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ABSTRACT This paper investigates the microscopic mechanisms of charge screening in proteins. The screening of an arbitrary
perturbing charge density by a protein and its surrounding solution is characterized by a generalized susceptibility, which is
approximately given by the mean dipole—dipole correlation matrix of the system. This susceptibility is a microscopic quantity; the
sum of its matrix elements gives the macroscopic susceptibility of continuum electrostatics. When screening of a single perturbing
point charge is considered, this susceptibility reduces to a scalar quantity, dependent on position within the protein. The
contribution of the positional degrees of freedom of the protein atoms can be estimated from molecular dynamics simulations. This
contribution gives rise to large spatial variations of the susceptibility, whose significance for protein function is discussed. The
model is applied to the small a helix deca-alanine, and to the electron-transfer protein cytochrome c. The results agree qualitatively
with previous normal mode calculations. The importance, and the large spatial variations, of charge screening by deca-alanine
suggest that dielectric screening may play a role in the binding of charged ligands by helices. In cytochrome c, the dielectric
susceptibility in response to a point charge is at a minimum in the central heme region, resulting in a lowering of the reorganization

free energy for charge transfer to and from the heme.

1. INTRODUCTION

In a recent article, we presented a theoretical analysis of
the microscopic dielectric properties of several biomole-
cules (1). This analysis is pursued and refined in the
present article. Our aim is to attain a better understand-
ing of these properties at a microscopic level, and to
examine the possible functional importance of the spa-
tial variation of local dielectric properties within pro-
teins.

Many or most enzyme reactions involve charge trans-
fer, and the creation of a charged transition state.
Several authors have analyzed theoretically the energet-
ics of such charged transition states in various enzymes
(2-9). It is now widely accepted that the efficiency of
these reactions arises largely from the combination of
two factors: the high polarity of the active site, and the
low polarizability of this same active site (9-12). Polar
groups are in effect rather rigidly preorganized around
the active site to stabilize the transition state. The
presence of permanent polar groups is required so that
the charged intermediate species will not be destabilized
in the protein compared with bulk water. Once these
permanent, polar groups are given, the enzyme lowers
the reorganization free energy of the charge transfer
process by making these groups rather rigid. High
polarity and low polarizability thus combine to give
enzyme active sites electrostatic and dielectric proper-
ties that are both complex and specific. This specificity
led Simonson et al. (1) to suggest that the spatial

variation of local dielectric properties in proteins may
have functional significance. For example, by providing a
polarizability at the active site that is lower than in the
rest of the molecule, an enzyme would achieve an
additional lowering of its reorganization free energy,
beyond what is provided by the average dielectric
properties of the molecule. Obviously, the local polariz-
ability around the reactants is already lowered consider-
ably simply by the removal of the active site from bulk
water, since the protein is less polarizable than water. In
fact, the solvent polarization ordinarily makes the domi-
nant contribution to the reorganization free energy for
the charge transfer steps (2). However, the protein
contribution is not negligible, and presumably needs to
be minimized by the enzyme. This can be accomplished
by reducing the electronic polarizability around the
active site, and by making the permanent, preorganized
polar groups as rigid as possible, given the other due
requirements of the structure, such as sufficient fiexi-
bility to sterically accommodate the reactants.

Enzyme active sites are not the only examples of
specific local dielectric properties in proteins. The bind-
ing of charged ligands requires that the protein “solvate”
these ligands as effectively as water. This can of course
be accomplished by the presence of permanent, preor-
dered, charged, or dipolar groups, as in active sites.
However, where binding, not reaction kinetics, is impor-
tant, it may be more economical for a protein to adjust
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its local structure solely in response to the approach of
the ligand, rather than paying the cost of preorganized
dipoles. In other words, it may be more economical to
provide a less polar, but more polarizable, binding site.
To investigate electrostatic and dielectric properties
of proteins, the simplest model is the continuum model
(13). Early continuum treatments of proteins included
as permanent charges only ionized side chains (14), and
in some cases the macrodipoles of a helices (15). This
treatment of course neglects precisely the permanent
polar groups required to stabilize enzyme transition
states (16). Subsequent continuum models did include
these groups (17), and could in principle address the
energetics of enzyme transition states. A low protein
dielectric constant of around four is usually used, and is
designed to describe both electronic polarizability and
dipolar polarizability; the latter includes elastic deforma-
tion of bonds and angles, and rotation of polar groups
around bonds. The exact significance of the protein
dielectric constant €, clearly changes when the perma-
nent charges in the model change. Indeed, the dielectric
constant enters into the model in two ways. It deter-
mines the response of the system to a set of perturbing
charges, such as a titrating proton or a redox electron.
But it also determines the mean equilibrium charge
distribution. For example, suppose the model includes
as permanent charges only point charges representing
the ionized side chains (e.g., references 14 and 15). The
mean equilibrium charge distribution will then include
not only these charges, but also induced polarization
charge located on the permanent charges, and induced
surface charge distributed all over the protein-solvent
interface. To be precise, the permanent charges will be
divided by a factor €,. The polarization charge on the
permanent charges represents the screening (e.g., by
hydrogen-bonding) provided by the polar groups of the
protein not included in the model as permanent charges.
(Note a potential inconsistency of most implementations
of the model: the fact that for most ionized side chains,
this screening is mainly coming from water molecules, so
that it would appear more consistent to assign these side
chains to the high-dielectric region, as in reference 18.)
Now adopt a model with the same protein dielectric
constant €, but which includes as permanent charges
the mean partial atomic charges of all the protein atoms
(e.g., reference 17), including the net charges of the
ionized side chains (which are now spread over the
whole side chain). Although the dielectric polarization
of this model in response to a set of perturbing charges
will be identical to the previous model, it will have a
completely different mean equilibrium charge distribu-
tion. In other words, a completely different description
will be given of the way in which each group of charges is

polarized by neighboring groups, once these groups are
folded together in the protein.

In describing the response of the folded protein to a
perturbation, the low dielectric constants used are
compatible with dielectric measurements on protein
powders (19-22). These measurements tell us about
spatially averaged dielectric properties; they tell us little
about specific local properties, for example, around an
active site. Similarly, a continuum model that uses a
uniform, scalar, dielectric constant cannot account for
specific dielectric properties around an active site.

A low ¢, is also compatible with theoretical estimates,
based on the theory of dielectrics (23-25, 1). These
estimates use atomic point polarizabilities to describe
electronic polarizability, and molecular dynamics simula-
tions to describe dipolar polarizability. They can be
applied not only to an entire protein, but also to a local
region in a protein. Nakamura et al. (25), for example,
calculated the dielectric constant within a sphere of 4-8
A radius, whose position was varied throughout the
protein. This defines a position-dependent dielectric
constant, which reflects the local electronic polarizabil-
ity and molecular dynamics within the sphere. For our
purposes, this approach has two serious limitations.
First, though it does give a local dielectric constant, this
quantity is a spatial and a rotational average over a
region of several Angstroms radius. This averaging may
smooth out significant local details, especially if the
region of spherical averaging is taken to be large. In the
simulations presented in our previous paper for exam-
ple, and those presented below, large spatial variations
of the local dielectric susceptibility are found in several
biomolecules, over distances of only a few Angstroms.
Second and more important, this approach views the
region outside the sphere as a featureless dielectric
continuum. This is the Onsager approximation (26),
clearly a serious one in proteins, unless the sphere
considered is quite large.

We see that although a continuum model can indeed
address the energetics of enzyme catalysis, and even
take into account nonuniform dielectric properties in
proteins to an extent, this approach is not the method of
choice to examine our working hypothesis. Indeed,
though Krishtalik has used a continuum model to
analyze a number of charge transfer reactions in a model
spherical enzyme (9), all studies of real enzymes have
been based on detailed microscopic models (5-8). Many
of these analyses have used the perturbation free energy
technique. This is computationally very expensive, in
contrast to continuum models. We adopt instead a
microscopic approach whose complexity is intermediate
between macroscopic models and complete perturba-
tion free energy calculations. This approach combines
elementary linear response theory with techniques of
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free energy calculation. To characterize the local dielec-
tric properties of a protein, we introduce the generalized
susceptibility of the molecule in response to a static,
perturbing, charge density. This generalized susceptibil-
ity is an operator in a 3n-dimensional space, where 7 is
the number of atoms in the system. The sum of its
elements is equal to the macroscopic susceptibility of
continuum electrostatics (13). Unlike the macroscopic
susceptibility, which is a spatial average, and which
describes in effect the response to a slowly-varying (i.e.,
long-wavelength) field, the generalized susceptibility is a
microscopic quantity, which describes the response to an
arbitrary field. To calculate this susceptibility, we use a
simple, standard, model of the electronic and positional
degrees of freedom of the molecule. The electronic
degrees of freedom are approximated by atomic point
polarizabilities. The positional degrees of freedom of
the atoms are described by molecular dynamics. Our
previous article considered a perturbing charge density
made up of a sole point charge. In the present article we
generalize this approach to an arbitrary perturbing
charge density.

In the applications described previously, the normal
mode approximation was used to simulate the protein
dynamics. An analytical expression of the susceptibility
was obtained, valid within this approximation. The
normal mode approximation makes the analysis simple,
elegant, and very inexpensive. The normal modes are
expected to usefully approximate the dynamics of the
molecule over fairly short time segments, on the order of
ten picoseconds. At the same time, this description has
obvious limitations. One of the most important is its
incapacity to deal with the dynamics of the surrounding
solvent. It is thus necessary to carry out simulations
using full molecular dynamics. This paper will therefore
extend the previous theory and simulations to the
general, anharmonic, case.

To a first approximation, it appears reasonable to
distinguish the dielectric relaxation of the protein from
that of the solvent, and to assume that they can be
calculated separately. This assumption was made in our
previous study, as well as in some work by other authors
(e.g., reference 3). It will be made here as well. As a first
step, we therefore investigate several biomolecules in
artificial, vacuum, conditions. It is crucial to go beyond
this first approximation and to investigate not only the
relative importance of protein and solvent relaxation,
but also the coupling between the two effects. This
analysis is underway and will be presented in a separate
article.

As model systems to illustrate and test our approach,
we previously chose the model a helix deca-alanine,
several a helices extracted from various proteins, and

the electron transfer protein cytochrome c. In this study,
deca-alanine and cytochrome c are used.

This article therefore pursues the development of a
microscopic theory of the dielectric properties of pro-
teins, initiated in our previous study. The calculations
presented below address several important aspects of
this theory. The first aspect addressed is the general
behavior of the local dielectric properties throughout a
protein. Specifically, we investigate several properties of
the susceptibility: its average value, its spatial nonunifor-
mity, the relative importance of electronic and dipolar
relaxation, the importance of dielectric saturation, as
well as other properties. A second aspect addressed is
the significance of the susceptibility’s spatial variation
for biological function, in other words, our working
hypothesis. A third aspect, the relative magnitude of the
protein and solvent relaxation, and the coupling be-
tween the two, will be addressed in a future paper.

