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ABSTRACT Chaotic regimes have been
observed experimentally in neurons as
well as in deterministic neuronal mod-
els. The R 15 bursting cell in the abdom-
inal ganglion of Aplysia has been the
subject of extensive mathematical
modeling. Previously, the model of
Plant and Kim has been shown to
exhibit both bursting and beating
modes of electrical activity. In this
report, we demonstrate (a) that a

chaotic regime exists between the
bursting and beating modes of the
model, and (b) that the model
approaches chaos from both modes
by a period doubling cascade. The
bifurcation parameter employed is the
external stimulus current. In addition to
the period doubling observed in the
model-generated trajectories, a period
three "window" was observed, power
spectra that demonstrate the ap-

proaches to chaos were generated,
and the Lyaponov exponents and the
fractal dimension of the chaotic attrac-
tors were calculated. Chaotic regimes
have been observed in several similar
models, which suggests that they are a

general characteristic of cells that
exhibit both bursting and beating
modes.

INTRODUCTION

Chaos in neural systems can be operationally defined as

activity which appears random but is generated by a

deterministic system rather than by additive noise. Conse-
quently, there is no need to invoke a random process to
account for aperiodic, irregular behavior if the presence
of a chaotic regime can be established. A chaotic system is
one in which long-term prediction of the system's state is
impossible because of the unavoidable finite uncertainty
in determining the initial state (37, 40)
Once chaotic activity is suspected, several representa-

tions which serve to identify such activity are listed in
order of increasing power to resolve periodic from ape-
riodic behavior: time domain records, phase plane trajec-
tories, power spectra, and Poincare return maps

(9, 15, 32). The above methods are primarily useful to
characterize the periodic regimes which frequently culmi-
nate in chaos via the well-known period doubling route to
chaos (10, 1 1). The period doubling route to chaos can be
characterized as follows. At a given value of a nonlinear-
ity (bifurcation) parameter, a periodic regime with a

fundamental period (1 P) prevails; as the bifurcation
parameter is adjusted, the period of the system doubles
each time the system undergoes a bifurcation until the
system has an infinite period which characterizes chaos.
As the bifurcation parameter is adjusted further, "win-
dows" with odd periods appear, such as a stable three
cycle (3P). The odd periods then themselves undergo
period doubling to chaos (9, 13). The three cycle has a

special significance because in a one-dimensional map-

ping its existence implies chaos (30).
Finally, the method that provides the definitive mathe-

matical signature of a chaotic attractor is its spectrum of
Lyaponov exponents (14, 41). In quantitative terms, an

attractor is chaotic if it has one or more positive Lyaponov
exponents (14). The number of Lyaponov exponents
associated with a given system is equivalent to the number
of its state variables. A positive exponent is associated
with divergence, a zero exponent with a limit cycle, and a

negative exponent with convergence (41).
Chaotic regimes have been observed experimentally in

neurons (16-18, 24) as well as in deterministic neuronal
models (3, 5). To investigate possible chaotic regimes in
individual neurons, we examined a mathematical model
of a widely studied invertebrate neuron. Cell RI 5 of the
marine mollusc Aplysia exhibits a normal endogenous
bursting mode (2, 12) and a beating mode if either the
sodium-potassium pump is pharmacologically blocked or

a constant depolarizing current is injected into the cell
(25). A mathematical model of R15 has been developed
by Plant and Kim (36), which qualitatively mimics these
modes of electrical activity. Bursting behavior in RI 5 is a
result of the interaction of variables for membrane con-

ductances on two time scales, one fast and the other slow
(35). The action potentials or spikes result from the fast
conductances whereas bursts result from the slow conduc-
tances. Thus, in the bursting mode the slow and fast
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rhythms act as coupled oscillators and the slow oscillator
dominates. In contrast, in the beating (nonbursting) mode
the fast rhythms dominate. Given the basic features of the
activity of RI 5, as well as the structure of the mathemati-
cal model for the behavior of this cell, it appeared to us
that it could in principle exhibit chaotic behavior. Our
simulations revealed that the model of R15 does indeed
exhibit chaotic behavior, as a single bifurcation pa-
rameter (the external stimulus current) is varied while
holding all other parameters constant.

