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ABSTRACT It is shown that fluorescence anisotropy from lipidlike probes in the hexagonal H,, phase gives information of (a)
orientational order parameters, (b) the wobbling diffusion constant, and (c) the hopping diffusion constant of the probe, DH,
equals DL/R2, the lateral diffusion constant over the square of the radius of the hexagonal tubes. Here we consider only
lipidlike probes having the absorption transition moment and/or the emission transition moment along the long axis of the
molecule. Three models are introduced for analysis of time-resolved data: the "WOBHOP," the "reduced WOBHOP," and
the "P2P4HOP" model. The fluorescence anisotropy in response to a very short excitation pulse in each of the three models
is a constant plus a number of exponentials. The WOBHOP and reduced WOBHOP models have 3 and 2 exponentials,
respectively, and both contain four fitting parameters: ro (the fundamental anisotropy), (P2) (the second rank orientational
order parameter), DW (the wobbling diffusion constant), and DH (the hopping diffusion constant). The P2P4HOP model has
eight exponentials and five fitting parameters: the four parameters listed above and (P4) (the fourth rank orientational order
parameter). Analysis of fluorescence anisotropy data in the hexagonal H,j phase using one of these models allows for
obtaining the hopping diffusion constant, and, if the lateral diffusion constant is known, the radius of the hexagonal tubes.
Substitution of DH = 0 in each of the three models yields an expression for the fluorescence anisotropy that is used in the
literature for lamellar (La or L,) phases. The fluorescence anisotropy in coexisting La/Hi, phases is discussed.

INTRODUCTION

In the inverted hexagonal (HI,) phase the lipids form
cylindrical tubes containing an aqueous phase. The walls
of these cylindrical channels are two lipids thick. The
polar head groups of the lipids face the inside of the tubes
which are parallel to each other and their centers form a

two-dimensional hexagonal lattice in a cross-section per-
pendicular to the cylinders. The HI, phase is of interest
not only because of its unique structure and symmetry
(1), but also because of its relevance for understanding
certain membrane functions such as fusion (1, 2, 3, and 4)
and protein-mediated ion transport (5, 6). X-Ray diffrac-
tion has provided detailed information on the structure of
this phase (1, 7, 8). Time-resolved (9, 10) and angle-
resolved (1 1) fluorescence anisotropy yields structural as

well as dynamic information on this phase. One of the
results of this paper and the accompanying paper (10) is
that the combined information from fluorescence anisot-
ropy and lateral diffusion measurements in the HI, phase
allows one to estimate the radius of the hexagonal tubes.
The change in orientation of a fluorescent lipid hopping

around a tube in the hexagonal HI, phase during the
fluorescence lifetime is (DL)'112/R (in radians), if the
lipid is constrained to have its long axis perpendicular to
the lipid-water interface. Here DL is the later diffusion
constant, r is the fluorescence lifetime, and R is the radius
of curvature of the lipid tubes (see Fig. 1). Using DL t

0.01 nm2/ns (10), R 1 nm (8), and r 7 ns (10) an

order of magnitude estimate of this change in orientation
yields - 16 degrees corresponding to a depolarization of a
factor, 1.5 cos2 160 - 0.5 = 0.89, which is appreciable.
This estimate indicates that fluorescence depolarization
can be employed to measure DL/R2. The present paper is
a theoretical evaluation of such effects of lateral diffusion
on the fluorescence anisotropy in hexagonal lipid phases.
Three models are introduced which we will call the
"WOBHOP," the "reduced WOBHOP," and the
"P2P4HOP" models. Formulas are derived for analyzing
time-resolved data both for experiments in the frequency-
domain and for studies using the pulse method. The
fluorescence anisotropy in coexisting La,/HIl phases is
examined. The implications of the present analysis and
the underlying assumptions are considered, and the rele-
vance of the hexagonal phase for membrane research is
discussed briefly.
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Fluorescence Anisotropy
time
fundamental FA = FA in the absence
of motion
steady-state FA
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FIGURE 1 A lipid probe, represented as a solid bar, changes its
orientation when diffusing around a hexagonal tube in a direction
perpendicular to the z-axis, the axis of the tube. When it diffuses parallel
to this axis, however, it will not change its orientation. Here R is the
radius of curvature of the lipid-water interface, DL is the lateral
diffusion constant, r is the fluorescence lifetime, and 0e, is the angle
between the molecular axis at time zero, the time of the excitation flash,
and that at a later time t = r. This angle equals (DLT)"I21R (in radians)
for diffusion in a direction perpendicular to the z-axis.

