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ABSTRACT  In this paper a new technique is proposed to determine the acoustic properties as well as the thickness (and volume) of
biological cells. Variations of thickness, density, acoustic wave velocity, stiffness, and attenuation coefficient of a living or dead cell
are obtained by scanning the cell by an acoustic microscope. The distance between the cell and the microscope lens is varied and
several voltage curves are thus obtained. These curves are then inverted by simplex optimization technique to obtain the cell
parameters. The spatial resolution of the method is limited to the resolution of the scanning acoustic microscope. It allows to take
advantage of the full range of frequencies and amplification of the microscope. Characteristic distributions of stiffness are
exemplified with an endothelial cell in culture. The main part of the thin, lamellar cytoplasm has high stiffness, which drops close to
the lamella/cell body transition region and only slightly increases again through the central part of the cell. Acoustic attenuation
seems to be related to two factors, cytoplasm accumulation (in the lamellar parts) and scattering in the central part rich in

organelles.

INTRODUCTION

The mechanical properties of cells are not well under-
stood. There are good reasons to assume physiological
significance in differentiation, metabolic control, and
interaction of cells with their environment (Bereiter-
Hahn, 1987c, 1988; Elson, 1988; Levesque et al., 1989).
This is obvious for blood cells which are deformed while
passing through or traversing capillaries (Worthen et al.,
1989; Waugh and Hochmuth, 1987), and it also applies
to bone and muscle cells. Cytoplasm is best modeled as a
viscoelastic body resisting strain by elastic stiffness and
exhibiting relaxation on being deformed. Thus the speed
and frequency of force application are determinants for
the value obtained for elastic stiffness. Pure elasticity
measurements are possible only at relatively fast and low
amplitude force applications.

Acoustic microscopy in principle allows to distinguish
between modulation of the signal by the viscous proper-
ties of a material and its elastic properties. The first is
represented by acoustic attenuation, the latter by imped-
ance (density multiplied by the acoustic wave velocity).
Deformation by the ultrasound waves is extremely small
(in the subnanometer range), and frequency is very high
(1-2 GHz). Thus acoustic microscopy is a unique tool for
the investigation of mechanical properties of cells.
However, the methods of analysis of viscoelastic bodies
are still in their infancy.
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Research Group, Johann Wolfgang Goethe University, P.O.B. 11 19
32, D 6000 Frankfurt/M, FRG.

In the last decade several efforts have been made to
obtain elastic properties of a variety of materials by the
acoustic microscopy technique. This is done by analyzing
the V(z) curve which is also known as the acoustic
material signature (AMS) of the investigated specimen.
V(z) curves show the variation of voltage generated by
an acoustic microscope as the distance between the
microscope lens and the specimen varies. Different
researchers used V(z) curves for measuring different
properties of materials; Kushibiki et al. (19824, 1983)
evaluated velocity and attenuation of surface waves
analysing the V(z) curves, Weglein (1980, 1982) mea-
sured coating thickness; Kushibiki et al. (1982b) sug-
gested the possibility of using it for material anisotropy
investigation, Briggs and his associates (Daft et al., 1985)
used it for crack detections, Yamanaka et al. (1982)
measured rates of surface hardening, Kino and his
associates (Liang et al., 1982) measured residual stress
patterns in materials, Hildebrand and Rugar (1984),
Litniewski and Bereiter-Hahn (1990) determined elastic
properties of living and dead cells from V(z) analyses.
Every investigator computed V(z) curve with different
simplifying assumptions which are appropriate for anal-
ysis. Then experimental V(z) were properly compared
with theoretical V/(z) to obtain parameters of interest.

