the
rate of pumping clockwise up the concentration gradient
S2/S, = 2. The concentration gradient at which the
average net flux disappears is static head. For the param-
eters used here, this value is S2/S1 = 16.8. At larger
concentration gradients, the flux becomes negative, i.e.,
downhill.
A necessary condition for detailed balance,

(co)(ab)(c/l)(abSj ) = (a)(bco)(aS2)(bc/1), (18)

holds at equilibrium, i.e., when S2 = S, in the absence of
an ac field (even with an arbitrary dc field), and the
average net flux is identically zero. When an ac field is
switched on, condition (Eq. 18) continues to hold at every

instant in time. Nevertheless, the field causes net clock-
wise flux.
The average power transduced by the enzyme against
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2 J12 A

-1

6

4 J23
2

0

-21

is equal to the power produced by the enzyme, pumping
up the gradient, divided by the power it absorbs from the
alternating potential. For the conditions of Fig. 2, the
efficiency is 14%. As noted elsewhere (13), the efficiency
can exceed 50% for other conditions. Also in that refer-
ence several results for the energy transduction properties
of the model enzyme are given as a function of frequency,
concentration gradient, ac and dc field amplitude, and
kinetic parameters of the system.

SPHERICAL SYMMETRY

When the enzyme is imbedded in the membrane of a cell
or vesicle in suspension, an additional step must be
performed in the calculation. If an ac field of amplitude
El is applied to a suspension of spherical cells or vesicles,
the resulting amplitude of the membrane potential oscil-
lation is (10)

{, = 1.5RE, cos O. (21)

6 4

4 Jl41

0 0.5 1.0 1.5 2.0

TIME

FIGURE 3 Instantaneous net rates of the four transitions vs. time for the
same conditions as in Fig. 2. Positive rates are in the clockwise direction.
The time average of each rate is equal to 0.43. Because this is greater
than zero, net pumping occurs up the concentration gradient S2/
SI = 2.

the concentration gradient is the average rate of pumping
the substrate times the free energy increase per molecule
pumped:

Power produced =J23AG JkT In (S2/S1). (19)

Here J23 is the instantaneous net rate for the transition
that transports substrate from SE2 to E*'S, and J is its
time average. The power produced is positive when the
enzyme is pumping uphill. This is the average power

transduced from the ac field by the enzyme to maintain
the concentration gradient.
The average power input from the ac field is the time

average of the current times the ac potential.

Power absorbed = q(J23 + J14)#1 cos (Wt). (20)

Here qJ23 is the instantaneous electric current across the
membrane between state SE2 and state E*'S, and qJ14 =

-qJ41 is the instantaneous current between state El and
state E*. As before, the overbar represents a time aver-

age.

The efficiency of energy transduction from the ac field

Here R is the radius of the cell or vesicle, and 0 is the
angle between the field and the normal to the membrane.
We assume no dc field is applied so the dc potential is
entirely due to the selective permeability of the mem-

brane to various ions. We also assume that the enzymes
remain uniformly distributed over the surface of the
membrane when the ac electric field is applied. Then the
effect of the enzymes being in a spherical membrane can

be calculated by averaging the previous results over the
surface of a sphere. The quantities to be averaged are the
average state probability, the rate of pumping, the power

produced, and the power absorbed, but not the efficiency,
which is the average power produced divided by the
average power absorbed. The spherical average is done by
putting the calculation of these quantities into a loop and
integrating over 1/2 sin 0 dO from 0 to ur.
The rate of pumping does not average to zero. The ac

potential at angle 0 has the same amplitude as the
potential at angle ir - 0 and is merely of the opposite
phase. Because the net rate is averaged over a cycle, it is
independent of the phase of the ac potential. Hence the
rate, e.g., at 0 = 0 is the same as the rate at = 7r. The only
difference in pumping at these two angles is that, e.g.,

while an enzyme at 0 = 0 is on average going from SE2 to
E"S pumping substrate into the cell, another enzyme at
= ir is on average going from E* to El without trans-

porting any product back out of the cell.

SUMMARY

We have given a general method for solving kinetic
equations for the time-dependent state probability of a

Robertson and Astumian Kinetics of a Multistate Enzyme 693Robertson and Astumian Kinetics of a Multistate Enzyme 693



multistate membrane enzyme in an ac electric field. We
have applied it to a four-state membrane transport
enzyme in a planar membrane and also to an enzyme in
the spherical membrane of a cell in suspension. We show
that an enzyme can transduce free energy from a periodic
electric field to drive a reaction away from equilibrium if
two conditions are fulfilled. First the enzyme must have
electric charge that moves concomitantly with its confor-
mational change. Second the affinity of the enzyme for
substrate must be different than its affinity for product.