This paper is organized as follows. In the second
section the calculation of the susceptibility is presented.
In particular, the analytical expression of the dipolar
susceptibility, previously obtained in the harmonic case,
is extended to the anharmonic case, within the limit of
small fluctuations. The methodology of the simulations
is also described. In the third section the results are
presented. They are discussed in the final section.

2. MATERIALS AND METHODS

Definition of the microscopic
susceptibility

Consider a set of nondiffusive charges such as a folded protein. To
characterize the dielectric properties of this system microscopically
(1), we introduce a fixed, perturbing, charge density p, which produces
a perturbing field f. The perturbing Hamiltonian V,,, contains a “static”
term V. and a relaxation term V:

'/tot = I/slatic + V (1)

The first term is associated with introducing the perturbation while
constraining the system to retain its unperturbed structure. The
second term is associated with the relaxation after the constraints are
removed. In the limit where the perturbation is vanishingly small, the
relaxation energy is proportional to the perturbing field:

V=-x-f )]
f denotes the 3n-vector:

f= oo nf): 3)
where f; is the field of the test charge at the mean position of atom i,
and n is the number of atoms in the system. The conjugate quantity x is
also a 3n-vector, which represents the structural relaxation of the
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system. The “discrete” form of V results from the nondiffusive nature
of the system.

The relaxation can be characterized by a generalized susceptibility
&, which is a linear operator (e.g., reference 27). By definition

(x) = &f. @

The brackets represent an ensemble average. The matrix elements of
the susceptibility are related to the components of x by the fluctuation-
dissipation theorem (28):

1
a'mn = ﬁ" <xmxn>0' (5)

The brackets ( ), represent an ensemble average over the phase space
of the unperturbed molecule. The susceptibility and the associated
dielectric relaxation are thus completely determined by the fluctua-
tions of the unperturbed system. The ensemble average of the
relaxation energy can be written

V) = ~f- @). ®)

Like V,,, the total perturbation free energy A,, has a static
component 4, and a relaxation component 4. The static component
is just the ensemble average of V,, in the absence of the perturbation.
Thus:

A = (Vo + 4. )

The relaxation free energy 4 has the general form

A = —kTIn [(exp (=V,o/kT))] = (Vialho- ®
For the vanishingly small perturbation considered here, this expres-
sion can be expanded into:

1 2
ﬁ ((Vfot>0 - (Vtol)o)' (9)

A=-—
To express A as a function of the susceptibility, let us consider a
process where the perturbation is introduced gradually. During this
process, the perturbing charge density is Ap, the perturbing field is \f,
and A\ is varied from zero to one. Incrementing A by d\ changes the
relaxation free energy by

dA F
dA =—=dx = <V> = —@)-fdh = =)+ (&f)dN. (10)

The brackets ( ), indicate an average over the phase space of the system
in the presence of the intermediate charge density Ap. Integrating from
A=0to\ =1gives

A= —yf- (@&f). (11)

The susceptibility operator is an intrinsic property of the system,
which does not depend on the particular perturbing charge density
being considered. It gives a complete description of the dielectric
_properties of the system. In particular, it determines the macroscopic
dielectric properties of the system, such as its dielectric constant. To
see this, consider a large, macroscopically homogeneous, isotropic

system, and apply a uniform external field e. The relaxation free energy
of this system in response to e is

A = —UE - (&E), (12)

where E = (e, ¢, . . ., €) is a 3n-vector. Rearranging this product and
using the isotropic nature of the system, we find

1
A=-3 > e’ (13)

If the system is a sphere of radius R surrounded by a vacuum, 4 can be
calculated from electrostatics (30) as a function of the dielectric
constant e of the system; we obtain

e—1

P R;Eam (14)

The double sum is over all the atoms of the system, i.e., it represents a
spatial average. Thus the macroscopic dielectric constant, or the
macroscopic susceptibility (e — 1)/4m, in effect measures the response
of the system to a perturbing field that varies slowly with respect to the
separation between atoms. In contrast, the generalized susceptibility &
determines the relaxation in response to a small, but otherwise
arbitrary, perturbing charge distribution.

In the next section, we shall derive the explicit expression of the full
susceptibility operator for a system undergoing small, nondiffusive,
fluctuations. However, it will also be useful to introduce a related but
simpler parameter, which gives a partial characterization of the
dielectric response of the system. Let us define the scalar quantity a by
the equality:

A=~V (of ) = ~Vief *. (15)

Strictly speaking, a is the projection of the operator & onto a certain
one-dimensional subspace. By construction, a contains precisely all
the information necessary to characterize the relaxation free energy of
the system in response to p. Therefore, we may refer to a as an
“effective scalar susceptibility.” Unlike &, the scalar susceptibility is a
function of p. For example, if p is made up of a single perturbing point
charge, then « is a function of the position of this charge. In what
follows, when we speak of the susceptibility we shall frequently be
referring not to the complete susceptibility operator &, but to its most
useful part, the projection a.

Expression of the susceptibility for a
nondiffusive system

The relaxation free energy and the susceptibility & are determined by
the fluctuations of the unperturbed system. As a result, very simple,
analytical expressions can be obtained for these quantities. Let us first
assume that the perturbing charge density p is made up of a single
point charge q. The Coulomb interaction V,,, between the perturbing
charge and the protein can be expanded as a power series of the
variables u;/r,,, where r,_ is the vector joining the mean position of atom
ito the test charge g, and y; is the instantaneous displacement of atom i
from its mean position. Inserting this expansion into Eq. 9 and
neglecting terms of order four or more, the relaxation free energy
takes the form:

2 qq]

'q l‘l

lq) (u jq))O' (16)
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The first- and third-order term have vanished by symmetry. The
summation is over all pairs of atoms i, j. This expression is valid in the
limit of small fluctuations. Denoting r* (respectively r’, r*) the
component of a vector r along x (respectively y, z), we have:

9’ < 94
= ——— == o Bl
A 2kT§r?r? “;y_z]rwrn(u,u, Jo- 17)

9719

Let us introduce the mean correlation matrix M of the instantaneous
atomic dipoles, defined by:

M= qiqj(u?ujB)O' (18)
We see that the expression Eq. 17 of the relaxation free energy can be
rewritten in a very simple matrix form: 4 is none other than

. .
A= 5= (M), (19)

This is the approximate relaxation free energy of an arbitrary set of
nondiffusive charges (such as a protein) in response to a vanishingly
small, static point charge g. It depends on the fluctuations of the
unperturbed set of charges through the matrix M, and on the position
and magnitude of the perturbing charge through the vector f. The
derivation assumes that the fluctuations of the atoms are small with
respect to the atoms’ distance from the perturbing charge, i.e., it is
valid in the limit of small atomic fluctuations. For a folded protein,
with a well-defined average structure, this should in many cases be a
weak assumption.

The preceding expression of the relaxation free energy can be
immediately generalized to an arbitrary set of perturbing charges.
Consider two such charges, g, and g,. The relaxation free energy 4 can
be written (with obvious notations):

1 ) R 1 , .
= T3%kT ((VI)O - (Vl)o) - Ek'i((Vz)o - (Vz)o)

1
- ﬁ-((Vsz)o - (V1>o (Vz)o) (20)

Let r,, and r, be the distances from the mean position of atom i to the
charges 1 and 2. (V,;), can be expanded with respect to the quantities
w,/r, and u,/r,, just as (V2,), was expanded earlier with respect to u;frg.
The calculation is virtually identical, and leads to

94, o o
(V1V2>o - <V1>0<Vz>o = 449, 2 S5 ﬂgyzl ’u"iaz(ui“?)o (21)

T e
= fi- (Mf). (22)

[, denotesf (g = g,). We obtain finally:

1
A= 5= (fi+£) M(fi + ). (23)

The cross-wise term f, - (Mf,) represents the coupling between the
polarization induced by g, and that induced by g,.

Clearly, the analogous formula holds for a set of p perturbing point
charges:

Q

1
A _m-.t;ot . (M{mt)a (24)

where

fu= e 25)

An arbitrary perturbing charge density p can be expressed as an
infinitesimal sum of point charges. Therefore the relaxation free
energy again takes the form

1
A= —=f (o) IMf (o)) (26)

Comparing Egs. 11 and 26, we see that the susceptibility operator & is
approximately equal to the dipole-dipole correlation matrix M divided
by kT:

1
&= =M. (27)

This expression is valid for a nondiffusive system, in the limit of small
u;/r,;; it will be convenient to speak of the “small-fluctuation” limit.
The existence of a relationship between the dielectric properties
and the microscopic correlations of atomic positions is a well-known
and general property of polar media. It was first pointed out by
Kirkwood (29) and Fréhlich (30) in the case of polar, nonpolarizable,
fluids. Their theory has been extended to more complex fluids by a
large number of authors (31, 32). In particular, fluids containing free
ions have been analyzed (e.g., 31, 33, 34). Our analysis focuses on
nondiffusive systems. The analytical, small-fluctuation form of the
susceptibility has several consequences that should be noted here.
First, if the “protein” contains only a single charge g,, and if the
perturbation p is made up of a single point charge g, then

g aded

A= T

(28)

where x is the axis joining the protein charge to the perturbing charge.
The corresponding susceptibility is

o - )

The protein-perturbing charge distance does not enter into a. The
susceptibility is determined by the fluctuations of the unique protein
atom along the protein charge-test charge axis. The reason for this is
clear. When the test charge is introduced, the “protein” relaxation is
simply a motion of the protein charge toward or away from the test
charge. The amplitude of this relaxation is directly reflected by the
softness of the unperturbed fluctuations along this direction. This
result is accurate to the fourth order with respect to

[((u ’1()2>o] “Ir 1q°

To a higher accuracy, fluctuations of the protein charge along the
other two spatial directions also make small contributions to the
susceptibility. In general, we expect that soft fluctuations of polar
groups will give rise to large local susceptibilities, because these groups
can move extensively along their soft degrees of freedom in response to
a perturbation.

Second, if we compare the expressions 5 and 18 of & and M, we see
that the conjugate quantity x is given (in the small-fluctuation limit) by

Xia = qilliy- (30)
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In the small-fluctuation limit, x is given by the list of the instantaneous
dipoles on each atom. When f is applied, the average of these
instantaneous dipoles becomes nonzero, and proportional to f.

The analytical form of the susceptibility has a third consequence,
which concerns the quasiharmonic description of the protein dynamics
(35). In the quasiharmonic approximation, the protein is assumed to
be vibrating along a set of quasinormal modes. These are obtained by
diagonalizing the displacement correlation matrix o, defined by:

Oiuip = (uuf). (31)
Thus the quasiharmonic approximation is designed to preserve the
correlations of the atomic displacements. As a result, the quasihar-
monic approximation also preserves the dipole correlation matrix M.
In other words, in the limit where the atomic fluctuations are small, the
quasiharmonic approximation leads to exactly the same dielectric
properties as the full molecular dynamics model.