limiting FA = FA response to a very
short pulse, a long time after the pulse
FA response a time t after a very short
pulse
fluorescence lifetime
radius of hexagonal tubes = radius of
curvature of lipid-water interface
wobbling diffusion constant of lipidlike
probe
lateral diffusion constant of lipidlike
probe
hopping diffusion constant of lipidlike
probe = DL/R2
depolarization factor due to wobbling
depolarization factor due to hopping
2nd rank orientational order parameter
of lipidlike probe
4th rank orientational order parameter
of lipidlike probe
(1 - (P2)2)/(6Dw)
1 /(4DH)
the angle between the long molecular
axis at time t and that at time 0
the ensemble average of (3 cos2 O, -
1)/2
the azimuthal angle of the long molecu-
lar axis at time 0
the azimuthal angle of the long molecu-
lar axis at time t
the conditional probability of a molecu-
lar azimuthal angle being equal to 0,
at time t while having the value 00 at
time 0

N
gi

Ai

WOBHOP model

rwH(t)

Reduced WOBHOP

rRW(t)

P2P4HOP model

rPH(t)

DC

AC

F
Mv

MH

0v

0H

p

the number of exponentials in r(t)
pre-exponential coefficients in r(t) =
r_ + (ro- r) 2 gi exp [-Ait] (i: 1 to
N)
exponential coefficients in r(t) = r_ +
(ro-r)r gj exp [-Ait] (i: 1 to N)
model for the FA in the HI, phase based
on the assumption that hopping and
wobbling give rise to independent depo-
larization factors
expression for r(t) in the WOBHOP
model havingN = 3 and fitting param-
eters: ro, (P2), Dw, and DH
same as the WOBHOP model but with
the additional assumption that TH iS
much larger than Tw
expression for r(t) in the Reduced
WOBHOP model having N = 2 and
fitting parameters: ro, (P2), Dw, and
DH
model for the FA in the HI, phase based
on an extension of the "second approxi-
mation" (14) for lamellar phases
expression for r(t) in the P2P4HOP
model havingN = 8 and fitting param-
eters: ro, (P2), (P4), Dw, and DH
time-independent contribution to sinu-
soidally modulated intensity
amplitude of fluctuating contribution
to sinusoidally modulated intensity
modulation frequency
modulation factor of the vertically po-
larized component of the fluorescence
same for the horizontally polarized com-
ponent of the fluorescence
phase angle of the vertically polarized
component of the fluorescence
phase angle of the horizontally polar-
ized component of the fluorescence
frequency-dependent FA = [Mv -
MH]/[Mv + 2 MH]
fraction of hexagonal phase lipids in
coexisting La/HI, phases

WOBHOP MODEL

How does hopping, that is, lateral diffusion, affect the
depolarization of fluorescence from lipid-like probes? To
illustrate the effect of hopping let us consider a macroscop-
ically isotropic sample in the HI, phase where the lipids
and the probes are exactly perpendicular to the lipid-
water interface. Restricting ourselves to probes having the
absorption and/or emission dipole along the molecular
axis, the fluorescence anisotropy after excitation with a

1518 Biophysical Journal Volume 58 December

r(t)

R
R

DL

DH

QW
QH
(P2)

(P4)

TW
TH

eot

g(001 0t, t)

1518 Biophysical Journal Volume 58 December 1990



orientational order, which reads

r(t) = roQH QH = (((3 COS2 -R_1)/2)), (1) r = ro/(l + 6DLr/R2).

