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ABSTRACT A direct nonlinear least squares method is described that obtains the true kinetic rate constants and the
temperature-independent spectra of n intermediates from spectroscopic data taken in the visible at three or more temperatures. A
theoretical analysis, which is independent of implementation of the direct method, proves that well determined local solutions are
not possible for fewer than three temperatures. This analysis also proves that measurements at more than n wavelengths are
redundant, although the direct method indicates that convergence is faster if n + m wavelengths are measured, wherem is of order
one. This suggests that measurements should concentrate on high precision for a few measuring wavelengths, rather than lower
precision for many wavelengths. Globally, false solutions occur, and the ability to reject these depends upon the precision of the
data, as shown by explicit example. An optimized way to analyze vibrational spectroscopic data is also presented. Such data yield
unique results, which are comparably accurate to those obtained from data taken in the visible with comparable noise. It is
discussed how use of both kinds of data is advantageous if the data taken in the visible are significantly less noisy.

1. INTRODUCTION

Many important processes in the biological sciences are
rather complex, with kinetics involving several interme-
diate steps and with branching pathways and backreac-
tions. The particular process that motivates this paper is
the kinetic photocycle of bacteriorhodopsin (bR) in the
purple membrane of Halobacterium halobium, but the
analysis of this problem should have wider applicability.
A favorite way to study such processes is to measure

their absorbance changes in the visible wavelength
range, which can be done with high signal to noise (18).
The complication with this experimental approach is
that the spectra of the intermediates are broad, so that
the measured absorbance change is generally due to a
mixture of several different intermediates, as well as the
problem that the intermediates overlap in time so that
there is no time at which the signal is due to just one
intermediate. The problem of deconvoluting signals of
this type into a workable kinetic model is a nontrivial
one.

In the case of bR a detailed analysis has been
performed showing how the number of intermediates
can be obtained by spectroscopy in the visible range
(18). Seven intermediates have been deduced in the
time range after 1 us and the apparent rate constants
and the decay amplitudes were found to satisfactory
accuracy (18). That paper represented the first part of a
two part process of determining the photocycle. This
paper focusses upon the concluding part which includes
the true rate constants and the spectra of the intermedi-
ates. No direct method has existed for the determination
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of this concluding part. Instead, various kinetic models
have been proposed (8, 16, 2, 5, 7, 17), based on the
interpretation of various data. Some of these models
have then been tested, tediously and one by one, against
the best quantitative data (11, 13, 9). One purpose of
this paper is to describe a direct method for determining
photocycles from spectroscopic data in the visible wave-
length range.
A second purpose of this paper is to provide a

theoretical analysis of the kind and quality of data
required to solve these kinetic problems. One decision
that must be made experimentally is whether to concen-
trate on very good statistics for a few measuring wave-
lengths or to concentrate on measuring at many wave-
lengths with perhaps a sacrifice in statistics. Another
question is whether data of sufficient precision can be
obtained to discriminate against false solutions that may
occur in complex nonlinear least squares problems.
A second way to study such processes is to measure

their vibrational spectra. In the case of bacterio-
rhodopsin raw resonance Raman data have recently
been used to obtain the time course of the concentration
of the intermediates (1). The third purpose of this paper
is to present an optimized way to obtain the photocycle
from such concentration data.

It may be mentioned that because resonance Raman
and visible spectroscopy both detect changes in the
retinal chromophore, the photocycle detected by both
methods ought to be the same. Other kinetic properties,
such as those measured electrically (14) or by UV
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difference spectroscopy (15), may then be compared to
the photocycle of the chromophore to determine differ-
ences in the kinetics of the different parts of bacterio-
rhodopsin.

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

Although the problem of obtaining the photocycle from
spectroscopic data in the visible is different from the
problem of obtaining it from vibrational data, it will be
convenient in this section to define the two problems
with a common mathematical notation.

In this paper it will be assumed that the kinetic
process is initiated at time t = 0, such as by a fast laser
flash. The unexcited state of the system will be desig-
nated as state 0. The excited portion of the sample will
be assumed to go into a single intermediate, designated
by i = 1, at t = 0. Subsequently, state 1 decays to the
unexcited state 0 and this decay involves other interme-
diates i = 2, ... , n. Designating the amount (or probabil-
ity) of excited material being in state i at time t bypi(t),
these initial conditions are expressed as pi(O) = 1 and
p1(O) = 0 for i . 1. (However, other initial conditions
may also be dealt with.)
For bR at temperatures above 273 K there is evidence

that the thermal transitions between intermediates are
first order (18), in which case the kinetic development of
the system is given by the coupled first-order differential
equations:

dpi(t)/dt = 2 Kijpj(t) for i = o, ... , n,
j=O,n

whereK,, = -K Ki,?m . i, (1)
m=O,n

where for j . i, Kij is the first-order rate constant for
decay of intermediatej to intermediate i and forj = i, Kii
is the negative of the sum of the rate constants from
intermediate i to all other intermediates. It will also be
assumed in this paper that the final state is the same as
the initial state 0, so that po(oo) = 1 andpi(oo) = 0 for i .
0. This requires that there be no backreactions from
state 0, so Kj0 = 0 for all i. (This is not an essential
assumption for the methods to be described in this
paper, which could equally well deal with the case when
the final state at t = oo is a mixture of the intermediates.)
It is convenient to use matrix and vector notation, in
which Eq. 1 becomes

dp(t)/dt = Kp(t), (2)

where K is the n + 1 by n + 1 matrix with entries Kij and
p(t) is the vector [p,(t), p2(t), ..., p(t) po(t)] (The
[n + l]st row ofK consists of the rates K0,j. The [n + l]st