Finally, in the harmonic approximation, we have the relationship

(upuf)y o kT. 32)
Thus
M « kT, (33)

and the susceptibility operator & is independent of the temperature. In
other words, the temperature dependence of the dielectric properties
is an effect of the anharmonicity of atomic motions. If the system
becomes frozen into a local energy minimum at low temperature, its
vibrations will become roughly harmonic, and the reorganization free
energy for charge transfer should become roughly independent of the
temperature (provided quantum corrections are not important). This
has implications for the kinetics of electron-transfer proteins.

Dielectric saturation

Our formalism also provides a way to directly predict dielectric
saturation effects in biomolecules. Consider the perturbation free
energy due to a finite perturbing charge . We can expand this free
energy as a power series of the perturbing potential V. For a
vanishing perturbing charge, the relaxation free energy is just the
second order term, given in Eq. 9, proportional to ¢> For a finite
perturbing charge, the third- and higher-order terms produce a
deviation from this behavior, which is to be interpreted as the effect of
dielectric saturation. To calculate this effect, we calculate the com-
plete relaxation free energy, which has the general form:

A(q) = —kTn[{exp(—V,/kT))] = (V.o (34)

The difference between A(g) and the second-order term measures
dielectric saturation. Dividing A(g) by the square of the field f of the
charge, we obtain a quantity a.4(q). By analogy to the expression 15 of
A, we can view a.q(q) as an effective susceptibility:

1
A(q) = —5f [eal@) f ] (35)

This effective susceptibility provides an equivalent, and slightly more
convenient, measure of the dielectric saturation.

Frohlich-Kirkwood dielectric
constant of a protein

The analysis based on the generalized susceptibility gives a purely
microscopic description of the protein’s dielectric behavior. It is of

interest to complement this analysis with a simpler, independent
analysis, based on a macroscopic model. Let us therefore view the
protein momentarily as a macroscopic system, and estimate its
dielectric constant from Frohlich-Kirkwood theory (30). This dielec-
tric constant is a simple indicator of the average dielectric properties
of the molecule. Such an estimate (24, 25, 1) can be compared with
dielectric measurements on protein powders, and to the empirical
dielectric constants used in continuum models of the Tanford-
Kirkwood type. We treat the protein as a macroscopic sphere of radius
R. Assigning a point polarizability o, to each atom i, the high-frequency
dielectric constant is obtained from the Clausius-Mossotti equation:

-1 _ %
e +2 R¥

(36)

The total electronic polarizability a,, is approximately equal to the
sum of the individual atomic polarizabilities:

% = e 37

The difference is of order two with respect to the dipole-dipole tensor
of the protein (1). The overall dielectric constant can then be related
to the instantaneous dipole moment M, which arises from the
reorientation of permanently polarized groups such as the peptide
bond. Two situations can arise. If the protein is embedded in an
infinite medium that has the same dielectric constant as itself, then
Frohlich’s relation applies:
Qe+ e)(e— e (MG) 28
3€ - kTR}‘ ( )

If the protein is surrounded by a vacuum, then an analogous relation,
derived by Simonson et al. (1), applies:

€— € M3,
€+2 3kTR*

(39

() represents a Boltzmann average over the spontaneous fluctuations
of M, in the absence of applied field.

Methodology of the simulations

The calculations presented below were done using the program
X-PLOR (36). The susceptibility can be calculated using either the
exact expression (9) of the relaxation free energy, or using the small-
fluctuation form (19). The latter form assumes the test charge is not
too close to the protein atoms. Because the atomic displacement
correlation matrix is available in X-PLOR and other molecular
dynamics packages, it is straightforward to implement the expression
(19) in these packages. This method is considerably faster than the use
of the exact expression (9). The two methods will be compared below.

The model systems considered here are deca-alanine and cy-
tochrome c. Rather than rely on the normal mode approximation, full
molecular dynamics simulations were performed. As previously, the
model includes all atoms explicitly, except for CH, CH,, and CH,
groups, which are treated as extended atoms. Hydrogen bonding is
described purely in terms of electrostatic interactions, and the model
does not include many-body induction forces. The Charmm/Param19
force field was used (37). The simulations were performed in vacuo.

In the case of deca-alanine, the N-terminus was blocked by a
CH,—CO group, and the C-terminus was blocked by an NH—CH,
group. The starting structure was obtained by building an idealized
helix, then doing energy minimization. Four separate simulations were
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done, including a total of 40 ps of equilibration and 150 ps of data
collection. Newton’s equations of motion were integrated using a
timestep of one femtosecond. Bonds to hydrogen atoms were con-
strained with the algorithm SHAKE (38). Coupling to a 298 K
temperature bath was performed using the method of Berendsen et al.
(39), with a characteristic coupling time of 0.1 ps. No cutoff was used
for nonbonded interactions. The overall rotation translation of the
molecule, which arises from small errors in the integration, was
removed by least-squares fitting the instantaneous structure to a
reference structure.

In the case of cytochrome c, the starting structure was the x-ray
structure of tuna ferricytochrome ¢ (40). Bond constraints, tempera-
ture coupling, and time step were the same as for deca-alanine.
Electrostatic interactions were shifted to zero at a cutoff distance of 12
A. Random initial velocities were assigned, and 30 ps of equilibration
performed, followed by 90 ps of data collection. Since the simulations
were done in vacuo, there are in effect no long-range forces in the
system. Therefore truncation of the electrostatic forces beyond 12 A
should be a minor approximation. If a protein in solution were
considered, a continuum correction would be necessary to compensate
for such truncation. In the case of spherical truncation, for example,
the continuum correction to the free energy of a point charge is the
well-known Born energy.

In the cytochrome ¢ calculations, a perturbing test charge was
actually placed on atoms within the protein. Atoms separated by one
or two bonds from the test charge were excluded from the perturbation
potential.

In the calculations of the Frohlich-Kirkwood dielectric constants,
the radius R was taken to be the radius of the sphere with the same
radius of gyration as the protein. The polarizabilities o, were set to 1 A*
for heavy atoms and 0.5 A® for hydrogen atoms.

3. DECA-ALANINE RESULTS

Structure and fluctuations of
deca-alanine

The r.m.s. atomic fluctuations during the 150 ps of
molecular dynamics simulation are described in Tables 1
and 2, and Fig. 1. The results for the oxygen and amide
hydrogen atoms are given apart, as they make the largest
contribution to the susceptibilities. The results of the
normal mode calculation are given for comparison. The
average molecular dynamics fluctuation is 0.61 A, includ-
ing all atoms. The harmonic result was 0.35 A. The
larger motion of the helix termini, illustrated in Fig. 1,
does not occur in the harmonic approximation. The
mean, simulated structure deviates from the initial,

TABLE 1 Average r.m.s. atomic fluctuations in deca-alanine

All Oxygens and amide
atoms Backbone hydrogens
Normal modes 0.35 0.30 0.41
Molecular dynamics ~ 0.61 0.57 0.64

Rms fluctuations (A) of deca-alanine atomic positions, calculated
from molecular dynamics and from the harmonic approximation.

TABLE2 R.m.s. atomic fluctuations in deca-alanine

Oxygens, Oxygens, amide
Residue  All amide hydrogens, harmonic
number atoms Backbone hydrogens approximation
1 1.28 1.36 1.11 0.32
2 0.90 0.76 1.06 0.40
3 0.49 0.41 0.53 0.39
4 0.39 0.34 0.39 0.37
5 0.39 0.34 0.43 0.37
6 0.41 0.36 0.42 0.36
7 0.42 0.37 0.46 0.36
8 0.41 0.36 0.44 0.39
9 0.48 0.42 0.53 0.43
10 0.60 0.51 0.65 0.44
11 0.83 0.70 0.92 0.45
12 1.47 1.54 1.34 0.40

Root mean square fluctuations (A) of atomic positions, averaged over
each residue of the helix (counting the two terminal blocking groups
CH, — CO and NH — CH, as residues 1 and 12, respectively).

energy minimum structure by 0.25 A, and the structure
shows no systematic drift during the simulation.

Fréhlich-Kirkwood dielectric
constant of deca-alanine

Before analyzing the microscopic dielectric properties of
the deca-alanine, it is instructive to view the molecule as
a macroscopic dielectric body, and to estimate its overall
dielectric constant from Fréhlich-Kirkwood theory (30),
as described in Materials and Methods. The high-
frequency dielectric constant e, was previously esti-
mated to be 1.7 (1). The effective molecular “radius” is 7

—_ OH
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g 0.5
Q
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&
© all atoms
“ 1
E
-
0.5
2 4 6 8 10 12
residue number
FIGURE1 R.m.s. atomic fluctuations in deca-alanine, averaged over

the individual residues, as a function of residue number. Results for all
atoms (lower curves) and for the oxygen and amide hydrogen atoms
(upper curves). Molecular dynamics result (bold); harmonic result
(light). Residues 1 and 12 designate the two terminal groups, CH, —
NH and CO - CH,.
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A. The total dielectric constant is then estimated from
the simulation to be 3.3, using the in vacuo expression
(Eq. 39) of e. The harmonic value was 2.3 (Table 3). The
larger molecular dynamics fluctuations are responsible
for the larger dielectric constant. Obviously, deca-
alanine is not really a macroscopic, spherical, dielectric
medium, so these values are merely rough indicators of
its dielectric behavior. As such, both of these results are
compatible with experimental observations of protein
powders, as well as with empirical values commonly used
in macroscopic models (23). Note that if the “infinite
medium” expression (Eq. 38) of e were used, we would
obtain a rather different value of € = 2.8. Therefore it is
indeed important, if deriving the dielectric constant
from a vacuum simulation, to use the Frohlich-type
relation that is actually adapted to a vacuum situation.

Dielectric behavior of deca-alanine

To probe the microscopic dielectric properties of the
molecule we introduce a perturbing point test charge.
To study the variation of the susceptibility over the
surface of the molecule, we consider the solvent-
accessible surface of the molecule. Because a helices in
proteins frequently interact with charged ligands located
2-4 A away, a second surface is derived by translating
the solvent-accessible surface 4 A away from the mole-
cule, along the local normal to the surface. This 4 A
surface was approximated by a discrete dot-surface
using the program MS of Connolly (41). The test
charge’s position was varied over this discrete dot-
surface. Surface maps of all the relevant quantities were
thus obtained. A vanishingly small test charge was
considered, as in our previous, harmonic calculations.
Two finite test charges, ¢ = 1 atomic unit and g =Y,
atomic unit, were also considered, to estimate the
importance of dielectric saturation. “Exact” calculations
(based on the exact expression 9) were done using a
60-ps segment of the trajectory. Unless specified, the
results presented below are derived from this exact
calculation. Approximate calculations, based on the
analytical, small-fluctuation expression (19) were also
done, using the entire 150 ps trajectory.