where r(t) is the fluorescence anisotropy (FA) at time t, ro
is the fundamental anistropy (ro is the FA in the absence
of motion) and Eot = 00 - 0t is the angle between the
molecular axis at time zero, the time of the flash, and that
at a later time t (12, 13). The double brackets indicate an
ensemble average. As is indicated in Fig. 1 diffusion in the
z-direction will not change the orientation of a molecule.
The z-axis has been chosen along the local cylinder axis.
Hopping in a direction perpendicular to the z-axis along
the surface, however, does change the orientation of the
molecule which is constrained to keep its axis perpendicu-
lar to the cylindrical surface. In this case of perfect
orientational order the correlation function in Eq. 1

reduces to

QH ( 1.5 cos
2

0ot _0.5))

= ((0.25 + 0.75 cos (200 - 20t)))

= [1/(27r)] f2T d00 f2 d0tg(0oI0lt,t)
*{0.25 + 0.75 cos (2 00 2 0t)}, (2)

where g( 0I ot, t) is the conditional probability of a

molecular azimuthal angle being equal to 0t at time t
while having the value 00 at time zero. This conditional
probability is the solution of the equation for diffusion on

a cylindrical surface (part for the azimuthal angle). This
solution can be shown to read,

g(0010Itt)

= (I/r) {0.5 + E cos (no0t-n 00) exp (-n2DLt/R2)I, (3)
n-i

where DL is the lateral diffusion coefficient for the
lipidlike probe and R is the radius of curvature of the
cylindrical surface. Evaluating the integrals in Eq. 2 gives

QH = {1 + 3 exp (-4DLtI/R2)/4. (4)
Substituting Eq. 4 into Eq. 1 yields

r(t) = ro{l + 3 exp (-4DLtI/R 2)}/4. (5)

Assuming mono-exponential decay of the fluorescence

intensity, the steady-state FA for the HI, phase in this
case of perfect orientational order, is

r = dt r(t) exp (-t/r)/ JO dt exp (- /t)

= ro[1 + DLT/R 2 ]/[1 + 4DLT/R 2] (6)

(Compare this result with the steady-state FA for a

spherical micelle of radius R in the case of perfect

Note that r in Eq. 6a goes to zero whereas r in Eq. 6 goes

to 1/4, if DL goes to infinity.) In deriving Eq. 5 perfect
orientational order has been assumed and the FA contains
only one depolarization factor namely QH' the depolariza-
tion factor due to hopping. If the orientational order is not
perfect, wobbling causes depolarization as well. A model
for the depolarization effect of wobbling in the absence of
hopping (14, 15) is

r(t) = roQw, (7)

where Qw is

Qw = (P2)2 + (1- (p2)2) exp [-6Dwt/(l - (p2)2)]. (8)

Here Dw is the wobbling diffusion constant and (P2) is
the second rank orientational order parameter (14). In
this model it is assumed that the FA can be approximated
by one exponential plus a constant. The correlation time
rW = (1 - (P2)2)/(6Dw) has been chosen such that the

time derivative of r(t) at t = 0 is in agreement with that
following from the wobbling diffusion equation ("first
approximation" in reference 14). A simple model that
takes into account the combined effect of hopping along a

cylindrical surface and of wobbling within an ordering
potential can be derived by assuming that the hopping
and wobbling factors are independent depolarization
factors a la Soleillet (16, 17):

r(t) = rWH(t)

= rOQWQH = 0.25ro{(P2 )2 + 3(P2 ) exp [-1/TH]

+ (1 - (p2)2 ) exp [-t/rwI

+ 3(1 - (P2)2) exp [-(Tw + TH)t/(TWTH)II, (9)

where Qw is given by Eq. 8 and QH by Eq. 4, TH is an

abbreviation for 0.25/DH = 0.25R2/DL, and rw has been
defined above. We will call this model the "WOBHOP"
model. It contains the molecular parameters Dw (wob-
bling diffusion constant), (P2) (the second rank orienta-
tion order parameter), and the hopping diffusion constant
DH = DL/R2. It also contains the fluorescent probe
parameter ro, the fundamental anisotropy.

REDUCED WOBHOP MODEL

Experiments presented in reference 10 suggest that TH iS
of the order of 10 to 20 ns and TW is of the order of 1 ns.
Consequently for a large range of time values the last
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term in Eq. 9 can be approximated as follows,

3(1 - (P2)2) exp [-(rw + TH) /(TWTH)]
, 3(1 - (P2)2) exp [-t/rw].