The simplex optimization technique (Nelder and
Mead, 1965) is applied to the acoustic microscopy
analysis to obtain thickness, density, acoustic wave
velocity, and attenuation coefficient of living or dead
cells. Investigations of biological cells by acoustic mi-
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croscopy have been performed among others by Johnson
et al. (1979), Hildebrand et al. (1981, 1982), Hildebrand
and Rugar (1984), Bereiter-Hahn (19874, 1987b), and
Litniewski and Bereiter-Hahn (1990). Some of these
investigations outlined a qualitative connection between
image contrast and cellular elastic properties (Johnston
et al., 1979; Hildebrand et al., 1981, 1982; Bereiter-
Hahn, 1987a) and some others (Hildebrand and Rugar,
1984; Litniewski and Bereiter-Hahn, 1990) tried to
obtain quantitative measurements of the elastic proper-
ties of cells on a microscopic scale. However, some
difficulties are faced by the investigators who try to
obtain quantitative measurements of cells. One such
difficulty is the cell thickness measurement. The cell
thickness can be obtained from the interference pattern
produced by rays reflected from the top of the cell (at
the saline—cell interface) and from the bottom of the cell
(at the cell-substrate interface). Because of this interfer-
ence the cell is observed with a series of bright and dark
rings in its acoustic image. These fringes are formed by
constructive and destructive interferences due to the
acoustical path difference between the two reflected
rays, thus each ring identifies a region of constant cell
thickness. A change of M4 in cell thickness produces
180° change in phase between the two reflected rays and
hence a bright ring changes to a dark ring or vice-versa; A
is the longitudinal wave length of the acoustic wave in
the cell. Thus, locations of the rings are correlated with
the topography of the top surface of the cell, much as a
topographic map describes the contour of a land surface.
However, several difficulties are associated with the
thickness measurements by counting such rings: first, the
wavelength in the cell is not exactly known, one can at
the most say that it is approximately equal to the
wavelength in water. Thus it introduces some error.
Secondly, the resolution (minimum measurement possi-
ble) of this technique is A\/4, so any change in thickness
which is smaller than A4 cannot be detected by this
technique. Thirdly, near the edge the cell thickness
might be <\/4 or the first observable dark ring near the
edge can correspond to a thickness of A4 or any odd
multiple of A/4. Thus there is a high uncertainty in the
edge thickness measurement. The difference in cell
thickness between the edge and any point of interest can
be estimated by counting rings between the edge ring
and the ring passing through that point. So if there is an
error in estimating the edge thickness then that error is
introduced into all subsequent thickness measurements.
In addition to the different sources of error mentioned
above, it should be also kept in mind that since an
increase as well as a decrease in cell thickness changes a
dark ring to a bright one or vice-versa one cannot decide

in which direction the cell thickness is increasing by only
observing the ring pattern.

Thus there is more than one possible source of error
in cell thickness measurements by the method using
interference ring counting. An error in the thickness
measurement would give rise to errors in the calculation
of cell attenuation and cell impedance as well.

The method proposed in this paper avoids shortcom-
ings of the presently available techniques, spatial resolu-
tion, and thickness measurements are not limited to the
distances of interference maxima and minima. Temporal
resolution, however, is decreased because several scans
at different focus levels are required for the calculations.

2. THE CELL MODEL

The following considerations are based on the appear-
ance of cells in culture. The cell and the substrate (e.g., a
glass or a quartz coverslip) are modeled as a layered
object similar to a previous study by Litniewski and
Bereiter-Hahn (1990). The assumed layering is shown in
Fig. 1. It consists of a liquid above the cell, a layer of
cellular material and a semi-infinite substrate beneath
the cell. The elastic properties of the liquid and the
substrate are known while the elastic properties of the
cell are to be evaluated. The basic assumption of this
model is that the cell is flat over the extent of the
acoustic beam. For simplicity, the model also assumes
that the cell is closely adherent to the substrate, that the
cellular material is homogeneous and that the acoustic
microscope is measuring an average of the elastic
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FIGURE1 Schematic diagram of the experimental setup. Ray 1 is the
critically reflected ray at Rayleigh angle, ray 2 is reflected from the top
of the cell layer, ray 3 is reflected at the cell-substrate interface, ray 4 is
reflected twice by the cell-substrate interface. Focal point shown in the
figure is the point of focus in the saline in absence of the cell and
substrate.
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properties of this homogeneous region. Individual cell
elements such as plasmamembrane, microfilaments, nu-
cleus, etc. contribute to this average value. Whether a
layer of culture medium between the cell and its substra-
tum must be considered depends on the cell type and on
the thickness of this space. The influence of such a layer
is discussed in section 8. Relevant elastic properties for
the model are given in Table 1. In this table P- and
S-waves represent compressional (or primary) and shear
(or secondary) waves. Both these two types of waves can
propagate through a material which has nonzero shear
modulus. However, only a P-wave can propagate through
a liquid which has no shear strength. Acoustic waves are
also P-waves because they produce only longitudinal (or
normal) stresses and no shear stresses.