The perturbation free energy A, has a static compo-

TABLE 3 Frdhlich-Kirkwood dielectric constant of

deca-alanine
€ €,
Harmonic approximation 23 1.7
Molecular dynamics 3.6 1.7

Dielectric constant of deca-alanine estimated from the molecular
dynamics and normal mode simulations.

nent, A, and a relaxation component, A (Eq. 7). The
first term is just the interaction of the test charge with
the mean, unperturbed structure: A, = (V). The
second term determines the susceptibility: 4 = —af>
The averages of the different energy terms over the
surface map are given in Table 4. These terms include
A.i» A, and the electronic relaxation free energy (from
reference 1) A,... The average of the absolute magni-
tude |A,,,| is also given. These all refer to a vanishingly
small test charge, by construction, and they are all in
kcal/mol/e units; i.e., they are normalized to a unit
charge, for convenience. The analogous free energy
terms are given for the finite chargesg = 4auandg = 1
au. The averages of the susceptibility a, the two effective
susceptibilities a4(g = %) and a4(g = 1), and the elec-
tronic susceptibility a,,.. are given as well. The variances
of all these quantities over the surface map are shown in
parentheses, to give an idea of the spatial nonuniformity
of the dielectric properties. (Note that these are spatial
variances, and not estimates of the statistical errors.)
The average of a is 1.77 A%, The harmonic result was 1.58
A% (The slightly different result given by Simonson et al.
[1] is an average over both the 4-A surface and the
analogous 2-A surface.) The average of a.(q = ) is
1.88 A’ the average of a.4(q = 1) is 1.72 A®. Note that
the difference between a and a4(g = %, 1) is a direct
measure of dielectric saturation. Note also that the
average electronic susceptibility was previously found to
be 0.92 A’. For a negative test charge in the region of
positive molecular potential, around the N-terminal half
of the molecule, A,,; = —|A4yic| = —9.2 kcal/mol/e.
Therefore the total interaction free energy of the test
charge with the helix is about —9.2 — 2.8 —1.8 = —13.8
kcal/mol/e. For points close to the N-terminus, the free

TABLE4 Susceptibilities averaged over 4 A surface of

deca-alanine
Molecular dynamics Normal modes
a 1.77 (1.33) 1.58 (0.94)
aq(q = %) 1.88 (1.80) —
ag(g=1) 1.72 (1.54) —
Ogjec 0.92 (0.04) —
A gasic 2.1 (10.6) —
W] 92(5.5) —
A(g—0) -2.8(24) -3.0 (1.6)
A(g="%) -31(3.3) —
A@g@=1) -2.7(2.0) —
A, -1.8(0.6) —

Dielectric susceptibilities (A’) and relaxation free energies of deca-
alanine averaged over surface map. The variances over the surface
map are given in parentheses. Molecular dynamics and normal mode
results. The electronic component a,, is also shown. The relaxation
free energies are given in kcal/mol/e; i.e., they are normalized to a unit
charge.
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energy is much lower: subtracting two standard devia-
tions of 4,,,,. and 4, we get —13.8 — 11.0 — 4.8 = —29.6
kcal/mol/e. 25% of this number is relaxation free energy.
These numbers correspond to charges 4 A away from the
helix.

To permit a simple representation of the susceptibili-
ty’s spatial variation, the susceptibility maps were aver-
aged over the surface of each residue of the helix. Fig. 2
shows the susceptibility as a function of residue number.
The result of a normal mode calculation is given as well
as the molecular dynamics result.

Fig. 3 illustrates the effect of dielectric saturation by
comparing the susceptibility a and the effective suscepti-
bilities a4(q = ¥4) and a.(g = 1). Saturation is clearly
not important when finite charges of 1 au and % au are
considered. The differences between the three test
charges are estimated to be within the statistical error of
the calculation.

Fig. 4 illustrates the convergence of the susceptibility
as a function of the length of the simulation. The 60-ps
trajectory segment is compared with a separate 30-ps
segment, and to a 15-ps segment. (The 15-ps result is
actually an average of the results given by two separate
15-ps segments, the two halves of the 30-ps segment.)
Because of computational cost, exact calculations were
not done on longer trajectory segments. However, the
approximate, analytical, small-fluctuation expression of
a can easily be used with very long time-segments.

Fig. 5 compares the analytical calculation to the
“exact” calculation; three analytical calculations are
shown, corresponding to time-segments of 60, 120, and
150 ps, respectively. The agreement is good, with an
absolute r.m.s. difference between the exact calculation
and the 150-ps analytical calculation of only 0.13 A%. The
largest deviation is at the helix C-terminus, where the

susceptibility (A3)

2 4 6 8 10 12

residue number

FIGURE2 Susceptibility a(A’) of deca-alanine as a function of
residue number. Molecular dynamics (bold ); normal modes (light ).
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susceptibility (A3)
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residue number

FIGURE3 Effective susceptibilities a.q(g) (A%) of deca-alanine, for
different finite charges, as a function of residue number. Vanishingly
small charge (bold ), ¥4 au charge (medium), and 1 au charge (light).

displacements are large, and the analytical approxima-
tion not as good. The analytical results show a systematic
increase with the length of the trajectory. The difference
between 120 and 150 ps is small, indicating that the
Boltzmann averaging has essentially converged after 150
ps.
To assess the correlation between the susceptibility
and the local atomic mobility somewhat, we decomposed
the susceptibility into two parts. The first part does not
include the correlations between different atoms; rather
it is obtained from the sole diagonal elements of the
correlation matrix M. It is a sum of terms of the form

qi2<ui2)0
T

4
< 3
2z
:‘;;
g 2
2

1

2 4 6 8 10 12

residue number

FIGURE4 Susceptibilities (A%) of deca-alanine, for different trajec-
tory lengths, as a function of residue number. 60 ps (bold), 30 ps
(medium), and 15 ps (light).
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FIGURES Comparison of exact susceptibility (A% of deca-alanine,
using 60 ps trajectory (bold ), to the small-fluctuation limit, using 150 ps
trajectory (light dashed), 120 ps trajectory (light ), and 60 ps trajectory
(medium).

It is thus a weighted sum involving the local mobility, the
local polarity, and the proximity of the test charge. The
second part is the remaining, “off-diagonal,” part of the
susceptibility. The second term is more complex, and
involves the cross-correlations between atoms. The diag-
onal contribution represents, roughly, the interaction of
the test charge with the polarization it induces; the
off-diagonal contribution represents the interaction of
this polarization and itself. The correlation coefficient
between the complete susceptibility and its diagonal
part may be taken as a useful measure of the relation-
ship between the susceptibility and the local mobility
and polarity. This correlation coefficient is found in this
case to be 0.68. Fig. 6 shows the decomposition of the
(analytical) susceptibility obtained from the 150-ps tra-
jectory into its diagonal and off-diagonal parts. The total
susceptibility appears as a small difference between two
large quantities. The details of this small difference are a
function of the correlations between atomic fluctuations
in the vicinity of the test charge, as much as of the local
mobility and polarity.

4. CYTOCHROME C RESULTS

Structure and fiuctuations of
cytochrome ¢

The r.m.s. deviation of the mean simulated structure
from the initial x-ray structure is 2.1 A, including all
heavy atoms. The deviation for different classes of atoms
is shown in Table 5, which also includes data correspond-
ing to three successive segments of the trajectory. The
evolution of the potential energy and the temperature

17.5
15
12.5
10
7.5

2.5 \M

susceptibility (A3)

residue number

FIGURE6 Diagonal, off-diagonal, and total contributions to the
susceptibility of deca-alanine, calculated from the complete 150 ps
trajectory. The off-diagonal term is multiplied by —1 for clarity. Total
susceptibility (bold), diagonal contribution (medium), and off-
diagonal contribution (light).

during the course of the simulation are shown in Figs. 7
and 8. The potential energy exhibits a slow and irregular
drift, underlying the higher frequency, random fluctua-
tions. This drift reflects the exploration of successive,
and progressively lower, energy minima by the computer
model, since the starting crystal structure is not a global
energy minimum in vacuum conditions. The deviation of
the calculated atomic positions from the observed values
exhibits a similar drift. The r.m.s. atomic fluctuations
have an average value of 0.65 A. The value derived from
the harmonic approximation was 0.38 A. The molecular
dynamics values are in good agreement with values
derived from the experimental Debye-Waller factors
(Table 6, Fig. 9). To extract the intramolecular fluctua-
tions from the experimental Debye-Waller factors, the

TABLES R.m.s. deviation from x-ray structure

overall 30-60 ps 60-90 ps 90-120 ps
all atoms 2.06 2.01 2.10 221
heme 0.81 0.79 0.83 0.93
protein 2.10 2.06 2.15 2.26
backbone 1.66 1.61 1.70 1.78
side chains 2.34 2.30 2.39 2.51
6 A shell 1.44 1.26 1.52 1.67
9 A shell 1.49 1.40 1.55 1.67
12 A shell 1.55 1.53 1.57 1.67
15 A shell 245 2.36 2.46 2.63
18 A shell 2.55 2.58 2.63 2.65

Root mean square deviation (A) of cytochrome ¢ simulation from X-ray
structure. Results are given for several classes of atoms, and for atoms
within different spherical shells. The 6-A shell designates atoms <6 A
from the molecular centroid. The 9-A shell designates atoms between
6 and 9 A from the centroid; and so on.
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FIGURE7 Potential energy (kcal/mol) of cytochrome ¢ simulation as
a function of time.

latter were uniformly corrected for translational disor-
der by Northrup et al. (42), using an ad hoc procedure
involving one adjustable parameter. This procedure
required that the average values of the corrected temper-
ature factors for the interior atoms be equal to the
simulated values. The corrected values were taken
directly from the paper of Northrup et al., and have not
been readjusted to fit our results.

Frohlich-Kirkwood dielectric
constant of cytochrome ¢

As in the case of deca-alanine, we calculated the
Frohlich-Kirkwood dielectric constant of cytochrome c,
viewed as a macroscopic dielectric sphere. The value of
€. was previously estimated to be 2.0. The overall
dielectric constant in the harmonic case was estimated

310
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FIGURES8 Temperature (K) of cytochrome c simulation as a function
of time.

TABLE 6 Simulated r.m.s. atomic fluctuations

X-Ray Molecular dynamics Harmonic
all atoms 0.66 0.65 0.38
heme 0.52 0.45 0.29
protein 0.66 0.66 0.38
backbone 0.59 0.53 0.31
side chains 0.75 0.74 0.41
6 A shell 0.54 0.58 0.35
9 A shell 0.56 0.55 0.34
12 A shell 0.60 0.62 0.34
15 A shell 0.71 0.68 0.37
18 A shell 0.85 0.76 0.42

Simulated r.m.s. fluctuations (A) in cytochrome c. Results are given
for several classes of atoms, and for atoms within spherical shells of
different radii. The harmonic (/ight) and x-ray (dotted) results are also
given.

to be 2.9. In the molecular dynamics case, we obtain 3.5.
The charged surface side chains are mostly responsible
for this increase. If the charges of these side-chains are
scaled by a factor of 0.3, as is sometimes done in
molecular dynamics simulations, a dielectric constant of
2.8 is obtained. This latter result can be taken to
represent the dielectric constant of the protein interior.
In the harmonic approximation, scaling charged surface
residues by 0.3 (or zero) has only a slight effect, reducing
the dielectric constant to 2.5. In this approximation, the
charged surface side chains are constrained to be in a
local energy minimum, and cannot perform particularly
large motions. These results are grouped in Table 7.