column consists of zeros when no backreactions from 0
are allowed, so this trivial column will not be shown
subsequently in this paper.) The K matrix contains the
true rate constants for the process. It is the basic kinetic
description that one wishes to obtain from experiment.
The true rate constants K,j must satisfy the law of

detailed balance (12), for example

KK = KacKd,Kba, (3)
where, of course, the cycles may be longer than the
three-cycle, abc. Therefore, not all the Kij are indepen-
dent quantities. The maximum number NK of indepen-
dent K's when no backreactions from state 0 are allowed
is [n(n + 3) - 2]/2. (NK increases by 1 when backreac-
tions from state 0 are allowed. Also, NK may be smaller
than the maximum if some rates are required to be
identically zero.) An important consequence of detailed
balance is that the time dependence of each intermedi-
ate is a sum of real exponentials

p,(t) = a Cji exp (-tk,) or p(t) = exp (-tk*)C. (4)
j=l,n

The rate constants k* = {k1 } are called the apparent rate
constants; they are generally non-trivially related to the
true rate constants as are the coefficients Cji in the C
matrix (Eq. 4 requires minor modification if some of the
k are accidentally degenerate.) Note that the upper
limit in the sum is precisely n where there are n

intermediates.
Given values for the true rate constants it is routine to

solve Eq. 2 to obtain the apparent rate constants k* and
the C on the right-hand side of Eq. 4 and thereby obtain
p(t). The analysis uses standard Laplace transform
theory. The procedure has been translated into a com-
puter program which requires 0.36 s microvax II cpu
time for n = 3 intermediates and s = 10 wavelengths and
this time increases to 0.55 s for n = 5. Given numerical
values for some property of the intermediates, such as

the spectra in the visible range for bacteriorhodopsin, it
is therefore very easy to calculate measurable quantities,
such as the visible absorbance changes given by

AA(t, X) = Ipi(t)EO(A) p(t) * .(A), (5)
where e(A) = {Ej(X)} are the relative spectra of the
intermediates, i.e., Ei(X) is the spectrum of intermediate i
minus the spectrum of bR.
From Eq. 4, the absorbance changes AA(t, X) also can

be written as a sum of exponentials

AA(t, X) = I exp (-tkV)bj(X)
j=l,n

= exp (-tk*) * b(X)- (6)
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Using Eq. 4 in Eq. 5 and equating the coefficients of
exp (-tkj7) for eachj with those in Eq. 6 yields

bj() = z CmjEj(X) or b(A) = Ce(X). (7)
j=l,n

Extracting the apparent rate constants k* and the
amplitudes, b(A), from the data AA (t, X) is accomplished
by the Variable Projection (VARP) program of Golub
and Leveque (4) which fits the data for all t and X

globally to the same apparent rate constants. This is now
a routine procedure and was central to obtaining the
number of intermediates n for the bR photocycle (18).
However, this is only a first step in determining the
photocycle from spectroscopic data in the visible.
The problem in analyzing spectroscopic data for

visible wavelengths, AA(t, X), is to invert Eq. 5 to obtain
the spectral e and the true rate constants K. It may first
be remarked that in cases where the spectra of all the
intermediates are known, then Eq. 5 may be solved
easily for the p(t) which would make this the same as the
problem of analyzing vibrational data. As we shall see in
section 4 the analysis of this problem is straightforward.
Generally, however, one does not know the visible
spectra and so the problem of solving the photocycle
from spectroscopy measurements in the visible is more
challenging.

3. THEORY FOR DATA IN THE VISIBLE

Necessary and sufficient conditions for the visible spec-
troscopy problem to be solvable in principle will be
discussed in this section. The importance of this theoret-
ical analysis is emphasized by the fact that the problem
as posed at the end of the previous section is generally
an indeterminate problem. This can be seen by counting
unknowns and comparing to the amount of information
in the data. Since the data have the representation
shown in Eq. 6, they can be completely described by b(A)
and the k*, as well as by residuals which describe the
noise and therefore contain no real information if there
are no systematic errors. The amount of information can
be quantified by the number, n, of k* plus the number,
ns, of amplitudes b(X), where s is the number of
wavelengths X measured. The number of unknowns is
the number, ns, of extinctions e(X) required to describe
the spectra at the measured wavelengths plus the num-
ber of independent true rate constants, NK = [n(n + 3) -
21/2. Therefore, the number of unknowns exceeds the
amount of information in the data, because NK exceeds n
except for the trivial n = 1 case.

Generally, an infinite number of values for the K
matrix give the same k* and b and therefore fit the data
equally well. Note, however, that each different set of

true rate constants that fits the data also gives different
spectra e(X). It might also be emphasized that the
reverse is true, and this has important implications for
attempting to do the analysis by first guessing the spectra
(17). In Fig. 1 are shown the spectra of the intermediates
of a model with three intermediates from which data
were calculated assuming a kinetic model with both
forward and backreactions K ++ L ++ M -> bR. When a

reasonable guess for the spectra is made by changing the
spectra of L and M to the dashed lines, the fit is equally
good (perfect for noiseless data), but the derived model
has a branch L -- bR and no backreactions. Changing M

further to the dot-dash line yields an unbranched,
unidirectional model which again fits the data perfectly.
As described in the preceding two paragraphs the

solution only becomes determinate if the number of true
rate constants is limited to n, which requires a unidirec-
tional, unbranched kinetic model. (Even then, permuta-
tion of rate constants leads to a quasi-indeterminacy
[11].) However, when unidirectional unbranched kinetic
models are fit to bR data taken at two different tempera-
tures, the resulting calculated spectra vary too rapidly
with temperature to be believable (11) in view of the
rather small changes in the spectra of various chro-
mophores in comparable temperature ranges. This is a

strong criterion to test proposed kinetic models, includ-
ing models more complicated than unidirectional, un-

branched models (13).
In this paper the criterion of the invariance with

temperature of the spectra e will supply additional
information that makes determinate the problem of
solving kinetic photocycles. The idea is that measure-
ments at NT temperatures still have ns unknown e, but
the number of known amplitudes b(A) increases to
NT(ns). Before completing the comparison of knowns to

bR K
60 XM L

CZ 40/l
ts~~~~~"

Lu 20FC

WAVELENGTH A

FIGURE 1 An example of three different sets of spectra that yield
three distinct kinetic models when applied to the same kinetic data.
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unknowns, it is necessary first to discuss the temperature
dependence of the Kij.

