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Threshold Fluctuations in an N Sodium Channel Model of the
Node of Ranvier
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ABSTRACT Computer simulations of stochastic single-channel open-close kinetics are applied to an Nsodium channel model
of a node of Ranvier. Up to 32,000 voltage-gated sodium channels have been simulated with modified amphibian sodium channel
kinetics. Poststimulus time histograms are obtained with 1000 monophasic pulse stimuli, and measurements are made of
changes in the relative spread of threshold (RS) with changes in the model parameters. RS is found to be invariant with pulse
durations from 100 ps to 3 ms. RS is approximately of inverse proportion to N/. It decreases with increasing temperature and
is dependent on passive electrical properties of the membrane as well as the single-channel conductance. The simulated RS
and its independence of pulse duration is consistent with experimental results from the literature. Thus, the microscopic fluc-
tuations of single, voltage-sensitive sodium channels in the amphibian peripheral node of Ranvier are sufficient to account for
the macroscopic fluctuation of threshold to electrical stimulation.

INTRODUCTION

Before the advent of single-channel recording and the rec-
ognition that substantial membrane noise is due to the ran-
dom, open-close kinetics of large numbers of ionic channels
(DeFelice, 1981; Hille, 1992), fluctuation of excitability was
of great experimental and theoretical interest (Blair and
Erlanger, 1933; Pecher, 1939; Poussart, 1965; Ten Hoopen
and Verveen, 1963; Verveen, 1962; Verveen and Derksen,
1965; Verveen and Derksen, 1968). Verveen and his col-
leagues systematically studied fluctuation of excitability
with electrical stimulation in a large number of single fibers
of differing size. They concluded that the probability of
firing, as a function of stimulus current, for a given fiber
could be described with a Gaussian distribution function
(Ten Hoopen and Verveen, 1963; Verveen, 1962; Verveen
and Derksen, 1965). Verveen defined the "threshold" as the
stimulus intensity at which the fiber fired 50% of the time.
He also defined the relative spread of threshold (RS) as the
coefficient of variation, i.e., the standard deviation divided
by the mean of the Gaussian for that fiber. Although thresh-
old varied both with stimulus parameters and across fibers,
RS was independent of stimulus parameters and appeared to
be an inherent property of the fiber with a strong dependence
on fiber diameter (Verveen, 1962).

Verveen postulated that each fiber had an inherent noise
source that was an order of magnitude greater in intensity
than could be accounted for by thermal noise. Subsequent
developments in fluctuation analysis and single-channel re-
cording suggested that the random, open-close kinetics of
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ionic channels were a significant source of membrane noise
(Hille, 1992). In an elegant theoretical treatise, Lecar and
Nossal used phase-plane analysis to define the relationship
between idealized membrane noise and threshold fluctuation
(Lecar and Nossal, 1971). Using their equations and his own
precise measurements of sodium channel fluctuations,
Sigworth (1980) demonstrated that the microscopic sodium
channel noise was sufficient to account for the macroscopic
threshold fluctuations measured earlier by Verveen.

Clay and DeFelice further defined the relationship be-
tween single-channel kinetics and fluctuation in excitability
by developing a numerical technique to simulate a population
of voltage-sensitive channels not under voltage-clamp (Clay
and DeFelice, 1983). The largest number of sodium channels
simulated was 640. Although they estimated the coefficient
of variation of spike latency and documented its inverse re-
lation to N/N, they did not publish post-stimulus time (PST)
histograms or attempts to estimate RS.

In this paper, the technique of Clay and DeFelice is applied
to a model of the amphibian node of Ranvier using modified
Frankenhauser-Huxley kinetics (Frankenhauser and Huxley,
1964; Schwarz and Eikhof, 1987). The simulations include
up to 32,000 sodium channels, and PST histograms are ob-
tained in response to 1000 monophasic rectangular pulse
stimuli. Input-output functions are obtained and RS calcu-
lated for a range of stimulation and membrane parameters.
These theoretical results are very similar to experimental
PST histograms and measurements of RS from the amphib-
ian peripheral nerve (Poussart, 1965; Verveen and Derksen,
1965). The conclusions are similar to those of Sigworth
(1980): that the microscopic fluctuations of the voltage-
dependent sodium channel are sufficient to account for the
macroscopic fluctuation of threshold. The numerical ap-
proach of Clay and DeFelice (1983), however, represents
individual channel noise with greater physiologic precision
than these earlier analytic approximations. Rather than
modeling a population of channels with idealized statistics
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and phase-plane analysis, each channel is individually rep-
resented in a numerical solution of the stochastic, nonlinear
differential equation that describes the time-varying behavior
of the node.