1.
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FIGURE9 R.ms. fluctuations (A) in cytochrome ¢ in concentric
spherical shells, as a function of the shell’s outer radius. For example,
the 6-A point is an average over all atoms <6 A from the molecule’s
center. The 9-A point corresponds to points between 6 and 9 A from
the center. Molecular dynamics (bold ), x-ray (dashed ), and harmonic
(light).
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TaBLE 7 Fréhlich-Kirkwood dielectric constant of

cytochrome ¢
Calculation protocol €
NM 2.9
NM, surface charges multipled by 0.3 25
MD 35
MD, surface charges multiplied by 0.3 2.8

Dielectric constant of cytochrome ¢ estimated from the molecular
dynamics (MD) and normal mode (NM) simulations. The molecular
radiusis 17 A and ¢, = 2.0.

Dielectric behavior of cytochrome ¢

To probe the spatial variation of the dielectric proper-
ties throughout the cytochrome ¢ molecule, a perturbing
test charge was placed successively on each of the 104
a-carbons of the polypeptide chain, and the correspond-
ing susceptibility calculated. The average susceptibilities
are given in Table 8, along with the variances along the
polypeptide chain. (As with deca-alanine, note that
these are spatial variances, unrelated to the statistical
errors.) The different components of the interaction free
energy of the charge with the surrounding protein are
given as well. The average susceptibility was found to be
(@) = 1.57 A>. This value is smaller than the value of 1.9
A? previously obtained using the harmonic approxima-
tion, despite the fact that the r.m.s. atomic fluctuations
are larger in the molecular dynamics calculation. The
mean electronic suscep:ibility was previously estimated
to be 0.73 A*. We see that for a finite charge of g = 1 au,
the total interaction free energy A, can be as large in
magnitude as —60 to —100 kcal/mol/e. The relaxation
free energy A is quite large compared with the static part
A,,... However we should note that for such large free

TABLE8 Susceptibilities averaged over the o carbons of
cytochrome ¢

Molecular dynamics Normal modes
a 1.57 (0.66) 1.90 (1.12)
a(g = ) 1.40 (0.52) —
aqg=1) 0.70 (0.20) —
Olee 0.73 (0.03) —
A gaic —4.1(24.7) —
A ] 18.4 (16.9) —
A(g—0) —38.7 (15.3) -54.4 (39.0)
A@g="%) —34.7 (10.5) —
A@=1) -17.1 (3.5) —
Ao —23.5(4.0) —

Dielectric susceptibility (A’) of cytochrome c¢ averaged over the
a-carbons of the polypeptide chain. The variances over the polypep-
tide chain are given in parentheses. Molecular dynamics and normal
mode results.

energies, our simple, one-step, perturbation calculation
is very crude; it is really meant to be used for smaller,
partial charges.

The variation of the dipolar susceptibility a along the
polypeptide chain is shown in Fig. 10. This figure also
shows the r.m.s. fluctuation of each residue around its
mean position. The location of charged side chains is
also indicated. As in the case of deca-alanine a correla-
tion is seen between the susceptibility and the local
mobility and polarity. Near the large peak at residues
85-88, for example, the mobility is very large and at the
same time there is a concentration of charged residues.
We can calculate the direct contribution of the charged
residues to the susceptibility, to quantify further the
relationship between local mobility and polarity. The
resulting C, susceptibilities have an average value of
only 0.46 A® and a standard deviation of 0.77 A% The
correlation coefficient between the complete susceptibil-
ity and the contribution of the charged residues is 0.59.

The susceptibility is also correlated with the distance
of the a-carbon from the center of the molecule, or
alternatively, its distance from the surface. Fig. 11 shows
the susceptibility as a function of the a-carbon’s distance
from the molecule’s centroid. These values are given as a
scatter-plot. A smoothed curve is obtained by averaging
the values over 1 A spherical shells, centered at the
molecule centroid. The smoothed harmonic values are
also shown for comparison. The susceptibility at the iron
atom of the heme group was found to be 0.63 A, less
than half of the average value. The dipolar susceptibility
increases strongly near the protein surface. This con-
trasts with the electronic susceptibility, which is virtually
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FIGURE 10 R.m.s. fluctuations (A) of each residue (lower curve), and
susceptibility o (A) at the a-carbon (upper curve), as a function of the
residue number. (Residue zero represents the methyl carbon blocking
the N-terminus.) The two dashed lines indicate the average values for
the two curves. Dots superimposed on the lower curve signal the
location of charged residues along the polypeptide chain.
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FIGURE 11 Susceptibility a (A% at the cytochrome c a-carbons as a
function of their distance (in Angstroms) from the molecule’s cen-
troid. The molecular dynamics susceptibilities are shown as a scatter-
plot, and as a smoothed curve, where the susceptibilities are averaged
over concentric spherical shells of 1 A thickness. Smoothed curves are
given for the molecular dynamics (bold ) and harmonic (light ) results.

uniform throughout the molecule, as shown by its small
variance.

To estimate the spatial range of the dielectric screen-
ing, we calculated the susceptibility at each a carbon
using an increasingly small cutoff for the electrostatic
interactions. For convenience, this was done in the
context of the normal mode approximation. The cutoff
for the normal mode calculation was not varied, but only
the cutoff used to derive the susceptibility from the
normal modes. The results are shown in Fig. 12. The
mean susceptibility decreases with increasing cutoff,
converging to 1.90 A’ for a cutoff >12 A. With a 6-A
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FIGURE 12 Mean susceptibility a (A’) at the cytochrome ¢ a-carbons
as a function of the radius (A) of the cutoff sphere used in the
susceptibility calculation. The normal mode approximation was used.
(The cutoff for the normal mode calculation is fixed at 12 A).

cutoff sphere, the mean susceptibility is 2.3 A, just 22%
greater than the exact result. This behavior is due to the
correlations between atoms within the cutoff sphere and
those without. Indeed, the susceptibility decreases with
the size of the cutoff sphere because the more distant
atoms are not very effective in screening the test charge,
but exert constraints (of an electrostatic nature) on the
orientation of the inner atoms. The more distant atoms
do not directly provide much additional screening, but
they do limit the freedom of the inner charges to
reorient themselves in response to the perturbation.

As in the case of deca-alanine, dielectric saturation
was investigated by considering two finite charges of 1 au
and % au. The average effective susceptibilities obtained
with these test charges are a.(q = %) = 1.40 A® and
aqg = v4) = 0.70 A?, respectively (Table 8). The spatial
variation of these susceptibilities is shown in Figs. 13 and
14. For the test charge g = 1 au, the effective susceptibil-
ity is attenuated by more than one half as a result of
dielectric saturation, and the spatial variation of the
susceptibility is greatly reduced.

To test the validity of the small-fluctuation limit, and
test how well the correlation matrix M approaches the
full susceptibility operator, we calculated the correlation
matrix for that part of the structure within 8 A of the
heme. This matrix was then used to estimate the
susceptibility of the heme atoms. The results were
compared with the harmonic results and the exact
results. The three mean values, the absolute r.m.s.
deviations, and the mean correlation coefficients be-
tween the three calculations are given in Table 9. The
absolute r.m.s. deviation is defined as

D =1{1/n 2 (a® ~ (2))2 2, (40)
=
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FIGURE 13  Susceptibilities a (bold), aq4(q = Y4) (medium, dashed)
and a4(q = 1) (light) (A% at the cytochrome ¢ a-carbons as a function
of residue number.
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FIGURE 14 Susceptibilities o (bold), a4(q = Y4) (medium, dashed),
and a.4(q = 1) (light) (A%) at the cytochrome ¢ a-carbons as a function
of their distance from the molecule’s centroid.

the sum is over the heme atoms. The mean correlation
coefficient is defined as

o 2 = o) - oll)

{2 (o - «m]

C= SN QY

3 @ -y

o,.., denotes the average susceptibility of the heme
atoms. The correlation between the exact and the
small-fluctuation results is 52%; and the correlation
between the small-fluctuation and harmonic results is
56%. The exact and harmonic results have only a 24%
correlation over the heme. The absolute r.m.s. differ-
ences between the three calculations are fairly small,
however.

Convergence of the Boltzmann averaging was exam-
ined by comparing the two halves of the trajectory. The a
carbon susceptibilities as a function of residue number

TABLE9 Correlation between three heme susceptibility
calculations

Exact  Analytical Harmonic
Mean (variance) 0.84 (0.12) 0.53 (0.14) 0.57 (0.19)

Exact 100 52 24
Correlation analytical 100 56
harmonic 100

Exact 0 0.34 0.34

R.m.s. deviation analytical 0. 0.17
harmonic 0.

Mean values (A%, absolute r.m.s. differences (A%), and correlation
coefficients (percent) of the three susceptibility calculations on the
heme atoms.

susceptibility (A3)
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FIGURE 15 Susceptibilities on the a carbons as a function of residue
number, calculated from the full 90 ps trajectory (light), and the two
45-ps halves of the trajectory (dark). (Insert) R.m.s. atomic displace-
ment u (A) averaged over each residue as a function of residue
number, calculated from the full 90 ps trajectory (light), and the two
45-ps halves of the trajectory (dark ). The grey dots signal the location
of charged residues along the polypeptide chain. The dot-dash curves
correspond to the first half of the trajectory.

are shown in Fig. 15 for each half of the trajectory. The
peak in the 85-88 region is absent in the second half of
the trajectory. At the same time, the mobility of the
charged residues in this region is reduced during this
half of the trajectory. Near the midpoint of the trajec-
tory, the residues Lys 87, Lys 88, and Glu 90 all undergo
conformational changes, as shown in Fig. 16. These
changes appear to be responsible for the change in local
dielectric properties.
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FIGURE16 The angle N-C-N, plotted as a function of time for
lysines 87 (light, lower) and 88 (light, upper); the angle N-C.—C, as a
function of time for Glu 90 (bold).
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5. DISCUSSION

The results of the preceding sections call for a number of
comments. In this section we first consider the results on
deca-alanine, then the results on cytochrome ¢, and
finally we examine their implications for our working
hypothesis: a functional variation of the susceptibility in
proteins.

Analysis of the deca-alanine results

The calculated fluctuations of the helix are consistent
with previous studies of deca-glycine (43, 44). The calcu-
lated r.m.s. displacements of the previous and present
studies, for all but the two terminal residues and their
blocking groups, are 0.39 and 0.35 A, respectively in the
harmonic case, and 0.58 and 0.45 A with full molecular
dynamics at 300 K. Thus, for deca-glycine, Levy et al.
observed r.m.s. molecular dynamics fluctuations at 300
K about one and a half times as large as the harmonic
fluctuations. They noted that the radial displacements,
along the direction normal to the helix axis, were
approximately harmonic at room temperature. We find
that the whole central part of deca-alanine behaves very
much as in the harmonic model, with only the first and
last alanines and their blocking groups deviating strongly
from this behavior. Because of this, it is not surprising
that the dielectric behavior of the helix is calculated to
be similar to our previous, harmonic results (1). The
average dipolar susceptibility, 1.77 A%, is close to its
harmonic value of 1.58 A’. This is almost double the
electronic susceptibility. We can extrapolate our previ-
ous conclusion, that the electrostatic coupling between
these two types of relaxation is a small corrective effect.