It is usual to suppose that the true rate constant Kij for
the individual decay from j to i has an Arrhenius
temperature dependence, such as

Kij(T) = f0 exp (-AFj/kT)
= f0 exp (AS1j/k - AE1jIkT)

fij exp (-AE1j/kT), (8)

where AF1j is the free energy of activation for thej-+ i

decay which can be decomposed into entropic TASiJ and
energetic (or enthalpic) AE1j parts. The factor fo equals
kTIh in Eyring's absolute rate theory (3). In the exam-

ples in this paper fo will be independent of temperature.
Either case can be treated equally easily, and both
should be tried when analyzing data. The backreaction
i --j obeys a similar relation to Eq. 8 and

AEji = AEii + Ej - Ei, (9)

where Em is the energy of state m. If i and j were pure
nondegenerate quantum states, then AS1i would equal
ASji and both would represent the entropy of the
activated complex. But for intermediate states of com-

plex biological processes, it seems prudent to allow that
the degeneracies of intermediates i and j may be vastly
different, so

ASji = ASij + Sj - Si (10)

and fij need not equal fj in Eq. 8. Eqs. 9 and 10 lead
directly to the detailed balance Eq. 3. Additionally, Eq. 8
shows that two parameters, fii and AEij, determine each
of the NK independent rate constants Kij for all tempera-
tures. Therefore, if the temperature dependence obeys
an Arrhenius form, the number of unknowns in the K(T)
matrices is only 2NK for all temperatures, and the
examples in this paper will assume this. However, it
should be emphasized that it is not necessary to make
this assumption, although then the number of unknowns
in the K(7) matrices increases to NlNK. If the Arrhenius
assumption is not made, then the solution of the kinetic
model allows the determination of the temperature
dependence of the true rate constants.

Let us now resume the counting of knowns and
unknowns to determine whether the visible spectro-
scopic problem can be solved. Before beginning the
main work, however, two obvious points should be
mentioned. First, it is well-known that the global unique-
ness of solutions to nonlinear problems cannot be
guaranteed by counting knowns and unknowns, but it is
still useful in determining local uniqueness. (Local
uniqueness means the absence of local degeneracy
which consists of a manifold or infinite number of

equally good solutions in the solution space near one

solution.) Second, various accidental degeneracies may

occur that can make a generally determined problem
underdetermined. For example, if the activation ener-

gies AEii all have the same value AE in Eq. 8, then there
will be no new information gained at a new temperature
since each p(t, I) will only be a function of a single
homogeneous variable, t exp [-AE/kTJ.
The next point is less obvious and more important

than the points in the preceding paragraph and will
occupy the remainder of this section. In counting the
difference ND between unknowns and the amount of
information in the data for NT temperatures, s wave-

lengths, n intermediates and 2NK = n(n + 3) - 2
independent rate constants (assuming an Arrhenius
relation), it is easy to make an error. The number of
unknowns Nm consists first of the number of indepen-
dent rate constants and to that we will temporarily add
the number ns of extinctions at s measured wavelengths
to obtain the estimate Nu. = n(n + 3) - 2 + ns.

Likewise, the amount of information, Ni.f, necessary to
describe the data is the number of apparent rate
constants, nNT, plus the number of amplitudes, nsNT,
yielding the estimate ND = N1Nf - N = (NT - 1)ns +
NTn - n(n + 3) + 2. Because local uniqueness should
generally be obtained when ND becomes positive, this
analysiswould suggest that onlyNT = 2 temperatures are

required provided that enough wavelengths s are mea-

sured. In fact, this is not true as was discovered from
numerous examples, one of which will be described in
the next section.
One might be led intuitively to suspect that the

analysis in the preceding paragraph is incorrect on the
grounds that adding many more wavelengths necessarily
means spacing the wavelengths closer together and that
there would be little extra information from two wave-

lengths very close together if the peaks in the spectra of
the intermediates are broad. While this intuitive argu-

ment is undoubtedly valid, it is irrelevant. In fact, no

additional kinetic information is gained by measuring at
more than n wavelengths due to an intrinsic linear
dependency in the problem.
The analysis begins with Eq. 7 which will be written

E(X) = C-'(T1)b(X, T,) = C-'(T2)b(X, T2) = .** (11)

where the linear amplitudes b(X, I) should be thought of
as known quantities describing the data whether one

determines them or not. For NT temperatures the
number of vector equations is NT for each X. Because
each vector has n components and because X is mea-

sured at s wavelengths, there are NTns equations in Eq.
11. However, in an n-dimensional vector space there are

only n linearly independent vectors. Therefore, once n
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values of X have been found such that the set {b(Xj, T)}

are linearly independent, for any subsequent Xm, b(Xm, 7)
is linearly dependent upon the set {b(X,, 7)1. If this
linearly independent set obeys Eq. 11, then any addi-
tional linearly dependent b(Xm, 7) also automatically
obeys Eq. 11. Therefore, there are only N1n2 linearly
independent equations in Eq. 11, for s 2 n. An impor-
tant consequence is that for determining the kinetic
model K(T) there is no information to be gained by
considering more than n wavelengths.