METHODS

The Plant and Kim model represents a unit area of cell membrane and
consists of a membrane capacitance in parallel with a number of ionic
conductances. The ionic conductances consist of two Na+ conductances
(gNa and gT), a delayed rectifier K+ conductance (gK), a transient
outward K+ conductance (gA), a slowly varying potassium conductance
(gK,J, and a leakage conductance (gL). Additional parallel elements are
a sodium-potassium pump current (IEP) and an external stimulus
current (ISTiM). This equivalent circuit is similar to the Hodgkin-Huxley
(H-H) model (22) of the squid giant axon but has been expanded to
include: (a) a constant sodium conductance (gT) representing the
tetrodotoxin-insensitive inward current (36), (b) a transient outward K+
conductance (gA) with an activation variable r and an inactivation
variable s, (c) a slowly varying (r - 8 s) potassium conductance (gK,)
which has an activation variable q and can be equated with the
Ca2+-dependent potassium conductance (35), and (d) a sodium-
potassium pump represented by a constant hyperpolarizing current
(IEP). The equation for membrane potential is derived from Kirchoff's
Current Law:

V 5 (INa + IK + 'A + IK,s + IL - IEP - ISTIM)/Cm. (1)

The gating variables are described by first order differential equations
of the following form, for m, h, n, q, r, and s:

x = (x,. - x)/rX, (2)

where x represents the particular variable and r its time constant. Note
that Plant and Kim scaled and translated the voltage term in the
equations for the alpha and beta rate constants for the H-H gating
variables m, h, and n. The following apparent typographical errors in the
original paper [36] were rectified by inserting the following: (a) a factor
of 1.2 scaling the voltage term in the denominator of the expression for
am, (b) a pair of brackets enclosing the argument of the exponential in
the expression for ah, and (c) a minus sign preceeding the constant part
of the argument of the exponential in the expressions for am, itm, and h.
Thus, the corrected expressions used in this study are:

am = 0.1(-26 - 1.2 V)/exp [(-26 - 1.2V)/10] - 1 (3)

Om 4 exp [(- 51 - 1.21 V)/ 18] (4)

ah= 0.07 exp [(-51 - 1.21 V)/20] (5)

Oh = 1/{exp [(-21 - 1.3V)/10] + 11. (6)

Otherwise, the parameters and equations are the same as those in the
original paper (36).
The equations associated with the model were numerically integrated

using a fourth-order Runge-Kutta-Merson algorithm both on a VAX

11/750 and a Sequent Symmetry S27 multiprocessor system. A variable
step size was implemented using a tolerance for error in the voltage
waveform of 0.001 mV. The minimum step size required was 0.5 ms. A
discrepancy was noted in that for zero stimulus current, the original
study (36) obtained seven spikes per burst, whereas the current study
obtained four. This discrepancy may be a result of integration schemes
or a result of the way in which the published model equations were
corrected to compensate for apparent typographical errors. We used the
temporal waveform of the gating variable q to generate the power
spectra shown in Fig. 2. This variable was chosen because it is the most
slowly-varying state variable and therefore dominates the rate of
convergence (9). Although the variable q is unobservable, it may be
interpreted as a dimensionless representation of the intracellular con-
centration of calcium, as the slowly-varying component of the potassium
conductance is known to be calcium-dependent. The time course of q
most clearly indicates the progression of period doubling. Samples of q
were taken every 15.25 ms for 500 s which resulted in a 32768 point
Discrete Fourier Transform (DFT). The Lyaponov exponents were
calculated using the algorithm of Wolf et al. (41), employing Gram-
Schmidt reorthonormalization every 100-250 ms for 300-3,000 s as

required for convergence. Generally speaking, this algorithm is consid-
ered to have converged to within a few percent of its assymptotic values
when the mandatory zero exponent is a few orders of magnitude smaller
than the next smallest exponent (41). This algorithm required the
integration of 56 simultaneous differential equations; the integration
was implemented with the same Runge-Kutta-Merson method on the
Sequent Symmetry multiprocessor system. The dimension of the attrac-
tors was estimated by the method of Kaplan and Yorke (27, 41).

RESULTS

The state space was explored as a single bifurcation
parameter (ISTIM) was varied. A variety of modes was
observed including two "back-to-back" period-doubling
cascades (10, 11). What is known about the intricate
structure of this well-known route to chaos as it applies to
the results of our study can be summarized as follows. In
this route period doublings are observed by a mechanism
known as pitchfork bifurcations (32) until the system has
an infinite period and exhibits chaotic behavior. These
period doublings can easily be observed in a two-
dimensional plane projection of the phase space as the
limit cycle splits. The system then undergoes reverse
bifurcations (33) as the attractor coalesces into "bands"
of trajectories. In the terminology of Hao and Zhang
(15), the original limit cycle is referred to as 1P and
subsequent splittings are called 2P, 4P, and so on. The
inverse bifurcation chaotic orbits are referred to as 1 I, 21,
41 and so on, depending on the number of chaotic bands
The label "P" stands for periodic, and the label "I" stands
for inverse ( a term which is used interchangeably with
reverse and denotes a chaotic orbit). The sequence of
orbits IP, 2P, 4P .. . 41, 2I, 1I is referred to as a primary
sequence. Interestingly, a secondary sequence of periodic
regions and chaotic bands is embedded within each
primary chaotic band. The periodic orbits arise by tan-
gent bifurcations (32) (the type I intermittent route to
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chaos). Each secondary orbit (either periodic or inverse
within a primary kI band is always a multiple of k. The
secondary orbits may be odd, thus in the primary 1I band
it is possible to find 3P, 5P, 7P ... regimes. Tertiary
sequences have also been observed (15).
At a stimulus intensity of 0.22 ,uamps, the bifurcation