3. V(2) COMPUTATION

The microscope lens is located above the cell as shown in
Fig. 1. A coupling fluid (usually saline) connects the cell
and the lens. It is now well known (Weglein, 1979;
Parmon and Bertoni, 1979; Quate, 1980) that after being
reflected by the object, principally two types of rays can
reach the transducer, which is mounted at the top of the
lens rod. One type of rays are critically reflected rays,
generally at Rayleigh angles, ray 1 in Fig. 1. This ray
undergoes some horizontal shift at the cell-substrate
interface (Bertoni and Tamir, 1973). The second type
are centrally reflected rays which strike the object
vertically (rays 2, 3, and 4 in Fig. 1). Ray 2 comes back to
the lens after being reflected by the top surface of the
cell. Ray 3 reaches the transducer after being transmit-
ted into the cell and reflected by the substrate. There are
other rays (such as the ray 4 in Fig. 1) which go through
multiple reflections inside the cell and then return to the
lens. However, the intensities of these rays are small
compared with other rays, hence one can neglect these
third and higher order reflections.

In Fig. 1 the radius of curvature of the lens is denoted
by r, F is the focal length of the lens, and z is the distance

TABLE 1 Mechanical properties of cells, coupling fluid,
substrate, and lens material

P-wave S-wave Attenuation
Density speed speed coef.
Material r a B a

gm/cc km/s  km/s 1/pm
Saline/Water (Coupling

between the focal point and the cell-substrate interface.
We assume z to be positive when the focal point is below
the interface as shown in the figure. The focal length (F)
and radius of curvature (r) are related in a complex
manner (see Kundu, 1990), however for small o,/a or
small lens angle this relation is simplified to

F=rl(1 - ofay), (1)

where o; and o, are acoustic wave velocities in the
coupling fluid and the lens material, respectively.

3.1 V(2) of cell on substrate

Let us first obtain the voltage generated by ray 2. The
distance traveled by ray 2 in the coupling fluid is
2(F — z — t ), where ¢, is the thickness of the cell. So the
phase change and the attenuation of the ray for traveling
this path is given by exp [2ik,(F — z — t,)} and
exp [—2a(F — z — t,)}, respectively, where a, is the atten-
uation coeflicient in the coupling fluid and k,(=Q/«) is
the compressional wave number in the coupling fluid,
is the circular frequency of the acoustic wave. To obtain
the amplitude of the reflected beam, one needs to
multiply the incident beam strength by the reflection
coefficient R(m,, m,, ®), where m, is medium 1 that
contains the incident and reflected beams. The incident
beam is reflected by medium 2 or m,, and O is the angle
of incidence. The expression of R(m,, m,, ®) is given in
the Appendix. So in our case, the reflection coefficient
for ray 2 should have the form R(f, ¢, 0), where f
represents the coupling fluid, ¢ stands for the cell, and
the incident angle ® is 0.

Since the incident beam is a converging beam its
strength, and hence the reflected beam strength is a
function of the distance between the focal point and the
reflecting surface. If this distance is reduced, the beam
strength increases. Finally, the voltage produced by ray 2
(V,) is obtained by simply multiplying the propagation
term, the attenuation term, the reflection coefficient,
and a function P(z + t,) as given below.