In this approximation r(t) becomes:

r(t) = rRW(t) = 0.25rO{(P2)2

+ 3(P2)2 exp [-t1TH] + 4(1 - (P2)2 ) exp [-t/rw]. (10)

We will call this model for the FA the "Reduced
WOBHOP" model. Fig. 2 illustrates that the difference
between the WOBHOP and the Reduced WOBHOP
model is small if the ratio TH/TW iS large.

below). Fig. 3 demonstrates the dependence of rPH(t)/rO
on time and the hopping diffusion constant.

SUMMARY FLUORESCENCE
ANISOTROPY MODELS

The three models introduced in this paper, the Reduced
WOBHOP, WOBHOP, and P2P4HOP model all contain
a constant andN (N = 2, 3, or 8) exponentials having the
following form:

r(t) = r. + (ro - r.=) E g; exp [-Ait], 2g; = 1 (

r<,,, = 0.25ro(P2 )2. (13)

P2P4HOP MODEL The models are summarized in Table 1.

If one does not assume that the wobbling and hopping
factors are independent, and approximates each correla-
tion function (see Appendix 1) as a constant plus an

exponential with a correlation time that follows from the
short-time behavior of the correlation function, then one

obtains an expression for the FA which we will call the
"P2P4HOP" model:

r(t) = rpH(t)
= 0.25r0{((P2)2 + Boexp [-Cot])(I + 3 exp [-t/rH])

+ 4B, exp [+Clt] (exp [-0.251/rH] +exp [-tlrH])
+ B2 exp [-C2t](3 + 4 exp [-0.25t/TH]

+ exp [- /TH] )}, (12)

where Bo, Co, B,, C,, B2, and C2 are given in Table 1. The
derivation of this model is presented in Appendix 1 (see

PERCENT DEVIAlION:
1OOxIr(t)-r,.I,(t)I/r(t) *

FREQUENCY-DOMAIN EQUATIONS

The information acquired by studying the fluorescence
response to short pulses can be obtained by Frequency-
Domain Fluorescence Spectroscopy as well (see, for
example, reviews by Gratton et al. [18] and Lakowicz
[19]). In this technique the exciting beam is intensity-
modulated at frequency F:

EXCITATION proportional to DC + AC sin (27rFt), (14)

where DC is the time-independent contribution and AC
the amplitude of the fluctuating contribution to the
intensity. Consequently, the vertical (or parallel) compo-

nent, Iv, and the horizontal (or perpendicular) compo-
nent, IH' of the fluorescence will also be modulated at the

. . . . .

4 ( as o 1)

ti
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FIGURE 2 The percent deviation, defined as iOOI rWH(t) - rRW (t) I/rWH(t), vs. the time, t, for (P2) = 0.85, TW = 1 nanosecond and four different
values of the ratio TH/TW.
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TABLE 1 Summary fluorescence anisotropy models

i Ai

Reduced WOBHOP
[N = 2, r(t) = rRW(t)] 1 3(P2)2/(4 - (p2)2) 1/TH

2 4(1 - (P2)2)/(4 - (P2)2) l/rw
WOBHOP
[N = 3, r(t) = rWH(t)] 1 3(P2)2/(4 - (P2)2) 1/TH

2 (1 (P2)2)/(4 - (P2)2) 1/-W
3 3(1 - (P2)2) /(4 - P2)2) (TW + TH)/(TWTH)

P2P4HOP
[N = 8, r(t) = rPH(t)] 1 3(P2)2/(4 -(p2)2) I/rH

2 B0/(4 - (p2)2) C0
3 3BO/(4 - (P2)2) C0 + 1/rH
4 4B1/(4 - (p2)2) C1 + 0.25/7H
5 4BI/(4 - (p2)2) C1 + O.25/TH
6 B2/(4 - (P2)2) C2
7 4B2/(4 - (p2)2) C2 + O.25/TH
8 3B2/(4 - (p2)2) C2 + l/TH

with:
i Bi Ci
0 0.2 + 2(P2)/7 + 18(P4)/35 - (p2)2 6DW(O.2 + (P2)/7- 12(P4)/35)/Bo
1 0.2 + (P2)/7 - 12(P4)/35 6DW(O.2 + (P2)/14 - 8(P4)/35)/B1
2 0.2 - 2(P2)/7 + 3(P4)/35 6DW(O.2 - (P2)/7 - 2(P4)/35)/B2