In addition to the b(A) which are part of the equation
counting in the preceding paragraph, there are also NTn
apparent rates k*(7) which require NTn equations
involving the K(T) matrices, for a total of NTn(n + 1)
equations. If there is an Arrhenius type relation, the
number of unknowns is 2NK + n2. If there is no known
temperature relation, the number of unknowns is
NTNK + n2. In either case, the number of spectral
unknowns to be counted is only n2 in accordance with
the linear dependency derived in the preceding para-
graph. Therefore, the number of equations minus the
number of unknowns, ND, is

ND= NTn(n + 1) - n(n + 3) -2 - n2, (12)

if there is an Arrhenius relation and

ND= NTn(n + 1)- (NTI2)[n(n + 3) -2] - n2

if there is no temperature relation.
Whether or not there is an Arrhenius-type tempera-

ture relation, it then follows easily from Eq. 12 that for
kinetic processes with n 2 3 intermediates there is local
uniqueness, i.e., ND > 0, if and only if there are three or

more temperatures,

NT 2 3 for local uniqueness for n 2 3, (13)

when a full set of n linearly independent wavelengths is
included in the data.

4. DIRECT NONLINEAR LEAST SQUARES
METHOD

Previously, no direct method has been described to
implement the constraint that the visible spectra of the
intermediates be invariant with temperature, and this
criterion has been used simply to test kinetic models
rather than to derive them. This section first describes a
method to incorporate this constraint into nonlinear
least squares procedures to derive kinetic models from
data in the visible. Then, two direct methods to treat the
vibrational problem are also described.

Let us first rewrite Eq. 5 with an explicit temperature
dependence.

AA(t, T; X) = zpi(t, T)Ei(X) _ p(t, T) * e(X). (14)

The basic idea is to fit the data simultaneously at more
than one temperature as well as at all times and
wavelengths. The trick in the use of nonlinear least
squares procedures is to treat the data with the same

wavelength but at different temperatures in the same

way as data at different times, thereby automatically
requiring the linear coefficients, ,j(X) in Eq. 14, which
are the spectra, to be the same for different tempera-
tures. The data at additional temperatures are literally
added in the time dimension of the data arrays.
The parameters that are varied in Eq. 14 to obtain the

best fit to the data are the spectra e and the basic
parameters required to describe the K(T) matrices as

described at the end of section 3. For each iteration in
the nonlinear least squares search the nonlinear func-
tions p(t, T) are calculated from the K(T) matrix using
the basic program described in the paragraph containing
Eq. 5 in section 2. It is required to do this calculation at
each iteration for NT temperatures, and the partial
derivatives must be done numerically which requires
essentially NK additional calculations at each tempera-
ture, so the analytic method of calculating p(t) described
in section 2 helps to reduce cpu time. Also, the nonlinear
least squares program that drives the search is the
VARP program of Golub and Leveque (4). This pro-

gram ingeniously reduces the dimensionality of the
search space to the number of nonlinear variables and
needs only consider the linear variables, the e, as a linear
least squares problem once at the end of the calculation.
Because the number, 2NK, of nonlinear variables in the
K matrices, is roughly equal to the number of linear
variables, ns, the dimensionality of the parameter space

is effectively halved. In practice, choosing the basic
nonlinear variables to be the logarithms of the indepen-
dent rate constants at the highest and lowest tempera-
tures appears to work best, even though a more symmet-
rical alternative choice is thef1i and AEii in Eq. 8.
A direct method to obtain the photocycle K from

vibrational data for p(t) has some similarities to the
preceding method for treating data in the visible. The
basic parameters to be varied in nonlinear least squares

fitting are the logarithms of the independent rate con-

stants Kij in the K matrix, so negativity of rates is
prevented. For each iteration the nonlinear functions
p(t) are calculated from K, with detailed balance auto-
matically incorporated, and compared to the measured
p(t). Thep(t) may be treated in two different ways. The
first way lists all the data for all t and i as one vector. This
means that there is only one linear parameter in the
fitting. The second way uses n vectors, one for each pi,
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with length equal to the number of times observed, and
all the pi are fit simultaneously the same as for the first
way. This means that there are n linear parameters that
may be used to rescale the concentrations if the original
normalizations are incorrect.

It is also important theoretically to mention a second
method of solution of the vibrational problem. This
consists first in using the VARP program to obtain the C
matrix and the k* in Eq. 4. Second, the basic Eq. 1 may
be written as n2 linear equations

k Cii = I Kun Cjml
m=l,n

60

40

20

0

I

(15)

which may then be solved uniquely for the Kin. The
defect in this method compared with the one in the
preceding paragraph is that it does not easily permit
inclusion of the detailed balance constraint or nonnega-
tivity of the basic rates. Nevertheless, it is worth mention-
ing because it is easy to see from Eq. 15 that there are as

many equations as unknowns. This emphasizes theoreti-
cally that the photocycle K is uniquely determined by the
p(t). It is also important to emphasize, when comparing
to the method for data in the visible, that this determina-
tion requires data at only one temperature.

5. EXAMPLES

It is important to test the new nonlinear least squares
program on data whose kinetic model is known. Because
the kinetic models for real systems such as bacterio-
rhodopsin are not known, it is necessary to turn to data
generated analytically, using the program described in
connection with Eq. 5. The most precise data are
accurate to - 10 significant figures and will be called the
noiseless or a0 = 0 data. The data examined in this
section come from models with n = 3 intermediates,
which is the smallest n with all the essential features of
complex kinetic models, such as having a dependent rate
constant due to detailed balance. Noisy data are pro-
duced with an additive random Gaussian distribution
with rms width a.. Also, in the case of vibrational data,
all pi(t) smaller than ao are set equal to zero and no
negative values are allowed.