The free energy of interaction between the test charge
and the helix is quite large near the helix termini. For a
negative charge near the N-terminus, the total perturba-
tion free energy can be as large as —30 kcal/mol/e,
though the test charge is located 4 A away from the
helix. The contribution of dipolar relaxation, 4, repre-
sents typically ~25% of this.

The spatial variation of the dipolar susceptibility is
large, with several differences from the harmonic behav-
ior. The susceptibility is over 2.5 A® at both ends of the
helix, and close to 1 A’ in the middle. Note that residue
5, where the susceptibility is large, is spatially adjacent to
the N terminus. The large terminal susceptibilities are
clearly correlated with the larger mobility and polarity of
these regions: there are two NH groups not involved in
hydrogen bonds at the N terminus, and two CO groups
at the C terminus. We saw in Materials and Methods
that soft fluctuations of polar groups give rise to a large
susceptibility, because these groups can move exten-

sively along their soft degrees of freedom in response to
a perturbation. In this case, not only are hydrogen bond
donors or acceptors present, but they are mobile, and
therefore available to screen perturbing charges. In the
harmonic case however, the large N terminal susceptibil-
ity is absent. This discrepancy is due to at least two
factors. First of all, in the harmonic case, the N terminus
is no more mobile than the helix middle; both have an
r.m.s. displacement of 0.37 A (O and H atoms). The C
terminus has an r.m.s. displacement of 0.43 A. Second,
we saw that the susceptibilities are small differences
between a positive, diagonal contribution, and a nega-
tive, off-diagonal contribution. Both contributions explic-
itly depend on local polarity and mobility, while their
difference is largely determined by the correlations
between atomic fluctuations. Thus, we expect that subtle
differences in local dynamics can produce fairly large
differences in susceptibilities. Indeed, the correlation
coeflicient between the complete susceptibility and its
diagonal part is only 0.68. It is interesting to note that
the overall shape of the harmonic susceptibility curve is
quite similar to that of the 15 ps molecular dynamics
results (Fig. 4). This suggests that anharmonic effects
become significant in this system on a time-scale longer
than 15 ps.

In the harmonic case, a few low-frequency modes of
vibration account for the spatial variation of the suscep-
tibility (1). With full molecular dynamics, a quasihar-
monic analysis of the trajectory would be needed to
investigate this possibility. However, the nearly har-
monic behavior of the helix, and the rough agreement of
the susceptibilities, suggest that the same conclusion
may carry over to the anharmonic case.

The Boltzmann averages have not converged after 60
ps of simulation; the small-fluctuation results show that
~150 ps are necessary for convergence. This is espe-
cially true near the helix termini, where the mobility is
greater, and more conformations are available to the
structure. Given the smooth, systematic difference be-
tween the analytical results for different time-segments,
it seems unlikely that further averaging will change any
of our results qualitatively. The small-fluctuation results
agree quite well with the exact ones when residue
averages are compared, as in Fig. 5. The largest differ-
ence is at the C terminus, where the large atomic
displacements affect the accuracy of the analytical calcu-
lation. The first term neglected in the small-fluctuation
susceptibility is on the order of (u/r,))‘, where i is a helix
atom. For our 4-A surface, and near the C terminus, ufry,
= Y, and (u/r,)* = 1/256. Since the observed difference
between exact and small-fluctuation results is much
larger than 0.4%, higher order terms must be contribut-
ing to the exact results. The exact susceptibility tends to
be larger than the small-fluctuation result, suggesting
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that the exact result would eventually converge to values
somewhat larger than the 150 ps small-fluctuation val-
ues.

Dielectric saturation was estimated by considering
finite test charges of 1 and % au. The relaxation free
energies for these charges were calculated in a single
perturbation step (Eq. 9). This is known to be inaccurate
for energies much greater than kT (e.g., reference 45).
For our % au charge, the relaxation free energies are
about —0.2 kcal/mol on average (Table 4). Therefore
our estimate of dielectric saturation is expected to be
quite accurate for this charge. For the 1-au charge, the
relaxation energies are about —3 kcal/mol on average.
For such large energies, the trajectory of the unper-
turbed helix does not sample enough of the conforma-
tions where exp(—BV’) is large, V being the interaction
energy between the perturbing charge and the helix.
These are the conformations made probable by the
perturbing charge. Because of this the quantity exp(—BA)
is underestimated, the relaxation free energy A4 is overes-
timated, and the effect of saturation is overestimated.
This sampling error can be viewed as an underestimate
of the effect of electrostriction (as defined by Jayaram et
al. [47] in their analysis of dielectric saturation around
ions in water). For the 1-au charge, our estimate of
saturation is therefore rough, though probably of the
right order of magnitude. We see that the dielectric
saturation is not significant when the Y au and 1 au
charges are considered. The field of the 1 au test charge
at the nearest deca-alanine atoms is ~ 10 kT/e/A. Alper
and Levy (46) found that in molecular dynamics simula-
tions of water, the polarization response to an external
field E was linear in the range E < 0.1 kT/e/A and
nonlinear beyond. Jayaram et al. (47) analyzed the
polarization of water surrounding an ion in Monte Carlo
simulations, and observed a linear response up to at
least 10-20 kT/e/A. Note that saturation is expected to
occur for lower fields in proteins than in water, because
they are much less polarizable than water.

One final comment concerns the agreement between
the microscopic dielectric model and the macroscopic
continuum model. These two models are compared in
Fig. 17. The electronic susceptibility a,,. is compared
with the susceptibility calculated from a finite-difference
continuum model, using a dielectric constant of 1.7 for
the helix (the estimated high-frequency dielectric con-
stant of deca-alanine). The results are taken from
reference 1. The total susceptibility a + a,,. is also
compared with a continuum calculation, using a dielec-
tric constant of 3 for the helix. This value was chosen to
optimize approximately the fit between the macroscopic
and microscopic calculations. The total susceptibilities
calculated using the continuum model do not agree with
the microscopic susceptibilities a + a,,, calculated here,
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FIGURE 17 Comparison between the susceptibilities of deca-alanine
calculated from our microscopic approach and those calculated from a
continuum model. (Lower two curves) Electronic susceptibility as a
function of residue number (solid); continuum calculation (dashed)
using the high-frequency dielectric constant, 1.7, of deca-alanine.
(Upper two curves) Total susceptibility (electronic + dipolar) as a
function of residue number (solid ); continuum calculation (dashed)
using a dielectric constant of 3 (chosen to approximately optimize the
fit between the two).

any more than they agreed with our previous, harmonic
results. Their average value (1.29 A% could be adjusted
further; but their spatial variability (standard deviation
0.25 A’) is markedly too small. In contrast, the contin-
uum model does reproduce the nearly uniform elec-
tronic susceptibilities very well.

Analysis of the cytochrome c results

Tuna ferricytochrome ¢ contains four aspartates, five
glutamates, two arginines, and sixteen lysines. The heme
charge is —2 au, and the terminal groups were modeled
as neutral, so the overall charge is +7 au, and the
molecule has a strong positive overall potential. The in
vacuo simulation obviously does not account for screen-
ing of this potential by solvent molecules or counterions.
This will have a large effect on the calculated susceptibil-
ities.

The behavior of the simulation is consistent with
previous simulations of cytochrome c in vacuo (42), with
a similar deviation from the x-ray structure (2.1 A) and
similar r.m.s. fluctuations for different groups of atoms.
The r.m.s. fluctuations also agree closely with those
derived from experimental Debye-Waller factors. Actu-
ally, recent work has shown that the Debye-Waller
factors from refined protein structures effectively con-
tain little information about the internal dynamics of
proteins, but reflect mainly the overall translation libra-
tion of the molecule (48). What information there is
agrees with our results. The mobility is greater than in
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the harmonic calculation, and increases more sharply
near the molecule’s surface. The r.m.s. fluctuation of the
charged surface side chains, for example, is 0.91 A,
compared with 0.74 A for all side chains. In the
harmonic case, charged and uncharged side chains both
have an r.m.s. fluctuation of 0.41 A. At the molecule’s
surface the molecular dynamics fluctuations are thus
double the harmonic ones.

The free energy of interaction of the test charge with
the protein is large, and the component due to dielectric
relaxation is also large. The magnitude of the static term
(|Agaic] ~ 18 kcal/mol/e) is consistent with values of
protein charge—charge interactions in bovine pancreatic
trypsin inhibitor (49). The electronic contribution 4, to
A, is —23 * 4 kcal/mol/e, which is larger than the values
calculated by Russell and Warshel (49) for ionizing
various side chains in BPTI; their average electronic
contribution for four side chains is only —4.2 kcal/mol/e.
However, since their calculation included the surround-
ing water, it is possible that the electronic relaxation
within the protein was affected by the solvent relaxation.

The calculated dielectric behavior of cytochrome c is
consistent overall with that of deca-alanine, of several
other helical polypeptides (1), as well as of the disk of
protein of tobacco mosaic virus (Simonson and Perahia,
unpublished results). It is also much more complex than
that of deca-alanine, due to the numerous charged
groups, the larger anharmonicity, the increased possibil-
ity of local conformation changes, and the difficulty in
calculating accurately mean fluctuations, given the large
number of degrees of freedom. These difficulties are
aggravated because the charged groups are unscreened
by solvent, and the calculations are therefore very
sensitive to the details of their dynamics. One conse-
quence of this is that the agreement of the molecular
dynamics susceptibilities with the harmonic susceptibili-
ties is poor. The mean values for the o carbons are
similar: 1.77 A® and 1.90 A’, respectively. However, the
absolute r.m.s. difference between the two sets is 1.35
A, Despite the greater molecular dynamics fluctuations,
the susceptibilities calculated by molecular dynamics are
slightly smaller than the harmonic results, with a partic-
ularly large discrepancy at the protein surface (Fig. 11).
This is evidently the opposite trend to what we would
expect from the local mobility. This discrepancy is due to
at least three factors. The first factor is the uncertainty
of the susceptibilities of the surface regions, due to the
uncertainty of the Boltzmann sampling, especially in the
absence of solvent screening. The second factor is the
importance of interatomic correlations in determining
the susceptibility. We saw in the case of deca-alanine
that these correlations are just as important as the local
mobility/polarity, because of cancellations between the
diagonal and off-diagonal parts of the susceptibility

operator. The third factor is that the harmonic suscepti-
bilities, unlike the molecular dynamics susceptibilities,
were calculated in the small-fluctuation limit.