MATERIALS AND METHODS

Theory
Consider the model for the node of Ranvier illustrated in Fig. 1. A "large"
population of N voltage-dependent sodium channels is placed in parallel
with the nodal leak resistance Rm and membrane capacitance Cm. The mem-
brane potential, a time-varying random variable V(t), is obtained by nu-

merical solution of the differential equation

dV V
iapp(t) = C. d + R + -YNa)'Na(t){V-ENa},dapt=mt+R (1

where i0pp(t) is the applied current, yNa is the single-channel sodium con-
ductance, and EN. is the sodium Nernst potential. The number of open so-
dium channels, flNa(t), is a stochastic process given by

N

fN. (t) = j (t)
j=1

The ;t.(t) are stochastic trajectories defining the open-closed state of channel
j at all points in time. If Xj = 1, channel j is open; if Xj = 0, it is closed.

Each sodium channel consists of a single-channel conductance yNa in
series with the two-state gate 9,(t). Each gate k. consists of four gating
particles, all of which must open for the channel to be open. These four
consist of three activation particles rftj(t), mi2j(t), ift3j(t), and one inactivation
particle /ij(t), corresponding to m3h of the deterministic model. Thus,

Xj(t) = rij (t)ii2j1(t)ift3j(t)hjI(t).
Analysis of this model thus requires determination of the trajectories of all
four gating particles. This process will be illustrated for a single activation
particle.

Assume a "large" population ofN two-state particles, tij(t), alternating
randomly between open and closed states.

m (t) ={° particlej closed
1 particleJ open

The mean number of particles in the open state is given by Nm, where m
is the probability of any given particle being open. m is determined by the

iNE(t)

$ r{~~~~~~~~NaYN ...... |i
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FIGURE 1 Stochastic model for an amphibian node of Ranvier. Each of
Nvoltage-dependent sodium channels has a single-channel conductance yNa
The instantaneous sodium conductance of the nodal membrane is deter-
mined from the product of yN. and the number of open channels at that time.
Xj(t) are the stochastic channel trajectories. If the channel is open Xj = 1;
if closed Xj = 0.

average or expected value of mij(t), where

1 N
m

N

= N i(t).Nj=
The behavior of m(t) is determined from the kinetic equation

N(1-m) Nm,

where the rate constants am(V) and j3m(V) respectively define the mean rates
of opening and closing of the particle. This yields

dm
= a (1 -m) - 3mm.

In the steady-state, dm/dt = 0 and the expected value of mj is given by

am

am + fBm

We wish to determine mij(t), the stochastic open-close trajectory of the
specific particle ifj at all points in time. Define the probability distribution
function for time of closing, tc, of an open particle as P0(t). Then

P.(t) = Pr(t, ' t).

If we assume that the particles lack memory (open-close transitions are a
Markov process), then the open and closed durations have an exponential
probability density function (Papoulis, 1984). For a given particle, the ki-
netics of fluctuation between open and closed are given by

elm

{m = 0} {mIi = 1}.

The mean open time of a particle at a given membrane potential V is given
by (g3m)-' and the mean closed time by (am)-'. Under voltage-clamp con-
ditions, am and 1Am are constants. Therefore, the probability distribution
functions for particle closing and opening times are given by

Po(t) = 1 - exp(-P3mt), t ' 0

P,(t) = 1 - exp(-amt), t 2 0

(2)

(3)
We can determine PO(t) using the rate constant P.m by noting the prob-

ability that the particle closes during interval At is given by the conditional
probability

Pr{tc ' t + AtI tc > t} = 13m(V)At.

Using the formula for conditional probabilities

Pr{A n B}
Pr{A B} = Pr{B}

and allowing At - 0 gives the differential equation

'P.(t)
1 - Po (t)

If we define a specific particle open lifetime t. < t < t0, where t. is the time
of opening and tc is the time of closing, this equation is readily solved, giving

P{(t) = 1 exp 1(V(t)) dt}. (4)

The distribution function for particle opening times is determined in the
same manner using the opening rate constant am:

P{(t) = 1 exp{ - am(V(t)) dt}. (5)

Thus, under conditions of time-varying membrane potential, the prob-
ability of any given open or closed particle lifetime is drawn from an ex-
ponential distribution with a mean value obtained by averaging the rate
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constant over that lifetime. Note that under voltage-clamp, am and Pm are
constants and Eqs. 4 and 5 reduce to Eqs. 2 and 3. A similar sequence of
steps can be performed for an inactivation particle hj using ah and 3h.