TH = 0.25R2/DL, TW = (1 - (p2)2)/(6Dw), (P4) = 4th rank orientational order parameter (see Appendix 1).

same frequency but will be shifted in phase,

Iv proportional to DC + MvAC sin (27rFt - 0v) (15)

IH proportional to DC + MHAC sin (27rFt- 0H), (16)

where MV and MH are the demodulation factors of the
vertical and horizontal components, respectively, and 0v

and 0H are the corresponding phase angles. In Appendix
2 it is shown that the differential phase, 0H - 0v, and

the frequency-dependent anisotropy, r, = (Mv - MH)/
(Mv + 2MH) (19), are given by

0H - V = tan-1 {3u(ro- r)(G -S)
[(1 - r)(I + 2r.)H1 + (1 - 4r.)H2- 2H311

u = 27rFr

HI = 1 + U2

(17a)

(17b)

(17c)

rPH(t)/r,

0.5

H2 = (ro - r.)(G + u2S) (1 7d)

H3 = (ro - r.)2(G2 + U2S2) (17e)

N

G = T gHl(I + Ajr)/[(I + Air)2 + u2]
i=l

N

S = E3 giHl/[(l + A r)2 + U2]
i=l

rw = (Yl/2_ 1)/(YI/2 + 2)

Y= [(1 + 2rOj)2HI + 4(1 + 2rj)H2 + 4H3]/

[(1-_ r)2H, - 2(1 - r.)H2 + H3].

(17f)

(17g)

(17h)

(1 7i)

These equations are applicable for all the three models
introduced above with the corresponding coefficients g1

and Ai listed in Table 1. Fig. 4 demonstrates the depen-

Fluorescence Anisotropy in the H Phase. I. 1521

FIGURE 3 The time-dependence of the Fluorescence Anisotropy in the
P2P4HOP model for two different values for the hopping diffusion
constant. In this simulation of time-resolved data the values for the other
parameters were: (P2) = 0.8, (P4) = 0.6, and Dw = 0.2 GHz
(GHz = l/ns).
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0H - OV
(degre)

MODULATION FREQUENCY (MEGAHERTZ)

FIGURE 4 Phase angle difference between the horizontal and vertical
component versus modulation frequency for the P2P4HOP model with
(P2) = 0.8, (P4) = 0.6, and Dw = 0.2 GHz.

dence of 0H - 0v on modulation frequency and on the
hopping diffusion constant for the P2P4HOP model.

FLUORESCENCE ANISOTROPY IN
COEXISTING La AND HI, PHASES

Consider a sample containing lipidlike fluorescent probes
incorporated in coexisting lamellar La and hexagonal HI,
phases. According to the Weber-Jablonski addition theo-
rem (20, 21) for anisotropies, the FA of the sample is a
linear combination of the FA contribution from the
hexagonal phase and that from the lamellar phase.
Applying this theorem to the FA response to a short pulse
at times much larger than the fluorescence lifetime, we
obtain:

r,,. = PHr H + PLr L, (18)

where PH and PL are the fractional fluorescence intensities
from the hexagonal and lamellar phases, respectively, and
r<,,H and r,L are the corresponding limiting anisotropies in
the two phases. If the extinction coefficients, the lifetimes,
the quantum yields, and the solubility of the probe are the
same in the two phases, then PH = p = the fraction of
lipids in the hexagonal phase, and PL = 1 - p. If the order
parameter (P2) is also equal in both phases, then r-,L -
4r-H = rO(P2) 2, and we obtain:

r, = ro(P2)2(4 - 3p)/4. (19)

This expression differs from the corresponding equation
derived by Johanssen and Lindblom (22).

depolarization due to lateral diffusion around the hexago-
nal tubes. By setting the hopping diffusion constant equal
to zero, the models reduce to expressions for the FA in
bilayer membranes. Consequently the models can be used
for analysis of FA studies of hexagonal-lamellar phase
transitions (9, 10).