V,2) =Pz +t) R(f,c,0)-
exp (2k(F -z 1)~ 2a(F-z—1)]. (2

The function P(z + ¢.) is introduced to incorporate the
converging nature of the incident beam. Its unit is the
same as V(z). Other factors that affect the final voltage
output, such as amplification and distortion of the signal
inside the scanning acoustic microscope (ELSAM) elec-
tronic circuits, attenuation of signals during its travel
through the lens rod, and coupling fluid are also in-
cluded in the function P(z + ¢,). This function has to be
obtained experimentally.

fluid) 1.0 15 — 0.03
Glass (Substrate) 2.47 587 3.70 0.0
Cell 1.02-1.08 15-1.8 — 0.03-0.09
Sapphire (Lens material) 4.0 11.1 6.25 0.0
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In the same manner one can compute the voltage
produced by ray 3

Vi(2) = P@2) - T(£,¢,0) - R(c, 8, 0) - T(c, , 0)
“exp {(2k, — 2a)) (F -z — t) + 2kt — 2at], (3)

where T(f, ¢, 0) and T(c, f, 0) are transmission coeffi-
cients for fluid to cell and cell to fluid transmissions,
respectively, with incident angle equal to zero. General
expression of 7(m,, m,, ®) is given in the Appendix. In
the reflection coefficient R(c, g, 0), g stands for the
substrate; in our experiment glass substrate was taken.
k(=Q/a,) is the acoustic wave number and a, is the
attenuation coefficient of the cell.

Next the voltage produced by the critically reflected
ray, ray 1 of Fig. 1, is to be obtained. For this purpose the
path lengths traveled by this ray in different media are
computed. The length of the path traveled by ray 1 in the
coupling fluid is 2{f — (z + t,) s ®]. The distance trav-
eled inside the cell is (2¢,-s @) and at the glass—cell
interface it is equal to 2{(z +¢)tan® , —¢, - tan @ .
The critically incident beam generates Rayleigh surface
waves at the cell-substrate interface, that causes the
offset BC. The wave propagates as a Rayleigh surface
wave between points B and C.

So the voltage produced by ray 1 is given by

Vi@) = P@2) - T(f,c, 0, R(c,8O,) -

T(c,f, ©,) - exp 2tk — a) [F — (z + 1) s ©]

+ 2t (ik, —a))s O, + 2(ik, — a,) -

[z +¢t) tan ©, — ¢, tan 0]}, 4
where q, is the attenuation coefficient of the Rayleigh
wave, as it travels from B to C, k, = )/C, and C, is the
Rayleigh wave velocity in the substrate. Critical angles
0, and O, are functions of a,, o, and C,,

0, = arcsin (o,/C,)
0. = arcsin (o /C)) 5)

SO,
k. =k, -sin® =k, -sin @, (6)

After substituting Eq. 6 into Eq. 4 one obtains after
some algebraic manipulations
Vi@2) = P(2) - T(f,¢,0,) " R(c,g, ©,) -
T(c,f, ©,) - exp [2ik[F — (z + t.) cos O]
+ 2ik t.cos O,
—2a[F —(z+1t)s®,]—2at,s0O,
—2a[(z +t)tan O; — ¢, tan @ ]}. @)

It should be noted here that exp {2ik.F — 2a,F} ap-
pears in the right-hand side of Egs. 2, 3, and 7. If a new

function p(z) is defined such that
p@) = P@) - exp (2ikF — 2a,F) ®)
then V,, V,, and V, take the following form

V@) =p@) - T(f,c,8,) R(c,8,0,) "
T(c,f, ®,) - exp {—2ik(z + t.) cos O,
+ 2ik t. cos O,
+2a(z+1t)s0O,—2at s O,
—2a[(z +t)tan ®; — ¢ tan O ]}
Vi(z) = p(z + 1) R(f, ¢, 0) - exp (2(a; — ik) (z + 1))
Viz) =p() - T(f,¢c,0) R(c,80) T(c,f,0) "
exp (2(a; — ik;) (z + t) + 2t (ik, — a.)). ©)

Now the total voltage is the sum of these three
voltages

Viz) = V(@) + Vi) + V(). (10)

The subscript ¢ indicates that this voltage is obtained
over the cell. It should be mentioned here that if the
critical angle O, is greater than the half angle of the lens
then V,(z) = 0 and V(2) = V,(z) + V,(2).