A. Visible spectroscopy
The spectra of the three intermediates used to construct
the data are shown in Fig. 2, but not all 10 wavelengths
are used in each calculation.

First, consider a kinetic model, to be called Ml, which
has strong backreactions and no Kij rate very small
compared with the other ones. For the temperatures 300

e0 4u Ae 56
Wavelength x

640 720

FIGURE 2 The spectra of the intermediates used in the examples in
this paper. Intermediate 1 is indicated by open circles, intermediate 2
by open squares, intermediate 3 by open triangles, and the final state 0
is indicated by solid squares. The crosses at 400, 480, 560, and 640 nm
show results to be described when fitting data with 0.1% noise.

TALE 1 K matrices at two temperatures for the Ml model

T= 300K T= 280K

-11.500 10.000 1.000 -3.582 3.041 0.435
10.000 -15.000 4.000 3.041 -5.633 2.206
1.000 4.000 -7.000 0.435 2.206 -3.120
0.500 1.000 2.000 0.106 0.386 0.479

and 280 K this model has the K(T) matrices shown in
Table 1, where the Kij is the rate for transition from state
j (the column index) to state i (the row index). The last
or (n + 1)st row consists of the rates K, due to branches
straight to the final state. Visible absorption data for the
Ml model at T = 300 K and for three wavelengths are

shown in Fig. 3 for noiseless data and for data with 1%

0.5 -

, .

10-3 lo-2 10-I 10° lo,

FIGURE 3 Visible absorption date for the MI model for A = 440 nm
(triangles), 520 nm (squares), and 600 nm (circles) at T = 300 K. The
noiseless data are shown by the smooth curves and the data with 1%
noise (ar = 0.01) are shown by the solid symbols.
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TABLE 2 Result using two temperatures only

Initial K-1 Final K

-12.500 9.000 0.614 -12.136 9.858 0.984
11.000 -13.500 3.000 10.009 -14.674 3.891
1.000 4.000 -5.614 1.101 4.286 -6.688
0.500 0.500 2.000 1.026 0.530 1.813

noise. Notice that theA (t, X) are of order unity because
of the choice of scale for e(A) in Fig. 2.

Noiseless data from model Ml at s = 10 wavelengths
were analyzed using only two temperatures, T = 300 and
260. The program successfully fit the data to high
accuracy (or = 101o). Table 2 shows the initial and final
K(T300) for only one temperature. Although the final K is
much closer to the true K in Table 1 than the initial K-1,
it is distinctly different. Also, the spectra from this
calculation differ noticeably from the true spectra. A
similar example, but with a different initial K further
from the true one is shown in Table 3. Again, the
program successfully fits the data to high accuracy, but
the final K and the spectra are different from the true K
and also from the result when K-1 was the initial matrix.
The results in Tables 2 and 3 are consistent with the
theory in section 3 which states that with only two
temperatures the problem is indeterminate with a local
infinity of possible solutions which fit the data to within
the very high precision of these data.
The same noiseless Ml data were fit using three

temperatures, 300, 280, and 260 K, again with variable
initial K(T). For either of the initial K-1 or K-2 shown in
Tables 2 and 3 the program converged to the true
solution in Table 1 for the K and the e in 10 cpu
minutes on a microvax II. This supports the theoretical
conclusion that three temperatures suffice to make the
problem locally determinate. As the number of wave-

lengths included in the calculation was reduced from
s = 10, the number of iterations in the nonlinear least
squares fitting increased, but the cpu time per iteration
decreased. For the initial conditions shown in the
preceding two tables, the actual running time decreased
steadily as s was reduced from 10 to 4. When s was

reduced further to s = 3 the running time increased
again, sometimes by a great deal. These results are in
agreement with the analysis in the preceding section that
only as many wavelengths as intermediates are required
for local determinateness, but they also indicate that
taking additional wavelengths facilitates the computa-
tional process.
An additional issue is whether the resulting rate

constants and spectra are determined better with noisy
data when more wavelengths are used than the theoreti-
cal minimum. Table 4 shows the errors for the rate

TABLE 3 Resukt using two temperatures only

Initial K-2 FinalK for two T's

-13.000 9.000 0.375 -11.434 10.380 0.947
12.000 - 13.000 3.000 9.662 -14.948 4.202
0.500 3.000 -5.475 0.830 3.955 -7.117
0.500 1.000 2.100 0.942 0.613 1.968

constants. The data in column two consisted of a subset
of four wavelengths from the data in column four and
the noise in the data in column three was scaled by a
factor of SF = (10/4)**0.5 = 1.58 from the data in
column four. If the same amount of total data were
taken, then each data point from the set with 10
wavelengths would be SF times noisier than the set with
four wavelengths. In this case the appropriate compari-
son is column two with column three, for which the
errors are comparable. Even with data of equal accuracy
at each data point, increasing s from 4 (column 2) to 10
(column 4) does not dramatically improve the estima-
tion of the rates. Comparison of column 4 with column 3
shows that decreasing the noise decreases the errors, as
expected.
The question of global determinateness was ad-

dressed by starting with initial K further from the true
solution than K-1 or K-2. The following two initial K-3
and K-4 both converged to the same false final Kf shown
in Table 5. This confirms that there are secondary
minima in the nonlinear least squares function for this
kind of problem. This secondary minimum fits the data
with a cr of 0.00060. This is larger by seven orders of
magnitude than the of of the true solution. However, it
corresponds to a signal-to-noise ratio of 1,500, so the
next issue to be addressed concerns the ability to

TABLE 4 Relative errors In rate constants of the MI model as
a function of number of wavelengths S and noise conditions

S 4 10 10 10 10
aro 0.001 0.00158 0.001 0.01 (tT) 0.01 (IT)