and mth equations. The three equations are

I Ak
* * -H Gk+I

* * Dk 0

0

0

0

H

0

APPENDIX A

In this appendix we show how Eqs. 12 are solved efficiently using
Gaussian elimination and back substitution. There are two differences
from the elementary discussion in textbooks (14): We want to take
advantage of the sparseness of the matrix to reduce computation time
and memory usage considerably, and we must be careful with the
noncommutivity of the submatrices. The efficiency of this method
makes possible the solution of large kinetic problems that could not
otherwise be accomplished.
A related calculation is described by Newman (15). However, his

method will not work on our problem with periodic boundary conditions,
which require submatrices in the remote corners away from the
diagonal. These remote submatrices generate six out of the eight
recursion relations we will derive.
We first show how Eqs. 12 are converted to the triangular form,

0

0

0

0

0

O

Ai

I
0

0

0

0

0

A2

I

0

0

0

0

0

0

Am-2

B,
B2

B3

Bm 2

Am + Bm
. . . 0° Cm

Ek

Ek+

Em

Pk

Fk +I

Qk

, (A2)

where we have shown all the nonzero elements of these equations. The
new symbols in these equations will be defined by recursion relations and
initial conditions to be derived. To determine the initial conditions,
multiply the first of Eqs. 12 by the inverse G, of the submatrix G, and
compare these equations with Eqs. A2 for k = 1, to get

Al = hG-1'
B, = -Al
Cl = Gm

DI = H

PI = h-'AIF,
Q, = F,,,.

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

To perform the elimination, multiply the kth equation of Eqs. A2 on the
left by H and add to the k + lth equation. Then multiply the original
kth equation by Dk and substract from the mth equation. This gives

Em-2

Em-l

Em

PI
P2
P3

Pm-2

Pm_lI

QM

, (A1)

Ak

Gk+, + hAk

0

H

-DkAk 0

by Gaussian elimination, and we obtain recursion relations for the
submatrices and subcolumn vectors that appear here.
Assume we have already performed the elimination on the first k - I

columns. We will use the kth equation to perform the elimination on the
kth column of the subsequent equations. The only equations that have
nonzero elements in the kth column below the diagonal are the k + 1th

0 Bk
0 hBk

* -H Ck- DkBk

Ek

Ek+

Em

Pk

Fk+, + hPk

Qk - DkCk
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0

-H Ck

I (A9)

. . . 0

. . . 0

. . . 0

. . . I

. . . 0

. . . I

. . . 0
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Multiply the k + 1 th equation by the inverse of its k + I th coefficient to
get

* * * I Ak 0 0. . ° Bk

* * *0 I Ak,, I * * 0 Bk+I

* * * 0 Dk+I 0 * - -H Ck+,

Ek P
Ek+ = Pk+ , (AI0)

Em Qk+ I

where the new submatrices can be seen to satisfy

Ak+ = h (Gk+l + hAk)' (Al1)

Bk+ = Ak+,Bk (A12)

Ck+ = Ck - DkBk (A 1 3)

Dk+= -DkAk (A14)

Pk+ = h-'Ak+,(Fk+l + hPk) (A15)

Qk+ = Qk - Dk Pk- (A16)

The k + I th and mth equations in Eqs. A 10 are the same as the kth and
mth equations in Eqs. A2 with k replaced by k + 1, so we have
progressed one step. Repeat this elimination for k = 1, 2, 3, . . -
2.
When k = m - 1, there remain to be considered only the last two

equations,

. . .I Am-, + Bm-, Em-1 = Pm-, . (A17)
. . . Dm-I H Cm-I Em Qm- I

The above-diagonal line of submatrices Ak and the vertical line of
submatrices Bk in Eq. A I have converged to one submatrix at k = m -
1, where the submatrices add. Multiply the next-to-last equation in Eqs.
A 17 by Dm - H and subtract from the last equation to get the last of
Eqs. AI with

Cm = Cmi - (Dml - H)(Ami, + Bm-i) (A18)

Qm = Qm-l - (Dm-l - H)Pm-. (A19)

Eqs. A I-A 16 and A 18-A 19 are the desired recursion relations. They
can be used along with the initial conditions A3-A8 to calculate all the
submatrices in Eqs. Al.
The last of Eqs. AI gives

Em Cm' Qmn (A20)

and the back substitution can easily be performed using

Ek = Pk - AkEk+1 - BkEm (A21)

for k = m - 1, m - 2,..., 2, 1, thus completing the solution.
This procedure for solving Eqs. 12 is much more efficient than the

brute force solution of the n . m simultaneous equations. Only n x n
matrices need to be inverted, and only the Ak, Bk, and Pk need to be
stored.

APPENDIX B

We show that for b < 1 pumping occurs in the opposite direction than it
does for b > 1. In Eq. 1 let

a-ab (Bi)

b-l/b (B2)

c - cb, (B3)

and in Eq. 2 let

q{p- q4, (B4)
so that

(B5)
in Eq. 1. This gives exactly the same model as the original Eq. I except
that the arrows all point in the opposite direction. This completes the
proof.

For example, if we perform this transformation on the parameters of
Figs. 2 and 3, we find that the inverse condition, a = 10, b = 0.1, c =
10,000, SI = 1, S2 = 0.5, q4,1 = 5, and w/2w = 1, leads to pumping at the
same 0.43 rate in the opposite direction at the same 14% efficiency up
the concentration gradient SI /S2 = 2.
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