3.2 V(2) of substrate

V(z) of the substrate in absence of the cell can be
obtained in the same manner as before. However, in this
case only two rays are to be considered, one critically
reflected ray and one centrally reflected ray. The voltage
generated by these two rays can be easily obtained by
simply putting ¢, = 0 in the expressions of V; and V, in
Eq. 9 and omitting the transmission coefficients. Thus
one gets

Vi2) =p@) - R(c, 8 O) - exp (—2ik,z -
cos O, + 2a,z - sec @, — 2a,)z - tan O}

Vi(2) =p(2) - R(f,8,0) - exp (22(a, — ik;)} (11)
and
V@) =Vi(2) + Vi(2). (12)

Subscript g stands for the glass substrate.

4. EXPERIMENTAL INVESTIGATION

For the experimental investigation a scanning acoustic
microscope (ELSAM, Wild-Leitz, Wetzlar) operated at
1 GHz frequency has been used. The acoustic lens made
of sapphire had a radius of curvature of 40 pm and an
opening half-angle of 50°. Length of the lens rod
(distance between the lens and the transducer) was
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FIGURE2 Scan lines through a living cell on glass at different z values.

2,000 um and the transducer radius 50 pm. Acoustic
properties of sapphire and the coupling fluid (saline) are
given in Table 1.

The cell as well as the substrate is scanned horizon-
tally by the acoustic lens for different values of z, starting
from z = O up toz = 2.0 pm or more at an interval of 0.5
pm. Thus different scan lines V(x) are obtained at
different values of z. For calculation purposes the
signal/noise ratio is increased by averaging 120 scans per
line. An example of a set of scan lines is shown in Fig. 2.
In this figure a total length of 78 pm is discretized into
380 points (pixels, N). So one unit in the horizontal
position (N) along the abscissa of Fig. 2 represents a
distance of 0.2 wm along the scan line. One can see from
this figure that the received signal becomes more and
more weak as z increases and for z greater than some
critical value z, (in this case z, = 3.8 pm) it is almost
equal to zero. One reason for it is that as z increases,
defocussing increases, thus the incident and reflected
signal strengths become gradually weaker. A second
reason can be stated like this, for large z the reflected
signal returns to the transducer before the time gate for
receiving the signal is activated. Hence the transducer
cannot sense any reflected signal for z greater than z_.
Whatever may be the reason p(z) of Egs. 9 and 11 should
be able to show a trend similar to the observed V(z) and
should be equal to zero for z greater than z,.

If we consider a specific value of N in Fig. 2, say N = 5
(or 200, or 300) and plot voltages against z, we get V(z)
plot for that N as shown in Fig. 3. The line without any

marker corresponds to N = 5, the line with square
markers is for N = 200 and the line with star markers is
obtained at N = 300. Since the point N = 5 is located
above the glass substrate this V(z) plot should corre-
spond to the V(z) of glass, or V,(z) of Eq. 12. V(z) at N =
200 and 300 correspond to V,(z) of Eq. 10 since these
positions are above the cell.

5. ANALYSIS

From known acoustic properties of sapphire, water, and
glass (see Table 1), V,(z) and V,(z) of Eq. 11 and hence

=3
o
o
=1
~
b
=3
o
> o
=3
=3
1S3
o T T T T T T 1
0.00 1.00 2.00 3.00
Z IN MICRON

FIGURE3 Experimental V(z) at N = 5 (line without any marker), 200
(line with square markers), and 300 (line with star markers).
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V(z) can be computed in terms of the unknown func-
tions p(z). p(z) is then assumed to be a second order
polynomial of z, for z less than z,,

pi)=a +bz+cz? forz <z,
=0, forz >z, (13)

The unknown coefficients a, b, and c are obtained by
matching the computed V,(z) with the experimental
values by the least squares error minimization tech-
nique. Since this technique is well known, the detail
derivation is omitted here and only the final results are
given.