Rate
1 .2 -0.021 -0.015 -0.008 -0.021 -0.173
1 3 0.025 -0.034 -0.017 1.820 0.867
1 -4 -0.100 -0.296 -0.194 13.754 -0.340
2 - 3 -0.014 -0.038 -0.022 0.553 -0.293
2-4 -0.037 0.203 0.126 -0.862 0.235
3 -4 0.071 0.010 0.006 -0.975 0.163
2 1 0.027 0.009 0.004 -0.499 0.247
3 -2 -0.031 0.017 0.010 -0.744 -0.415

The first column lists the independent transitions. The relative errors
shown were determined by subtracting the true rate from the best
fitted rate and then dividing by the true rate. The nature of the noise in
the last two columns (five and six) is explained in the discussion.
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TABLE 5 Initial K's leading to false result

K-3 K-4 False K-f

-22.40 1.70 0.06 -15.00 3.00 0.06 -21.52 2.86 0.09
19.20 -9.20 1.50 13.00 -9.70 1.00 10.67 -9.69 1.20
2.70 6.50 -2.71 1.50 6.00 -2.06 1.65 6.09 -2.24
0.50 1.00 1.15 0.50 0.70 1.00 9.20 0.74 0.95

distinguish between the true solution and spurious
solutions when there is noise in the data.
For all values of noise cor examined, the initial K-1 in

Table 2 led to a final model close to the true model, with
errors that grew larger with cr1. (Numerical results will
be deferred to Table 8 in section 5 B.) For all values of cr

examined, the initial K-4 in Table 5 led to a final model
that was very similar to the False K-f in Table 5, again
with differences that grew with a.. For both cases the
goodness of the fit was determined as measured by the
average root mean square deviation cr of the fit (with
2NK + NTn2 subtracted from the number of data points
to account for the number of constraints). Table 6 shows
the results for or, the solution close to the true solution,
and for of, the solution close to the false solution, as a
function of the chosen noise level, cr. Table 6 shows that
as the noise level cr. exceeds the depth of the false
minimum, it becomes more difficult to discriminate the
true solution from the false one because the fits become
quantitatively comparable. (It may also be noted that a,
was distributed randomly about cra when a variety of
different seeds was used in the random number genera-
tor that produced the noise.)
The effect of relaxing the constraint that the spectra of

the intermediates are independent of the temperature
was also investigated. The spectra of the intermediates
at T = 300 K were uniformly increased by 1% and
they were decreased at T = 260 K by - 1% for an overall
variation of 2%. The resulting best fit obtained by
requiring the fitted model to have temperature invariant
spectra yielded a = 0.0053. The K and E so obtained
were comparably accurate to results obtained when a
comparable amount of noise was added.

All the rate constants in the Ml model are nonzero.

TABLE s Comparison of goodness of fit of true and false
solutions

Noise True False

0a0 a,t Of
0 10-10 0.00060

0.0001 0.00011 0.00063
0.0005 0.00054 0.00084
0.001 0.00108 0.00124
0.002 0.00216 0.00223

TABLE 7 The M2 model and an Initial guess

True K K-5

-10.00 1.90 0 -12.20 0.10 0.00
10.00 -2.90 0.19 12.00 -1.15 0.01
0 1.00 -0.29 0.10 1.04 -0.90
0 0 0.10 0.10 0.01 0.08

Next, consider a model, M2, with no branches, with
K(T,) shown as the first matrix in Table 7. The second
matrix in the table shows an initial guess, K-S. This initial
guess was based on a unidirectional unbranched model,
so the matrix elements K1,,+i were chosen close to the
apparent rate constants. The other matrix elements
were all chosen to be small but not zero because that
would make the derivative matrix in the nonlinear least
squares program singular. Starting from K-S the pro-

gram did not converge, but it consistently pushed K4, to
much smaller values, suggesting that this branch should
be eliminated. The program was modified so that any set
of the original Kjj could be eliminated, thereby reducing
the number of nonlinear parameters. In the next calcula-
tion with K41 eliminated, the program drove K42 to much
smaller values. The process was repeated with both K4,
and K42 set to zero, and the calculation then drove K3, to
much smaller values. Finally, eliminating all three
branches (K3, = K4, = K 42 = 0) resulted in rapid
convergence to the true model with backreactions (K12
0 and K23 0).

B. Vibrational spectroscopy
For comparison with the visible spectroscopy results,
results for the Ml model will also be given for the
vibrational spectroscopy solution. The data for T =

300 K consist of the pi(t). These are shown in Fig. 4 for
noiseless data and for data with cr = 0.01. Because the

0.

0-3 10-2 10-1 i0 10o1
LOG t

FIGURE 4 The concentrationsp(t) of the intermediates, i = 1, 2,3, vs.
LOG,o of the time. The solid curves show the noiseless pi(t) and the
solid symbols showpi(t) for 1% noise, a. = 0.01.
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intermediates are strongly coupled by backreactions, the
final decays of all three intermediates are governed by
the smallest apparent rate constant.
The great simplicity in the results for K matrices from

vibrational spectroscopy compared with visible spectros-
copy is that they appear to be globally unique. Using the
first method for the vibrational problem described in
section 4 and starting from either the initial K-1 in Table
2, the initial K-2 in Table 3 or the initial K-3 or K-4 in
Table 5 yields the exact K shown in Table 1 when
noiseless data are examined. The same exact result is
also obtained using the second method for the vibra-
tional problem described in section 4 when the VARP
program is given reasonable estimates of the apparent
rate constants, obtained, for example, by simple graphi-
cal methods (10). The first program takes about half a
minute cpu time on a microvax and the second program
runs even more quickly.
The results for the K matrices when noise is added to

the vibrational data are shown on the left-hand side of
Table 8 when the first method is used. The K matrices
obtained when noise is added to the p(t) are the best
solutions when the detailed balance and nonnegativity
constraints are imposed, and the p(t) calculated from
these K matrices agree with the initial data to within the
known noise level. When the second method of compu-
tation was employed, the fits were slightly better and the
final K matrices violated the physical criteria of detailed
balance and nonnegativity; both differences would be
expected since the corresponding constraints were not
imposed upon the fit.
As can be seen by comparison with the noiseless K

matrix at the top of Table 8, increasing noise leads to
larger errors in the determination of the true rate
constants. Finally, for convenient comparison in the
discussion, the K matrices obtained from the visible