parameter ISTIM exactly cancels the constant hyperpolar-
izing current by which the sodium-potassium pump is
modeled. In this case, the model exhibits a beating
behavior corresponding to an R15 neuron in which the
sodium-potassium pump has been blocked pharmacologi-
cally. As ISTIM was decreased from a value corresponding
to complete block of the sodium pump to one correspond-
ing to normal operation the following regimes were

observed: beating (0.2200-0.1885,amps) (Figs. 1 and
2, A panels), a period-doubling sequence from a beating
mode culminating in "chaotic beating" (0.1880-0.1865
,uamps) (Figs. 1 and 2, panels B-D), a period-three
window (0.18612 ,uamps) (Fig. 3) followed by period
doubling to 6P (0.18605 ,uamps), again culminating in
"chaotic beating" (0.1855 ,uamps) and a chaotic regime
(0.184-0.128 ,uamps). Within this chaotic regime, the
firing pattern evolves from a "chaotic beating" pattern to
a pattern of "chaotic bursting". As ISTIM is decreased
further, the behavior of the cell emerges from the
"chaotic bursting" to 4P, 2P, and finally the normal 1P
five-spike bursing mode (Fig. 4 A). This second period-
doubling sequence occurs in the range from 0.128-0.110
,uamps. Yet another "chaotic bursting" regime (0.18-
0.068 ,uamps), a five-spike bursting region (0.065-0.025
,uamps), and a four-spike bursing region (0.025-0.000
,uamps) were also observed but are not shown here.
Between the four- and five-spike regions there is a transi-
tion where both four- and five-spike bursts are gener-
ated.

Fig. 1 illustrates the beating 1P mode (A) and the
transitions to the 2P mode (B), then the 4P mode (C),
and finally "chaotic beating" (D) as a function of
decreasing stimulus intensity. The time courses of the
membrane voltage and the q gating variable, and the state
space projection of the trajectories on the voltage vs. q
plane are shown side by side for each parameter. The time
course of the voltage does not indicate readily the period
doubling, but it is quite clear in the waveform of the q
gating variable. The period doubling appears in the phase
plane plots as the splitting of the trajectories.
The results were also analyzed using power spectra and

Poincare return maps (Fig. 2). Discrete peaks appear at
the fundamental frequency (0.22 Hz) and its harmonics
(only the first one shown at 0.44 Hz) for the beating case

(e.g., Fig. 2 A). In B the fundamental frequency is 0.2 Hz
and the first subharmonic (fg/2) appears at 0.1 Hz as a

result of the period doubling. Two more subharmonic
peaks appear at 0.05 and 0.15 Hz in C. This process

Potential(mV) vs Time(s) Variable q vs Time(s) Potential(mV) vs q

FIGURE 1 Time domain and phase plane representation of period-
doubling cascade from the beating mode (A) as a function of decreasing
ISTIM (B-D). In these and subsequent graphs, all transients were allowed
to die out before any points were plotted.

continues until the spectrum appears noisy in the chaotic
beating mode (D). Note that a discrete peak is still
evident at the former fundamental frequency.

Poincare return maps were constructed by sampling
the values of the q gating variable at the peaks on the
voltage waveform, then plotting the values of q vs. the
previous value (Fig. 2, A2-D2). In other words, the
Poincare surface chosen is a line where potential equals
approximately 26 mV (e.g., Fig. 1 A3). The system can be
reduced to a single dimension due to the shrinkage of
volumes in state space; that is, the direction of slowest
convergence dominates, effectively reducing the system to
one dimension (9). Evidence that this model is dominated
by shrinkage in the direction associated with the gating
variable q is provided by the fact that when one plots
potential vs. a gating variable, phase plane splitting of
trajectories is only observed in plots which include q, and
by the consistent results obtained using the return maps
constructed under the above assumption. The Poincare
return maps for the transition from the beating mode to
chaos exhibit the classic shape which is quadratic about
the maximum. After the transients have died out, the
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FIGURE 4 Period doubling from the bursting mode: time domain and
phase plane representation.
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site direction. A typical bursting waveform (Fig. 4 A)
corresponds to a 1P mode (B), whereas panel C demon-
strates the splitting of the phase plane trajectories charac-
teristics of the bifurcation to the 2P mode. The power