@b, o) =[A]"(ZgV, 2g-Vi'z, g Vi-z)". (14)

In the above equation the superscript T denotes the
transpose of the row vectors, V; is the experimentally
obtained voltage at z = z,, n is the number of z values for
which the least squares matching is carried out, typically
nis4or3.g =V, (z,)/p(z); so from Eq. 11,

&=R(f,8 ©,) exp|—2k;-z,-cos O+ 2a,-z,-s O
=24,z tan O+ R(f, 8, 0) - exp {2z(a, — ik;)} (15)

and [4]is a3 X 3 matrix given by

1 z 2}

Ml=2g z 2z} 2} (16)

After such matching at four points (z = 0, 0.5, 1.0, and
1.5 pm), Fig. 4 is obtained. In this figure the line without
any marker represents the experimental V,(z) and the
line with markers represents the computed V(z). The
two lines match very well up to z = 3.0 pm. A close
matching at this stage is necessary to have confidence in
subsequent analysis.
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V(z) for any assumed cell properties can be obtained
from Eqgs. 9 and 10 after p(z) is known from the above
analysis.

To check the reliability of the method, V(z) is
computed for two different layer (cell) thicknesses, 1
and 6 pm. Acoustic properties of the layer are assumed
to have the following values, o, = 1.6 kmy/s, density(T",) =
1.04 gm/cc, a, = 0.06. V(z) thus computed are shown in
Fig. 5. The line without any marker shows computed
V(z) of the glass substrate, the line with square markers
is V(z) of 1-wm thick layer and the line with star markers
is V(2) of 6-pum thick layer. It should be noted here that
for a thin layer (f, =1 pm) V,(z) monotonically de-
creases, but for a thick layer (£, =6 pm) V(z) first
increases slightly then it starts to decrease. Experimen-
tal V(z) also shows similar behavior (see Fig. 3). Thus
the reliability of the method is verified in some qualita-
tive sense. Next, some quantitative checking of the
method is carried out. For this purpose it is investigated
if o, ', a., and ¢, can be correctly predicted from known
values of V(2) of Fig. 5. Simplex optimization technique
is required for such back predictions of the layer
parameters from its V(z) curve.

6. SIMPLEX OPTIMIZATION TECHNIQUE

The purpose of the optimization is to determine a set of
M parameters, in this case a, I, a, and ¢, which
correspond to the smallest sum of the squares of the
error, SQE, defined as

SQE = Z (V(z)| - V)", a7
8
9;_
~
84
8’-
~
>3
9;4/—_—.\‘\‘
8_
o
=4 T T T T L T T 1
0.00 0.50 1.00 1.50 2.00
Z IN MICRON

FIGURE 4 Experiméntal V(z) (line without any marker) and com-
puted V(z) (line with markers) of glass at 1 GHz, both lines coincide
very well, thus they can be distinguished only atz > 3 pm.

FIGURES Computed V(z) of glass (line without any marker), 1-pm
thick cell (line with square marker), and 6-um thick cell (line with star
markers).
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where m is the number of points (z,, z,, . . . , Z,,) consid-
ered for optimizing M parameters. |V,(z;)| is the ampli-
tude of the computed voltage at z, with some assumed set
of parameters, and V; is the given value of the voltage at
z,. For a unique solution, m should be greater than or at
least equal to M.

The basic idea behind the simplex method (Nelder
and Mead, 1965) is to consider each set of M variables as
a point in a space of M dimensions. The point is called a
vertex and a simplex is a geometrical figure which
consists of (M + 1) variables. If the total number of
variables to be optimized is 2 (M = 2) then the simplex is
a triangle (M + 1=3) in a two-dimensional space
(Karim et al., 1990). The triangle ABW in Fig. 6is such a
simplex. The optimization starts by arbitrarily assigning
some starting values to the (M + 1) vertices. To obtain
the lowest value of SQE, the simplex is moved according
to the following rules: (a) find the vertices with the
highest (worst) and lowest (best) SQE. (b) Replace the
worst vertex by another vertex determined according to
one of the four mechanisms: reflection, expansion,
contraction, and shrinkage. (c) Continue the process
until “satisfactory” values according to a certain prede-
termined criterion are obtained.