TABLE S Resuts for K's for vibrational dat and data In the
visible

0a0 K-Vibrational K-Visible

-11.50 10.00 1.00 -11.50 10.00 1.00
0 10.00 -15.00 4.00 10.00 -15.00 4.00

1.00 4.00 -7.00 1.00 4.00 -7.00
0.50 1.00 2.00 0.50 1.00 2.00

-11.56 10.08 1.08 -10.99 10.62 1.12
0.002 9.94 -14.82 3.84 9.50 -15.38 3.72

1.07 3.85 -6.96 1.05 3.89 -7.16
0.55 0.89 2.05 0.43 0.87 2.32

-11.96 10.64 1.45 -8.20 14.55 1.91
0.015 9.55 -13.62 2.62 6.43 -17.74 1.74

1.48 2.98 -6.71 1.55 3.19 -7.68
0.94 0.00 2.64 0.22 0.00 4.02

spectroscopic data with the same level of noise are
shown on the right-hand side of Table 8.

6. DISCUSSION

A. Visible spectroscopy
In general a unique description of the kinetics of
spectroscopic data in the visible for systems with broad
absorption bands is impossible unless there are con-
straints. The constraint utilized in this paper is that the
spectrum relative to the initial bR state of each interme-
diate is invariant with temperature. While there may be
exceptions, such as when the temperature is dropped
very low or when the configuration of a protein under-
goes a structural phase transition with temperature, this
constraint would seem to be an appropriate one when-
ever the concept of a chemical intermediate is appropri-
ate. An apparent exception would be if there were a fast
equilibrium between two intermediates with different
spectra which would be difficult to distinguish from one
intermediate with a composite spectrum that would vary
with the temperature dependence of the fast equilib-
rium; such an exception can easily be treated by an
extension of the methods in this paper. The results of
imposing this constraint upon data which violated it
were investigated. Roughly,p% variations in the spectra
were equivalent to adding - 0.3p % noise to the data.
The most important theoretical result in this paper

concerns the kind of data in the visible required to allow
for a unique description of the bR photocycle. This
paper proves conclusively that it is necessary to make
measurements at three temperatures at least. Fortu-
nately, the number three is independent of whether
there is or is not an Arrhenius type relation, so this issue
need not be resolved before obtaining data. Of course, if
data at additional temperatures were available, they
could then be used in the fitting or they could be used to
check the result obtained from the other three tempera-
tures.
The reason that two temperatures do not suffice is

that there are only n linearly independent spectra when
there are n intermediates. This in turn means that doing
measurements at more than n linearly independent
wavelengths is theoretically redundant for obtaining the
basic kinetics, and this was verified by explicit computa-
tions for examples without noise and with noise (com-
pare columns two and three in Table 4). This strong
statement is softened somewhat by the observation in
this paper that an actual calculation may proceed most
rapidly when n + m wavelengths are included, where, in
the examples in this paper, m equals one. There are also
other reasons to include more than the minimum num-
ber of wavelengths in experiments. The preliminary step
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of determining the number of intermediates n may
require more than n wavelengths, as in the work of
reference 18 where s = 15 wavelengths were measured,
even though there were only n = 7 intermediates.
Furthermore, it is desirable to have enough wavelengths
to be able to interpolate to reliable continuous spectra
after the K-matrices are obtained.
As would be expected, the results for the K-matrix

and the e are better when noisy data taken at more

rather than fewer wavelengths are analyzed simply
because there are more data points, each with equal
noise, as can be seen by comparing column four of Table
4 with columns three and two. Therefore, if one has data
at a larger number of wavelengths than the theoretical
minimum, it makes sense to use them in the analysis.
The more interesting question concerns optimal design
of apparatus to solve the kinetics of photocycles. The
next three paragraphs discuss two designs in current use.

The first design (6, 17) measures many wavelengths
simultaneously by using a measuring beam which con-

sists of white light. The measuring beam is flashed or

gated so that its broad spectrum is not actinic. Although
this design yields data with little noise from wavelength
to wavelength at the same time in the photocycle, the
experiment must be repeated for each measuring time,
so there is substantial noise from time to time. Column
five in Table 4 shows that fitting data with 1% noise just
along the time direction and not along the wavelength
direction gives very poor results for the rate constants; in
fact, the results are as poor as for general 1% noise in
both the time and wavelength directions.