spectra and Poincare maps corresponding to the period-
three window and the period-doubling cascade from the
bursting mode into chaos are not shown, but the results
were similar to those obtained in Fig. 2.
The results are summarized in a portion of a bifurca-

tion tree (Fig. 5). This figure illustrates the progression
from a periodic regime through chaos into another peri-
odic regime. In general, a bifurcation tree is constructed
by plotting the value of a state variable (in this case q) at

FIGURE 2 Power spectra and Poincar6 return maps for period-doubling
cascade from the beating mode as a function of decreasing ISTIM. A
32,768-point DFT was performed on the q waveform (e.g., panels A 2,
B2, C2, and D2 in Fig. 1). The results were then squared and plotted on
semilogarithmic axes. fS represents the fundamental frequency.

beating mode appears as a single point, the 2P mode as

two points, and so on until the chaotic model fills the
parabola with points.
The period-three window corresponds to triplets in the

voltage waveform (Fig. 3). As the stimulus intensity is
decreased yet further, "chaotic bursting" is observed as

well as a second period doubling cascade from the oppo-
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FIGURE 5 Bifurcation tree. Each branch indicates a period-doubling
bifurcation. To show both approaches to chaos, two scales were required
for both the ordinate and abscissa. The location of the period-three (3P)
window in indicated as well as the large intermediate region of chaos.
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FIGURE 3 Period-three window: time domain and phase plane repre-
sentation.

A Istim = O A110

1 248 Biophysical Journal Volume 57 June 1990



all intersections with the Poincare surface vs. the value of
the bifurcation parameter (ISTIM). However, to construct
the bifurcation tree of Fig. 5, only the points below the 450
line of the Poincare return maps associated with the
period doubling cascade from the bursting mode were

used in order to have one point for the 1 P mode, two points
for the 2P mode, and so on. The spectrum of Lyaponov
exponents in bits per millisecond for selected values of
ISTIM is given in Table 1 along with the dimension of the
attractor. Using the algorithm of Wolf et al. (41), the zero

exponents converged to a value several orders of magni-
tude smaller than the next largest exponent for the values
of ISTIM in the range 0.1855-0.1890 ,uamps; however, for
the values 0.1 100-0.1300 ,uamps, at convergence the zero

exponent was only an order of magnitude smaller than the
nearest exponent. Note that a fractal dimension was

obtained for the chaotic attractors, whereas a limit cycle
has a dimension of one.

DISCUSSION

Transitional chaotic regime
Our results indicate that the Plant and Kim model of RI 5
exhibits chaotic behavior. Thus, chaotic activity can be a
result of intrinsic properties of individual neurons and
need not be an emergent property of neural assemblies.
The chaotic regime of the model is flanked by two
period-doubling cascades, one from a bursting mode and
one from a beating mode. A chaotic regime which was
also approached from the same two modes by a period
doubling cascade has been observed by Chay (5) in
neuronal membrane model based on Eyring multibarrier
rate theory. In addition, regions of chaotic behavior can
be found in the Hindmarsh and Rose model (20), and in a
three-variable model by Chay (6), as described by Kaas-
Petersen (26). Finally, examples of chaotic beating and
chaotic bursting have been observed in a model of a
pancreatic beta cell (7). Based on our work and that of
others, we infer that the transition from the beating to
bursting mode frequently includes a chaotic regime and
may in fact require one. In the intermediate region "the
chaotic behavior appears as a compromise between two
trends," as Hao and Zhang have commented regarding a

periodically-forced nonlinear oscillator (15). The detec-
tion of the period-three window, the power spectral evi-
dence displayed in Fig. 2, and the Lyaponov exponents in
Table 1 substantiate the existence of a chaotic regime
more fully than in previous studies. (5, 7).
At the time the P-K model (36) and the neuronal model

of Chay (4) were developed, the available experimental
evidence indicated that the variation of internal calcium
ion concentration modulated a calcium-activated K+ con-

ductance (gK,ca) and this variation in turn contributed
casually to burst generation (25). Current evidence indi-
cates however that gKca is not the primary conductance
that generates the bursting activity. Instead, calcium-
dependent inactivation of the slow inward current appears

to be critical (1, 28). Preliminary simulations including
this additional mechanisms indicate that the basic conclu-
sions presented here are unaltered (unpublished observa-
tions).