As an example, if a reflection is to be executed, the
reflected vertex (R in Fig. 6) is created by extending a
line from the worst vertex W through the center C of the
remaining vertices (4 and B in Fig. 6), so that the
distance between R and C is equal to that between W
and C. An expansion extends the reflected vertex by an
amount equal to twice the distance between Wand C (E
in Fig. 6); a contraction moves the worst vertex half-way
toward C (T in Fig. 6) and a shrinkage moves all vertices
toward the best vertex (lowest E) by half their original
distance from it. For a detailed discussion of the
conditions for executing each of these four operations
readers are referred to the paper by Nelder and Mead
(1965).

FIGURE6 Two-dimensional simplex and its optimization mechanism.
(After Karim et al., 1990.)

7. APPLICATION OF THE
SIMPLEX METHOD

The method described in the previous section is now
used to predict the layer parameters from a previously
calculated V(z) curve. Five points, shown by star mark-
ers in Fig. 5, are first considered for computing SQE of
Eq. 17. Upper and lower bounds for each parameter are
first decided. These bounds can be selected from some
rough estimate of the parameter values. For example, an
estimate of the thickness of the cell can be obtained
from the past experience or by counting interference
rings as described in section 1. For each parameter two
upper bounds and two lower bounds are selected. One
of these bounds can be identified as “absolute bounds,”
parameters must lie within these bounds. The second
type of bounds can be called “probable bounds.” Param-
eter values most probably lie within “probable bounds”
but one is not absolutely sure about it. Meanings of these
two types of bounds can be further clarified by consider-
ing the following example. Let us assume that the
thickness of a cell is estimated to be 6.2 pm from the
interference ring count. Considering different uncertain-
ties in estimating the thickness by this technique one
may say that most probably the thickness is between 5.5
and 7.0 pm, then these two bounds can be called
“probable bounds.” Now taking into account all possible
sources of error if one can say with certainty that the
thickness cannot be <5 pm and > 8 um, then these two
values are “absolute bounds.” Both these bounds are
given as input to the simplex algorithm. “Probable
bounds” are used to construct the initial simplex geome-
try and “absolute bounds” are needed to limit the region
of search.

Initial simplex is constructed with five (=1 + number
of unknown parameters) vertices. Coordinates of four
vertices are obtained by taking “probable’ upper bounds
of three parameters and “probable” lower bound of the
fourth parameter. “Probable” lower bounds of all four
parameters are assigned as the coordinates of the fifth
vertex. After going through a number of numerical
exercises this type of initial simplex construction has
been found to be most effective. Starting with this initial
geometry, the simplex algorithm performs one or more
of the four operations mentioned in section 6 and then
gets rid of the worst vertex and includes a better vertex
in the geometry after every iteration. Three combina-
tions of upper and lower bounds are considered. Every
combination generates a new initial simplex and defines
a new region of search. These bounds for the four
parameters are shown in Table 2. After 50 iterations,
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TABLE 2 Upper and lower bounds and computed layer
parameters

Simplex1 Simplex2  Simplex 3

1.5-1.8
1.55-1.7

1.03-1.05
1.035-1.045

0.03-0.09
0.04-0.08

5.0-8.0
5.5-7.0

1.600
1.044
0.0598
6.025

Absolute
ona, Probable

Bounds Absolute
onTl, Probable

Bounds Absolute
ona, Probable

15-1.8
1.55-1.7

1.01-1.1
1.03-1.07

0.03-0.09
0.04-0.07

5.0-8.0
55-7.0

1.602
1.055
0.0604
5.866

1.5-1.8
1.55-1.7

1.01-1.1
1.03-1.07

0.03-0.09
0.04-0.07

5.8-6.5
5.9-6.2

1.600
1.060
0.0596
6.018

Bounds

Bounds Absolute
ont, Probable

a, (km/s)
T, (gmicc)
a, (/um)
t. (pm)