In the second design (18) data are taken with a fast
detector using a measuring beam that is on during the
entire photocycle and which is made weak to minimize
actinic effects by filtering to a small wavelength range.
This yields data one wavelength at a time with small
errors along the time direction but with larger errors (of
order 1%) in the wavelength direction. With data that
have small noise (say 0.1%) in the time direction, but
larger noise (say 1%) in the wavelength direction, the
results for the rate constants are independent of the
latter larger noise; only the spectra are incorrect at the
1% level. This suggests that the second equipment
design is superior to the first design for the purpose of
determining the K-matrix which is the necessary prereq-
uisite for obtaining the spectra of the intermediates.
There is, however, a problem with the second design,

because there is also noise between measurements at
different temperatures, even at the same wavelength.
(Such noise also occurs for the first design, and was

included in column five of Table 4). The result of fitting
data with 1% noise in the wavelength and the tempera-
ture directions is shown in the last column (six) of Table
4. While these results are better than the results in

column five, the errors are still unacceptably large. One
way to solve this problem is to eliminate the wavelength
errors in data taken using the second design by normaliz-
ing these data at all times to data taken at one (or a few)
delay times using the first design. This still leaves noise
between different temperatures, but this has been easily
accommodated in the fitting program described in this
paper by adding one scale factor for each temperature.
These scale factors are required in any case because the
fraction cycling may be different at different tempera-
tures, and one may see from the formulae developed in
section 3 that they do not affect local uniqueness of the
solutions. Another way to solve this problem is to use a

scale factor for each wavelength at each temperature;
while this requires more (NTs) scale factors, local
uniqueness can still be guaranteed. The VARP driver
program does not allow for this option, but other driver
programs do (R. H. Lozier, manuscript in preparation).
In contrast, the number of scale factors that would be
required to eliminate the noise in the time direction for
data taken using the first design is too large for local
uniqueness because there would have to be a scale factor
for each of at least 40 times and three temperatures.

In general, for nonlinear problems, there may be
several different descriptions that fit the data equally
well; such degeneracy may be classified into local vs.

global degeneracy. Local degeneracy of the fundamen-
tally linear kind is removed by requiring that the number
of parameters describing the data exceeds the number of
parameters to describe the solution; in this paper this is
guaranteed by having data at three or more tempera-
tures. One could also conceivably have accidental local
degeneracy of a nonlinear kind, such as occurs when the
activation energies are equal for all the rate constants,
but this is not a general occurrence. Degeneracy may

also be nonlocal, i.e., global. In this case there are

different solutions, each of which is locally the best one.

It is appropriate to distinguish two types. The first type is
true degeneracy, in which noiseless data could be fit with
no error by two different kinetic descriptions. There is
no way to resolve true degeneracy, but no examples of
this have been found in this work. The second type of
global degeneracy consists of a true solution, which fits
noiseless data perfectly with a, = 0, and a false solution,
which is locally the best solution but which does not fit
noiseless data perfectly, a, > 0. This type of global
degeneracy becomes difficult to distinguish from the first
type when the data contain noise, ao. > 0, especially
when a. sufficiently exceeds cr, as was illustrated by
Table 6 for the main example in this paper. This kind of
degeneracy is, however, resolvable in principle by obtain-
ing better data with a noise level cr cf.
When deciding what kind of data to take, the need to

improve the noise level to remove global degeneracies
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should be coupled to the result that more than n
wavelengths are redundant. From the results in this
paper there is a clear preference to concentrating on
high precision data, especially in the time dimension, at
fewer wavelengths, than to measuring many wavelengths
with less precision.
The principle methodological advance in this paper

for treating spectroscopic data whose intermediates
have broad overlapping bands is the description and
implementation of a direct method to obtain locally
unique kinetic descriptions from data. This method
organizes data in a way to impose temperature invari-
ance of the spectra, it uses fast Laplace transform
methods for calculation of the kinetics, and it uses the
nonlinear least squares VARP driver program (4) which
eliminates the linear spectral variables from the search.
Instead of building up from less general to more general
kinetic models, this method starts with the most general
model where all possible transitions between intermedi-
ates are allowed. When appropriate, it works down in a
systematic way to less general models with some rate
constants set to zero. This seems, in principle, to be less
prone to missing the best kinetic description. However,
as with any method, initial models to start the calcula-
tion must sample enough of the possible solution space
not to miss the best solution. Nevertheless, this method
provides a larger and more systematic searchlight for
finding the best kinetic description to spectroscopic
photocycles.

B. Vibrational spectroscopy and
comparison to visible spectroscopy
The problem of extracting the kinetic model embodied
by the K matrix is relatively straightforward when the
p(t) are measured directly. There is no need to consider
more than one temperature and the method of solution
is virtually free of the problem of false solutions or of
having to consider many possible starting values in the
computer programs. These features give the vibrational
approach a clear advantage over the visible approach to
such problems.
As may be seen in Table 8, the numerical results for

the K are quite good when the noise level is ao = 0.002.
As the noise level is raised to or. = 0.015, however,
qualitatively incorrect conclusions can be drawn, such as
the absence of a branch from the second intermediate to
the final state (small K42 in the table). Nevertheless, the
accuracy of the K results is comparable or perhaps even
slightly superior to the accuracy obtained from data in
the visible with the same noise level, as can be seen by
comparing the results in Table 8.
The lowest noise level obtained so far for visible

spectroscopic bR data (18) has or. near 0.002 when

normalized according to the convention followed in this
paper. From Table 8 such a low noise level yields
reasonable values of K for the true solution. However,
this noise level is large enough that it may be difficult to
distinguish the true solution from false solutions, as
indicated in Table 6.
The noise level obtained from the most accurate

vibrational data (1) is presently -0.015 or nearly 10
times poorer than for data in the visible. The above
discussion regarding Table 8 suggests that the resulting
K would be less accurate than that obtained from data in
the visible and that it might even be qualitatively
incorrect.

For the Ml model focussed on in this paper, there
appears to be an obvious advantage to using both visible
and vibrational spectroscopy. The K obtained in Table 8
from vibrational data with cr. = 0.015 is much closer to
the K obtained in Table 8 from data in the visible with
cr = 0.002 than it is to the false solution in Table 5. This
suggests that the vibrational result, which does not suffer
from the nonuniqueness problem, may be used to
discriminate between the more accurate, but multiple,
solutions obtained from data in the visible. Also, the less
accurate vibrational result, which can be obtained much
more easily computationally with little ambiguity regard-
ing starting values, can then provide good starting values
for the calculations ofK from data in the visible.
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