Equations have been derived for time-resolved fluores-
cence depolarization studies (both frequency- and time-
domain) using probes that have the absorption and/or the
emission moment along the long axis of the molecule.
However, if the rotational correlation time for rotations
about the long molecular axis is much shorter than the
correlation time for wobbling, rw, and the fluorescence
lifetime, then our equations for the fluorescence anisot-
ropy, r(t), would be correct even if both the absorption
and emission moment would make an angle with the long
molecular axis. In that case ro should be replaced by
rO-EFFECTIVE, given by

rSEFFECTIVE = 0.1 (3 COS2 0A - 1)(3 COS2 0E - 1),

where 9A and 0E denote the angles between the absorp-
tion moment and the long axis, and between the emission
moment and the long axis, respectively. Typically, the
rotational correlation time for rotation about the long axis
of a lipid is a factor 20-100 shorter than Tw (25) and the
fluorescence lifetime is of the same order of magnitude as
Tw (10). This estimate indicates that the rotation around
the molecular axis of a lipid is indeed too fast to observe in
a fluorescence depolarization experiment and that our
equations could be applicable to the case where 0A and 0E

are both nonzero with the substitution ro = rOEFFECTIVE-
It should be noted that we have considered one wob-

bling mode only, whereas the combination of internal
motion of the fluorophore within the molecule and the
wobbling of the molecule as a whole, could give rise to
several wobbling modes. At present it does not seem
feasible to extract from the data information on various
modes of wobbling in addition to parameters on hopping
and over-all wobbling.
Two of the three models introduced, the "WOBHOP"

and "Reduced WOBHOP" models, are based upon the
assumption that the depolarization due to wobbling and
that due to hopping (lateral diffusion) are independent
depolarization factors. The difference between these two
models is that in the Reduced WOBHOP model it is
assumed that the rotational correlation time for hopping
is much slower than the one for wobbling. When analyz-
ing the FA in detail, however, one finds that the depolar-
ization factors due to hopping and wobbling are only
completely independent if the orientational order is com-
plete. The P2P4HOP model is based on such a detailed
analysis. It is an extension of the "second approximation"
for the FA in lamellar phases introduced in reference 14.

Biophysical Journal Volume 58 December 1990

DISCUSSION

The present paper introduces three models for the FA in
the hexagonal (HI,) phase which take into account the
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In all three models we have assumed that the deviation
from cylindrical symmetry around the normal to the
lipid-water interface is small. If the z-axis is chosen along
the local hexagonal tube axis, the orientational fluctua-
tions along the x-axis or y-axis must differ from those
along the z-axis. We have assumed that such deviations
from uniaxial symmetry can be ignored. Van Langen et
al. have also made this assumption in their theory of
angle-resolved fluorescence depolarization in oriented
hexagonal phases (1 1). Experimental results from Turner
and Gruner (23) indicate that deviations from axial
symmetry are <10%.

Johansson and Lindblom (22) have analyzed the FA in
a system where hexagonal and lamellar phases coexist.
They concluded that under certain conditions the limiting
FA, r,,, could abruptly drop to zero in response to
relatively small variations in composition or temperature.
We believe that this conclusion is not correct as it is based
upon the erroneous assumption that the equilibrium
orientational distribution function is a linear combination
of such functions for the hexagonal and lamellar phases.
In our opinion, it is not this distribution function but the
FA that is additive as required by the Weber-Jablonski
addition theorem (20, 21).
The biological relevance of the onset of nonbilayer

phases in membranes has been discussed (see for exam-

ple, references 1, 2, 4, 5, and 24). To the best of our

knowledge the following hypothesis has not yet been
proposed: if the composition of biological membrane
would be modified, for example, by enriching it with
phosphatidylethanolamines, in such a way that certain
regions in the membrane would approach a transition to a

nonbilayer phase, then the exposition of membrane-bound
antigens or receptors in that membrane region could
change as a result of an increased curvature of the bilayer
in that region. This possible consequence of the onset of
the HI, phase in membranes could be studied using the
fluorescence anistropy methods proposed here and in the
accompanying paper (10).