Converged
values
after 50
iterations

6.5|0

| -

L

THICKNESS
6.00

o -
o
T T

T
40.00

5.5

1
50.00

)
T T T

o

10. 00 20. 00 30. OO

|

»107!
Q.75

L

0.65
|

different initial simplex geometries converge to one set
of values of o, I',, a., and ¢.. These values are also shown
in Table 2.

Fig. 7 shows the parameter values as a function of the
iteration number of trial number in the simplex algo-
rithm. Three lines in every graph correspond to the
three initial simplex geometries of Table 2. The line
without any marker is for simplex 1, the line with star
markers is obtained from simplex 2 and the line with
square markers is generated by simplex 3. It can be seen
from this figure and Table 2 that «, (1.6) and a, (0.06)
converge very well for all three cases. Thickness ¢, (6.0)
shows a maximum error of 2.23% for simplex 1; how-
ever, when bounds on ¢, are refined, in simplex 2, this
error diminishes. Alternately, if bounds on density are
refined keeping bounds on thickness unchanged (sim-
plex 3) then also the error in ¢, becomes negligibly small.
Unlike the other three parameters, I', (1.04) converges
to three different values for three cases. So I', predicted
by this method is not very reliable. Fortunately, the cell
density is approximately known, it is close to water but
slightly higher. So an estimate of I, between 1.02 and
1.08 gm/cc is reasonable. Hence, uncertainty in density
comes only in the second decimal place. Previous studies
(Litniewski and Bereiter-Hahn, 1990) showed that a_/a,
is between 1 and 3, where a,(=0.03) is the attenuation
coefficient of water, so “absolute bounds” of a, should
be 0.03 and 0.09. “Absolute” bounds of a, are obtained
similarly from previous studies, they are 1.5 and 1.8
km/s.

Simplex algorithm applied to the V(z) of 1-pm thick
layer also produced results with a similar order of error.
Thus this quantitative check further confirms the reliabil-
ity of the method.

T
40.00

ATTENUATION
1

1
10. 00 20. 00 30. 00 50.00

07 <-30‘55

('

DENSITY
1.05

T T T T T T T T T 1
.00 10.00 20.00 30.00 40.00 50.00

0 41.03
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1 1

P-WAVE SPEED
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#59

T T T 1
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TRIAL NUMBER

0.00 10.00

FIGURE7 Different cell (layer) parameters as a function of the trial
number in the simplex algorithm. Converged values are given in Table 2.

8. EFFECT OF THE COUPLING FLUID
BETWEEN CELL AND SUBSTRATE

Up to this point of the analysis it has been always
assumed that there is no gap between the cell and the
substrate. However, in reality most cells are closely
attached to the substrate at some regions only, whereas
in the remaining area a thin layer of the coupling fluid
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(generally saline or culture media) may be present
between the cell and the substrate. The thickness of this
liquid layer varies from the order of 0.02 pm to the order
of 0.1 or 1 pm often reached near the central region of
the cell (Izzard, 1976; Bereiter-Hahn et al., 1979). To
understand the effect of this thin liquid layer on the V(z)
curve and on the cell parameter computation the cell
model is extended by including a liquid layer between
the cell and the substrate.

In this case calculations of four voltages (V}, V,, V;,
and V,) generated by four rays are required. The
critically reflected ray produces V), the central rays
reflected from the top and bottom surfaces of the cell
produces V, and V;, respectively, and the central ray
reflected by the substrate produces V,. Higher order
reflections are again neglected here. If ¢, denotes the
thickness of the coupling fluid between the cell and the
substrate, then following similar steps as in section 3,
these four voltage expressions can be obtained,

Vi(2) = p2) T'(f, ¢, ©) T*(c,f, )