Nevertheless, the conclusions of our previous study
remain valid, for the molecular dynamics results exhibit
the same qualitative features as the harmonic ones. The
mean value is similar, and is again more than double the
mean electronic susceptibility of 0.73 A>. The spatial
variation along the polypeptide chain is smaller than in
the harmonic case, but still quite large. Most impor-
tantly, the susceptibility, when averaged over spherical
shells, is again found to increase regularly going from the
center of the molecule to its surface. The susceptibilities
on the heme atoms are again particularly weak. The
susceptibility on the iron atom is, for example, 0.63 A’,
less than half the average value. The average susceptibil-
ity on the heme is 0.83 A’.

There are five regions along the polypeptide chain
where the susceptibility is above average: at Thr 9, at
residues 54-58, around the large 85-88 peak, and at the
two termini. The susceptibility at a given a carbon is a
local property, determined by short-range charge-dipole
interactions. Indeed, except for the 54-58 region, the
susceptibility peaks are all in regions where the local
mobility is greater than average, particularly the 85-88
region. The concentration of charged side chains is quite
large in two of these regions, the N-terminus and the
85-88 region. More generally, the increase of the suscep-
tibility near the protein surface is correlated with increas-
ing mobility and polarity. At the same time though, the
direct contribution of the charged residues to the suscep-
tibility only represents 0.46 A’ on average, and has a
correlation with the full susceptibility of just 59%. Thus
it is not altogether surprising that there is a large spread
of susceptibilities for some values of the depth within the
protein. As noted above, the relationship between local
mobility/polarity and susceptibility appears to be fairly
complex. Local correlations between the atomic displace-
ments play an important role, with diagonal and off-
diagonal parts of the dipole-dipole correlation matrix
tending to cancel each other.

The importance of dielectric saturation is found to be
greater than in deca-alanine. The relaxation free ener-
gies are larger in this case, so the estimate is much
rougher. For a unit charge, dielectric saturation reduces
the average relaxation by one half. For the V4 au charge,
although the average effect of saturation is smaller, the
local effect is very large in regions of high susceptibility.
For example, the peak at residues 85-88 is completely
destroyed by saturation. Note that saturation effectively
extends the range of dielectric screening somewhat.
Indeed, when a finite perturbing charge is considered,
the screening of nearby atoms is reduced by dielectric
saturation. For more distant atoms, the perturbing field
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is smaller and thus saturation is smaller. The relative
importance of the distant atoms is therefore increased.

The validity of the small-fluctuation approximation,
and thus the accuracy with which the correlation matrix
M approaches the susceptibility operator, was examined
for the heme atoms. The agreement with the exact
calculation is only qualitative, with a correlation coeffi-
cient of 52% and an absolute r.m.s. shift of 0.34 A
(Table 9). Since the test charges considered here are
actually within the protein, the ratios u/r, are larger
than in the deca-alanine case, i.e., the fluctuations are
effectively larger. The analytical calculation does repro-
duce the most important feature of the exact calculation,
the low overall heme susceptibility.

The convergence of the Boltzmann averaging as a
function of trajectory length is illustrated in Fig. 15. This
figure shows the susceptibility at each a carbon as a
function of residue number, for three time segments: the
full 90-ps time segment, and its two 45-ps halves. There
are large susceptibility differences between the two
halves of the trajectory in certain parts of the chain. In
particular, the largest susceptibility peak, around resi-
dues 85-89, is completely absent when only the second
half of the trajectory is considered (¢t = 75 to¢ = 120 ps).
When the r.m.s. fluctuations are calculated from the
second half of the trajectory, the mobility of this region
is also changed. The charged residues Lys 8688, Glu 90,
and Arg 91 all have significantly reduced mobilities. Fig.
16 suggests that this is due to conformational shifts that
occur during the simulation. The charged residues Lys
87, Lys 88, and Glu 90 all undergo sharp reorientations
near the midpoint of the data collection. In other words,
a local, probably concerted, conformation change occurs
involving a few charged residues, modifying the local
structure and dynamics, and completely modifying the
local dielectric properties. This shows that it is difficult
to sample all the relevant conformation states during a
short simulation, and difficult to establish convergence
of the sampling. This also shows that different conforma-
tional substates can exist with different local dielectric
properties. This may have biological significance, since
in charge-transfer proteins, for example, catalytic activ-
ity depends directly on local dielectric properties. In
addition, this kind of conformational substate could
perhaps be observed experimentally by spectroscopic
measurements, such as fluorescence measurements. In-
deed, in some proteins, the lifetime of the fluorescent
excited state is mainly determined by the charge transfer
properties of the fluorophore environment. The rate of
decline of the fluorescence anisotropy would then be
affected by changes in the local dielectric properties
produced by conformational changes. If discrete sub-
states exist, as in our simulation, they will give rise to a

discrete set of relaxation times, such as was observed
recently in thioredoxin (50).

In summary, we encounter at least four difficulties
when calculating the dielectric susceptibilities of cy-
tochrome c. First, the susceptibility has a subtle and
sensitive dependence on the local structure, dynamics,
and polarity; the details of the dielectric behavior
appear to be determined by the correlations between
atomic fluctuations. Second, the protein contains twenty-
eight charged residues and a charged heme. Free energy
calculations in charged systems are intrinsically difficult
(e.g., references 45 and 6). In our calculation the solvent
is absent, so that these charges are largely unscreened:
their charges, and the details of their fluctuations, are
seen in full by much of the molecule. Third, the
small-fluctuation limit (and a fortiori the harmonic
approximation) appears to be a rough approximation
when considering perturbing charges within the protein.
Fourth, the large fluctuations make it difficult to sample
completely the relevant conformation space in a short
simulation. This is especially true for the important
charged surface side chains. These side chains can
undergo conformation changes that modify the local
structure and dynamics.

Despite these difficulties, all our calculations agree as
to the magnitude of the susceptibility and its overall
spatial variation throughout the protein. When a spatial
region such as the heme is considered in detail, the two
small-fluctuation calculations (harmonic and anhar-
monic) are in fair quantitative agreement, and the two
full molecular dynamics calculations (exact and small-
fluctuation limit) agree more qualitatively. More analy-
sis of the relationship between susceptibility, structure,
and dynamics is necessary, and currently underway.

Spatial variation of the dielectric
properties and its possible functional
significance

We emphasized in the Introduction that in enzyme-
catalyzed charge transfer reactions, the dominant contri-
bution to the reorganization free energy comes from the
solvent, due to its large dielectric constant. Neverthe-
less, the contribution of the protein relaxation, consid-
ered in this paper, is not negligible. In cytochrome c for
example, the contribution of dipolar relaxation (4) to
the total interaction (4,,) between our test charge and
the protein is estimated to be around —20 kcal/mol/e, for
a finite 1-au charge. This can be compared with the
interaction between a small charge in a protein and the
surrounding solution, calculated roughly from a contin-
uum model (16), and which is on the order of a few tens
of kcal/mol/e. It can also be compared with the total
change in solvation free energy upon ionizing an acidic

Simonson et al.

Theory of Protein Dielectric Properties 687



group in a protein, which is on the order of —70
kcal/mol/e (49). Clearly, although the solvent polariza-
tion may dominate enzyme reorganization free energies,
there is a considerable advantage to lowering the contri-
bution of the protein relaxation. As a result, Simonson et
al. (1) suggested that enzymes may improve their effi-
ciency by providing a dielectric susceptibility in the
vicinity of the active site that is lower than in the rest of
the molecule. More generally, we suggested that the
spatial variation of the dielectric properties throughout
a protein may have functional significance. Our results,
obtained in the framework of a full molecular dynamics
model, confirm and broaden the conclusions of our
previous, harmonic analysis with regard to this hypothe-
sis. First of all, they give an explicit microscopic estimate
of the average importance of dielectric relaxation, includ-
ing saturation effects. The susceptibilities obtained are
compatible with macroscopic dielectric constants of
~2-4, as shown by the calculated Froéhlich-Kirkwood
dielectric constants. Second, they give an estimate of the
spatial variability of the dielectric properties in proteins,
which is found to be quite large. In cytochrome ¢ we
observe variations of the susceptibility by a factor of
three over just a few Angstroms. These variations result
from the dipolar component of the susceptibility, the
electronic susceptibility being uniform. The atomic point
polarizability model, in combination with a near-
uniform set of polarizabilities, is evidently too simple to
account realistically for inhomogeneous electronic ef-
fects, such as must arise in conjugated groups. Dielectric
saturation is seen to reduce the amplitude of the
relaxation in cytochrome c, particularly in local regions
of large susceptibility.

In the two systems analyzed, deca-alanine and cy-
tochrome c, the spatial variations of the susceptibility do
indeed correlate with functional activity. The large
susceptibilities of the deca-alanine termini are mainly
due to the free hydrogen bond donor and acceptor
groups. Their large fluctuations in the unperturbed helix
indicate that these groups have considerable liberty to
reorient themselves in response to a perturbing charge.
This sheds a new light on a well-known property of a
helices, their capacity to stabilize charged or polar
groups in proteins. Hol [51] pointed out for example that
in over twenty phosphate-binding proteins, a helices
participate in the ligand-binding through hydrogen bonds
at their N terminus. This has long been recognized as an
effect of the polarity of the helix [52]. However the
capacity of these terminal groups to rearrange them-
selves so as to optimize the hydrogen bonding is also a
factor. The dipolar susceptibility measures precisely the
importance of structural relaxation of the helix, includ-
ing the terminal groups, and our results give a quantita-
tive estimate of its magnitude. At typical ligand binding

distances from the helix, the dipolar relaxation free
energy of the helix is about —3 kcal/mol for a perturbing
charge of 1 au. This is not a negligible contribution,
notwithstanding the further contributions of the solvent,
the electronic degrees of freedom, and the permanent
charges of the protein. In summary, the spatial variation
of the susceptibility of decalanine is compatible with,
and suggestive of, a functional role for the spatial
variation of the susceptibility in real a helices.

In cytochrome ¢, the importance of the dielectric
properties of the protein and solvent is even clearer.
These properties determine the reorganization free
energy for electron transfer to and from the protein. To
be precise, the susceptibility tensor of the heme atoms
determines this energy. Since the protein has a low
average dielectric constant, the relaxation free energy in
response to charge transfer is low. What we have shown
is that in the heme region of the structure, the protein’s
contribution to the local susceptibility is much lower
than in the rest of the structure. Loosely speaking, the
heme region has a local dielectric constant that is less
than half the average dielectric constant of the molecule.
This effect is of course small compared with the contribu-
tion of the solvent relaxation to the reorganization free
energy. But it is not negligible. It must be taken into
account in any quantitative analysis of electron-transfer
kinetics to and from cytochrome c. In summary, the
spatial variation of the susceptibility within cytochrome
c is compatible with, and suggestive of, a functional role
for the spatial variation of the susceptibility.

6. CONCLUSIONS

This article pursues the development of a microscopic
theory of the dielectric properties of proteins. The
theory combines elements of linear response theory with
techniques of free energy calculation. It incorporates all
the relevant contributions to dielectric screening in
these systems: dipolar relaxation, electronic relaxation,
and electrostatic coupling between the two. The latter
two contributions were analyzed previously, while this
study concentrated on dipolar relaxation. In the small-
fluctuation limit simple analytical formulae are ob-
tained.