While the existence of chaotic behavior in RI 5 has not
been examined experimentally in detail, our modeling
results predict that the potential for such behavior exists.
Indeed, because the bifurcation parameters employed in
the model (ISTIM) are roughly equivalent to the current
generated by the sodium-potassium pump, we predict
that modulating the activity of this pump either physio-
logically or with appropriate doses of metabolic poisons
would lead to chaotic regimes. Potentially chaotic firing
patterns which are transitional between bursting and
beating have been observed in Tritonia pacemaker neu-

rons (39). Irregular bursting patterns and a transitional
region between bursting and beating have also been
observed in R15 in response to the application of 4-
aminopyridine (4-AP) [19], which acts on potassium
channels. Thus, the potassium conductances may also act
as bifurcation parameters in some instances. Two other
experiments further implicate the potassium condu-
tances. First, molluscan neuron activity has been shown to
bifurcate from a beating model to doublet spiking, to
triplet spiking, and finally to a bursting mode (23) in
response to iontopheretic injection of the K+ channel
blocker tetraethyl ammonium (TEA). Second, prolonged
exposure to 4-AP has been shown to induce apparently
chaotic discharges in molluscan neurons upon return to
normal saline (24). Moreover, because the activity of

TABLE 1 Lyaponov exponents

ISTIM XI A2 A3 X4 AS A6 A DIM

0.1890 0.0000 -0.0002 -0.0029 -0.0120 -0.0227 -0.0468 -0.1804 1.00
0.1865 0.0001 0.0000 -0.0026 -0.0123 -0.0224 -0.0479 -0.1757 2.04
0.1855 0.0001 0.0000 -0.0032 -0.0124 -0.0226 -0.0485 -0.1749 2.04
0.1300 0.0002 0.0000 -0.0053 -0.0149 -0.0300 -0.0665 -0.1626 2.04
0.1100 0.0000 -0.0003 -0.0044 -0.0145 -0.0305 -0.0711 -0.1569 1.00
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RI 5, including the transition from the bursting to the
beating mode, can be modulated by a variety of neuro-
transmitters (29, 31), such agents (at appropriate concen-
trations) may also lead to chaotic regimes, as could
changes in the levels of internal and external calcium for
the same reason.

Given the well-known intricate structure of the period-
doubling route to chaos, the region of overlap between two
"back-to-back" period-doubling cascades may be an
interesting topic for mathematical investigation. The
analysis in terms of a bifurcation tree is essentially
one-dimensional and may not be adequate to describe this
additional complexity fully in higher dimensional sys-
tems. This limitation does not apply to the multidimen-
sional method of Lyaponov exponents employed in this
study, however.

Significance of chaos
Although the number of reports of chaotic patterns in
biological systems is growing, the physiological signifi-
cance of chaos is poorly understood. It is clear, however,
that chaos enables a deterministic system to generate
variability which appears random but in fact does not rely
on a random process. Variability is usually introduced
into a system by noise, which obscures the signal. In a
biological system generating a chaotic output, the varia-
bility may be the signal, or at least part of it. To illustrate
the possibilities created by a chaotic regime, the genera-
tion of a behavior by a periodic signal can be contrasted
with the generation of the same behavior by a chaotic one
(8, 34). A behavior that is associated with a limit cycle
can only be generated in a monotonous, repetitive fashion.
Furthermore, a perturbation of the system requires that
energy be dissipated to restore the limit cycle. On the
other hand, a behavior associated with a chaotic attractor
can be generated in an infinite number of ways. This
variation may have adaptive advantages because distur-
bances are effectively dissipated in a chaotic system. For
example, a small perturbation in the system will not
prevent a normal output from being generated unless the
perturbation is large enough to displace the trajectory out
of the attractive basin of the chaotic attractor. This view
is consistent with the suggestion that biological chaos
prevents the various functional units from becoming
entrained, or phase-locked, into periodic activity (8).
Skarda and Freeman have suggested that the neurons in
the olfactory system of rabbits exhibit chaotic dynamics
in a background mode, that is, in the absence of a
recognized order, and that upon recognition of a previ-
ously learned odor, the system bifurcates to a limit cycle
attractor corresponding to that particular odor (21, 38).
In their view, chaotic activity allows "rapid and unbiased
access to every limit cycle attractor on every inhalation"

(38), while still preventing cyclic entrainment or spatially
structured activity.
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