APPENDIX 1

The depolarization factor ((1.5 cos2 0e, - 0.5)) can be decomposed in
correlation functions as follows:

((.5 cos2 0, -0.5 ) ) = ( (P2 (cosO0) P2 (cos 0,)

+ 0.75 ((sin2Oocos 2 00 sin2"' cos 2 0'))

+ 0.75 ((sin2 00 sin 2 00 sin22O' sin 2 0'))

+ 0.75 ((sin 200 cos 00 sin 20' cos 0 '))

+ 0.75 ((sin 20o sin 00 sin 20'' sin 0 ')). (Al)

The angles 6 and 0 denote the polar and azimuthal angle of the axis of a
probe molecule, where 6 is the angle between a molecular axis and the
x-axis, and 0 is the angle between the projection of the molecular axis

X(O) x(O)

FIGURE S The coordinate systems (x[O], y[O], z[O]) and (x[t], y[t],
z[t] = z[O]) used here for evaluating the correlation functions. The
z-axis is along the axis of a cylindrical tube. The x(t)-axis is perpendicu-
lar to the cylinder surface at the position of the molecule at time t.

on the y,z-plane and the z-axis. We define a time-dependent coordinate
system (x[t], y[t], z[t]) having the x-axis along the normal to the
interface at the position of the molecule for time t; the z-axis of this
coordinate-system is along the local cylinder axis (see Fig. 5). Conse-
quently, the z-axis is constant in time, z(t) = z(0), but the orientation of
the x- and y-axes will change with time. The double prime (") on the
angular coordinates for the molecule at time t indicates that these angles
are not taken with respect to the coordinate system (x[t], y[t], z[t]) but
with respect to (x[0], y[0], z[0]). The spherical harmonics P2 (cos Ot7),
sin2 O' cos 2 0 ' sin2 6' sin 2 0, sin 26k' cos 0,' sin 26j' sin 0," can be
expressed in terms of spherical harmonics of Ot and 0 t as follows:

P2(cos Et') = 0.125 {[2 + 6 cos 2Iot]P2(cos Ot)
- [3 - 3 cos 2#6ot] sin22O cos 2 0,
+ [6 sin 24i,] sin 20, sin 0,1

sin2 O,'cos 2 0', = 0.25([-2 + 2 cos 2,D]P2(cos 0,)

+ [3 + cos 2i'0,] sin22O cos 20,

+ [2 sin 2#0tI sin 20t sin 0tI

(A2a)

(A2b)

sin2 O,' sin 2 0;' = [cos ,#tI sin2 O, sin 2 0,
- [sin {0,t sin 2Ot cos 0, (A2c)

sin 20,' cos 0,' = [cos Oot] sin 2Ot cos 0,

+ [sin 4t0,] sin2 Ot sin 2 0 t (A2d)

sin 20t' sin 0,' = [cos 2i1t ] sin 26t sin 0,

- [sin 200t ]P2(cos 0,)
- 0.5[sin 24,to,] sin2 O, cos 2 0 t. (A2e)

The correlation functions to be evaluated have the form: ( (GH) ), where
G and H are given in Table 2. These correlation functions can be
calculated with the "second approximation" using an extension of the
method developed in references 13 and 14. The results are:

((G(0o, 00)H(Ot, Ot)))=B exp (-At) + C (A3a)

C= (G(6, 0))(H(0, 0)) (A3b)
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TABLE 2 Factors G and H in the correlation functions ((GH))

G H G H G H

P2(COS 00) P2(COS 0,) P2(COS 00) sin2 0t cos 2 0, P2(cos O) sin 20, sin 0
sin2 00 sin 2 00 P2(cos ,) sin2 00 sin 2 00 sin2 0t cos 20, sin2 00 sin 2 00 sin 20t sin 0,
sin 200 sin 00 sin 20t sin 0, sin 200 sin 00 P2(cos 0t) sin 200 sin 00 sin2 0t cos 20t
sin2 O0cos 2 00 sin2 0t sin 20, sin2 O0cos 2 00 sin 20t cos 0t
sin 200 cos 00 sin 20, cos 0, sin 200 cos 00 sin2 0, sin 20,

(A3c)

(A3d)