The theory was previously presented in the context of
the normal mode approximation, considering only the
protein’s response to perturbing point charges. We have
now extended the theory to include a full anharmonic
description of the system’s dynamics, and to deal with
the relaxation in response to an arbitrary perturbing
charge density. This enables us in principle to investigate
the full complexity of a protein’s microscopic dielectric
behavior. Several aspects have been addressed thus far,
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such as the nature of the motions contributing to the
susceptibility, the role of short- and long-period fluctua-
tions, and the dependence of the susceptibility on the
simulation time; the importance of dielectric saturation;
how well the dipole-dipole correlation matrix repre-
sents the full susceptibility operator. The existence of
two conformational substates with very different local
dielectric properties was observed in the cytochrome ¢
simulation. Such substates could perhaps be detected
experimentally by fluorescence measurements on real
proteins. We have also shown how the reorganization
free energy associated with charge transfer can be
calculated in this approach, in the small-fluctuation
limit. Some of the difficulties and limitations of the
method have been discussed. More detailed analysis of
these is underway. In particular it is crucial to investigate
the contribution of the solvent to the relaxation free
energies.

We have applied this approach to deca-alanine and
cytochrome c in an effort to test our working hypothesis:
does the spatial variation of the dielectric susceptibility
within proteins contribute to their activity? Our results
suggest that the binding of charged ligands by a helices
in proteins is affected not only by the presence of
hydrogen bond donors at the N terminus, but also by the
flexibility of these donors, which manifests itself in the
form of a large, local, dipolar susceptibility. In the case
of cytochrome c, the particularly low susceptibility found
in the heme region implies a particularly low contribu-
tion of dipolar relaxation to the reorganization free
energy for electron transfer. This in turn contributes
directly to the protein’s efficiency. Thus our results,
although they do not constitute a proof, are indeed
compatible with our working hypothesis.

A referee pointed out a missing factor % in the relaxation free energy.
Arieh Warshel made helpful comments on the manuscript.

Received for publication 15 August 1990 and in final form 26
October 1990.

REFERENCES

1. Simonson, T., D. Perahia, and G. Bricogne. 1990. Intramolecular
dielectric screening in proteins. J. Mol. Biol. In press.

2. Warshel, A., and M. Levitt. 1976. Theoretical studies of enzymic
reactions: dielectric, electrostatic and steric stabilization of the
carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227-
249.

3. Churg, A., R. Weiss, A. Warshel, and T. Takano. 1983. On the
action of cytochrome c: correlating geometry changes upon
oxidation with activation energies of electron transfer. J. Phys.
Chem. 87:1683-1694.

4. Warshel, A., and F. Sussman. 1986. Toward computer-aided

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

24.

26.

site-directed mutagenesis of enzymes. Proc. Natl. Acad. Sci.
USA. 83:3806-10.

. Hwang, J. K., and A. Warshel. 1987. Semiquantitative calculations

of catalytic free energies in genetically modified enzymes.
Biochemistry. 26:2669-73.

. Warshel, A,, F. Sussman, and J.-K. Hwang. 1988. Evaluation of

catalytic free energies in genetically modified proteins. J. Mol.
Biol. 201:139-159.

. Warshel, A., G. Naray-Szabo, F. Sussman, and J. K. Hwang. 1990.

How do serine proteases really work? Biochemistry. 28:3629-37.

. Rao, S., U. Chandra Singh, P. Bash, and P. Kollman. 1987. Free

energy perturbation calculations on binding and catalysis after
mutating Asn 155 in subtilisin. Nature (Lond.). 328:551-554.

. Krishtalik, L. 1985. Effective energy of enzymatic and non-

enzymatic reactions. Evolution-imposed requirements to en-
zyme structure. J. Theor. Biol. 112:251-264.

Warshel, A. 1978. Energetics of enzyme catalysis. Proc. Natl. Acad.
Sci. USA. 75:5250-5254.

Warshel, A. 1981 Electrostatic basis of structure-function correla-
tion in proteins. Acc. Chem. Res. 14:284-290.

Warshel, A. 1987. What about protein polarity? Nature (Lond.).
330:15-16.

Landau, L., and E. Lifschitz. 1980. Electrodynamics of Continuous
Media. Pergamon Press, New York.

Tanford, C., and J. Kirkwood. 1957. Theory of protein titration
curves. General equations for impenetrable spheres. J. Am.
Chem. Soc. 79:5333-5339.

Warwicker, J., and H. Watson. 1982. Calculation of the electro-
static potential in the active site cleft due to a helix dipoles. J.
Mol. Biol. 157:671-679.

Warshel, A, S. Russell, and A. Churg, 1984. Macroscopic models
for studies of electrostatic interactions in proteins: limitations
and applicability. Proc. Natl. Acad. Sci. USA. 81:4785-4789.

Klapper, I, R. Hagstrom, R. Fine, K. Sharp, and B. Honig. 1986.
Focusing of electric fields in the active site of Cu-Zn superoxide
dismutase. Proteins. 1:47-59.

Delepierre, M., C. Dobson, M. Karplus, F. Poulsen, D. States, and
R. Wedin. 1987. Electrostatic effects and hydrogen exchange
behavior in proteins. The pH dependence of exchange rates in
lysozyme. J. Mol. Biol. 197:111-130.

Bailey, S. 1951. The dielectric properties of various solid crystal-
line proteins, amino acids and peptides. Trans. Far. Soc. 47:509—
517.

Rosen, D. 1963. Dielectric properties of protein powders with
adsorbed water. Trans. Far. Soc. 59:2178-2191.

Takashima, S., and H. Schwan. 1965. Dielectric dispersion of
crystalline powders of amino acids, peptides, and proteins. J.
Phys. Chem. 69:4176-4182.

Bone, S., and R. Pethig. 1982. Dielectric studies of the binding of
water to lysozyme. J. Mol. Biol. 157:571-575.

. Pethig. 1979. Dielectric and Electronic Properties of Biological

Materials. Wiley, New York

Gilson, M,, and B. Honig. 1985. The dielectric constant of a folded
protein. Biopolymers. 25:2097-2119.

. Nakamura, H., T. Sakamoto, and A. Wada. 1988. A theoretical

study of the dielectric constant of a protein. Prot. Eng. 2:177-
183.

Onsager, L. 1936. Electric moments of molecules in liquids. J. Am.
Chem. Soc. 58:1486-1493.

Simonson et al.

Theory of Protein Dielectric Properties 689



27.

29.

30.
31

32.

33.

34.

35.

36.

37.

38.

39.

Landau, L., and E. Lifschitz. 1980. Statistical Mechanics. Perga-
mon Press, New York.

. Callen, H., and Welton. 1951. Irreversibility and generalized noise.

Phys. Rev. 83:34-40.

Kirkwood, J. 1939. The dielectric polarization of polar liquids. J.
Chem. Phys. 7:911-919.

Fréhlich, H. 1949. Theory of Dielectrics. Clarendon Press, Oxford.

Stell, G., G. Patey, and Hgye. 1981. Dielectric constants of fluid
models: statistical mechanical theory and its quantitative imple-
mentation. Adv. Chem. Phys. 48:183-328.

Chandler, D. 1978. Structures of molecular liquids. Annu. Rev.
Phys. Chem. 29:441-471.

Chandler, D. 1977. The dielectric constant and related equilib-
rium properties of molecular fluids: interaction site cluster
theory analysis. J. Chem. Phys. 67:1113-1124.

Roux, B., H.-A. Yu., and M. Karplus. 1990. Molecular basis for the
Born model of ion solvation. J. Phys. Chem. 94:4683—4688.

Karplus, M., and J. Kushick. 1981. Method for estimating the
configurational entropy of macromolecules. Macromolecules.
14:325-332.

Briinger, A. 1987. Xplor Version 2.1, User Manual. Yale Univer-
sity, New Haven.

Brooks, B., R. Bruccoleri, B. Olafson, D. States, S. Swaminathan,
and M. Karplus. 1983. CHARMM: a program for macromolecu-
lar energy, minimization, and molecular dynamics calculations.
J. Comp. Chem. 4:187-217.

Ryckaert, J. P., G. Ciccotti, and H. Berendsen. 1977. Numerical
integration of the Cartesian equations of motion of a system with
constraints: molecular dynamics of n-alkanes. J. Comp. Phys.
23:327.

Berendsen, H., J. Postma, W. van Gunsteren, A. DiNola, and J.
Haak. 1984. Molecular dynamics with coupling to an external
bath. J. Chem. Phys. 81:3684-3690.

. Takano, T., and R. Dickerson. 1980. Redox conformation changes

in refined tuna cytochrome c. Proc. Natl. Acad. Sci. USA.
77:6371-6375.

41.

42,

43,

45.

47.

49.

50.

51

52.

Connolly, M. 1983. Analytical molecular surface calculation. J.
Appl. Cryst. 16:548-558.

Northrup, S., M. Pear, J. Morgan, J. A. McCammon, and M.
Karplus. 1981. Molecular dynamics of ferrocytochrome c. Magni-
tude and anisotropy of atomic displacements. J. Mol. Biol.
166:1087-1109.

Levy, R., D. Perahia, and M. Karplus. 1982. Molecular dynamics
of an a helical polypeptide: temperature dependence and
deviation from harmonic behavior. Proc. Natl. Acad. Sci. USA.
79:1346-1350.

. Perahia, D., R. Levy, and M. Karplus. 1990. Motions of an a

helical polypeptide: comparison of molecular and harmonic
dynamics. Biopolymers. 29:645-677.

Straatsma, T. 1987. Free energy evaluation by molecular dynamics
simulations. Ph.D. thesis. University of Groningen.

. Alper, H,, and R. Levy. 1989. Computer simulations of the

dielectric properties of water: studies of the simple point charge
and transferable intermolecular potential models. J. Chem. Phys.
91:1242-1251.

Jayarm, B., R. Fine, K. Sharp, and B. Honig. 1990. Free energy
calculations of ion hydration: an analysis of the Born model in
terms of microscopic simulations. J. Phys. Chem. 93:4320-4327.

. Diamond, R. 1990. On the use of normal modes in thermal

parameter refinement: theory and application to the bovine
pancreatic trypsin inhibitor. Acta Crystollogr. A46:425-435.

Warshel, A., and F. Sussman. 1985. Calculation of electrostatic
energies in proteins. The energetics of ionized groups inbovine
pancreatic trypsin inhibitor. J. Mol. Biol. 185:389-404.

Mérola, F., R. Rigler, A. Holmgren, and J. C. Brochon. 1989.
Picosecond tryptophan fluorescence of thioredoxin: evidence for
discrete species in slow exchange. Biochemistry. 28:3383-3398.

Hol, W. 1985. The role of the o helix dipole in protein function and
structure. Prog. Biophys. Mol. Biol. 45:149-195.

Wada, A. 1977. The a helix as an electric macrodipole. Adv.
Biophys. 9:1-63.

Biophysical Journal

Volume 59 March 1991