B = (G(0, O)H(0, 0)) C

A=-Dw(eG(O 0o) daH(0, 0)

{G(0, 0)/sin2 0l1i H(, 0 )) B,

where the single brackets denote equilibrium averages:

(F) = do
r

dO sin Of()F (A4)

withf (0) denoting the equilibrium orientational distribution function. It
follows that all constants B and C vanish except for G = H. We find:

( (P2(cos 0O)P2(cos 0) ) ) =Bo exp (-Cot) + (p2)2 (A5a)

0.75 ( (sin2 00 cos 2 00 sin2 0, cos 2 0,) )

= 0.75 ((sin2 00 sin 2 0o sin2 0,' sin 20')) = B2 exp (-C2t)
(A5b)

0.75 ((sin 200 cos 00 sin 20,cos 0,))

= 0.75 ( (sin 20o sin 00 sin 20' sin 0,')) = B, exp (-C1).

(A5c)

The constants Ci, and Bi (i = 0, 1, 2) have been given in Table 1 above in
terms of Dw, the wobbling diffusion constant, (P2) and (P4), the second
and fourth rank orientational order parameters, respectively. These
order parameters can be calculated as follows:

(P2) = , dO sin OP2(cos 0)f(0)

(P4) = fr dO sin 0P4(cos 0)f(0),

(A6a)

(A6b)

wheref(0) is the equilibrium orientational distribution function, i.e., the
probability density of finding a molecule with polar angle 0 with respect
to the normal to the lipid-water interface. This distribution is normal-
ized:

d0f (0) sin 0= 1. (A7)

P2 and P4 are the 2nd and 4th rank Legendre polynomials, respectively:

P2(z)=(3z2- 1)/2

P4(z) = (35z4 - 30z2 + 3)/8.

(A8a)

(A8b)

APPENDIX 2

If the total intensity can be described by a single exponential decay with
lifetime r, then Iv, the fluorescence response to a vertically polarized
pulse short compared to r, and IH' the fluorescence response to a
horizontally polarized pulse short compared with T, can be written as

Iv = I,1{ + 2r(t)I exp [-/Tr]

IH = I,{1 - r(t)} exp [-t/I],

(Bla)
(Blb)

where I, is a constant. Taking for r(t) either rRW(t), rWH(t) or rpH(t) from
Table 1, the sine- and cosine-transforms of Iv and IH can be calculated,
yielding:

Nv= Iv sin (2rFt) dt/ Iv dt

N

=(u/H1) + 2ro,, + 2(ro-r)r

* gi,H/[(1 + A1r)2 + u2] /

N

1 + 2r. + 2(ro-r.) gj/(l
i-I

+ Air)}

NH = IIH sin (2irFt) dt/ 'H dt

N

=(ulHI ) 1-rX -(ro -r) 57

* g,Hl/[(l + A1r)2 + U2]

{1--r-(ro-rr)Eg/l(l + Air)

Ev Iv cos (27rFt) dt/ Iv dt

N

= (1/H) I + 2r,, + 2(rO - r.) E
~~~~~~~~i=8

* giHI( + AiT)/[(1 + A r)2 + u2]
1

1 r (Or,O s( )N

II+ 2r,, + 2(ro r.) g/l(I + Ajr)J-

(B2a)

(B2b)

(B2c)
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EH = I'H COS (2irFt) dt/ £ IH dt

N

(1/HI) 1
-r. -(ro- Nr.)

gjHj(l + Air)/[(I - Air)2 + u2]

F ~~~~N]
[I r. - (ro-r.)r gl/(I + Amr) (B2d)

where the following abbreviations have been used:

u= 2rFr (B3a)

H = 1 +u2. (B3b)

The observables, 0H - 0v (the differential phase) and Mv/MH (the
modulation ratio), or rw (the frequency-dependent anisotropy) can now
be calculated from:

OH- 0v = tan-' [(EvNH- EHNV)/
(NvNH+ EvEH)I (B4a)

Mv/MH= y1/2 (B4b)

rw=-[Yl/2_ 1i]/[Y/2 + 2] (B4c)

Y= [N 2 + E2/[N2 + E42] (B4d)

The results are given in Eq. 17.
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