Numerical techniques
Following the methods of Clay and DeFelice (1983), particle lifetime du-
rations are obtained by logarithmic transformation of the output of a uniform
random number generator (Press et al., 1992). Initial conditions of each
particle are obtained from m. and h. at the resting potential and a sample
of 4N uniform random deviates. A series of iterations is then begun with
4-pus time steps wherein each particle's state is examined. If a particle is
open, the integral Eq. 4 is solved for the closing time, tr, substituting a
uniform random deviate for loge(1 - PO(t)). If the particle is closed, integral
Eq. 5 is solved for the opening time, t., substituting a uniform random
deviate for loge(1 - P(t)). The number of open channels iNa(t) is deter-
mined at that time, and the differential Eq. 1 is iterated one step with an Euler
technique. This changes the membrane potential, which alters the rate con-
stants a and 1B for the subsequent step.

Modeling N sodium channels thus requires following the activity of
4N gating particles over 4-ps steps, generating a new uniform deviate
every time a particle changes state. Standard model parameters are given
in Table 1.

RESULTS

Action potentials

Fig. 2 illustrates the response of a 4000-sodium-channel
model to 10 identical near-threshold stimuli. Note that spikes
do not always occur and when they do, their timing is ran-
dom. The standard deviation of spike times is known as jitter.
Also note the "noisy" nature of repolarization for both spikes
and spike failures. This noise is a manifestation of the ran-
dom open-close characteristics of a large number of inde-
pendent activated channels. If the mean of a large number of
spikes is obtained, in the limit, the resulting waveform is
identical to that produced by the deterministic modified
Frankenhauser-Huxley model (SE) illustrated in Fig. 7.

Fig. 3 illustrates the instantaneous number of open sodium

TABLE 1 Model fiber parameters at 200C
Parameter Symbol Value Reference

Axon diameter d 14.5 ,um Sigworth (1980)
Nodal resistance Rm 90.9 MQl Sigworth (1980)
Nodal capacitance Cm 1.5 pF Sigworth (1980)
Number of channels N 32,000 Sigworth (1980)
Channel conductance YNa 10.8 pS Sigworth (1980)
Resting potential Erest -78 mV Neumcke (1982)
Nernst potential ENa 74 mV Schwarz (1987)

Rate constant am 4(i ) Schwarz (1987)
1-e(25.41- Vm)/6.06

Rate constant P3m (V -2V) Schwarz (1987)
1 ee(V. 21)/9.41

Rate constant a -0.09(27.74+Vm) Schwarz (1987)h
1 e(eV,,,+27.74)/9O06

3.7
Rate constant P3h 1+e(56-V.)/12.5 Schwarz (1987)

In the text, when N < 32,000, membrane properties are scaled assuming a
constant channel density per unit nodal area. For the rate constants, mem-
brane potential is offset by the resting potential Vm = V - EeS.

100
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FIGURE 2 Membrane potential response produced by stochastic model
to 10 identical near-threshold stimuli. There are 4000 voltage-sensitive so-
dium channels. Stimuli are 400 ,us monophasic rectangular current pulses.
Membrane potential is shifted relative to the resting potential.
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FIGURE 4 PST Histograms at four different stimulus intensities. N =

4000. Firing efficiency (FE) is number of spikes divided by number of
stimuli (1000). Latency and jitter are given by the histogram's mean and
standard deviation, respectively. Spike time is defined when the membrane
potential crosses 75 mV relative to rest, on the upstroke of the action po-

tential.

skewed in the same manner as experimentally obtained
histograms, both in frog peripheral nerve (Poussart, 1965;
Ten Hoopen and Verveen, 1963; Verveen and Derksen,
1965) and in cat spiral ganglion cells (van den Honert and
Stypulkowski, 1984; van den Honert and Stypulkowski,
1987).

Input-output relations

Fig. 5 illustrates input-output functions for three different
values of N. As with experimental input-output functions,
these are well fit by integrated Gaussians. Note that as N
increases, the slope of the function increases. Verveen char-

90 100 110
relative intensity (% threshold)

acterized this slope by the relative spread of threshold (RS),
the coefficient of variation of the integrated Gaussian. The
RS is obtained by dividing the standard deviation of the
Gaussian by its mean. Thus, increasing the number of chan-
nels, or presumably the nodal diameter, increases the input-
output slope, decreases the RS and results in a less "noisy"
node.

Fig. 6 demonstrates the relationship between RS and N.
Note that the relationship is approximately linear on a log-log
scale. The slope of -0.45 is consistant with a binomial pro-
cess whose standard deviation is proportional to N-"12.
Verveen studied the relationship between fiber diameter and
RS in a number of preparations and also found a linear log-
log relation.
The relationship between stimulus duration and RS has

been studied both experimentally (Poussart, 1965; Verveen
and Derksen, 1968) and theoretically (Lecar and Nossal,
1971; Ten Hoopen and Verveen, 1963). For pulse durations
between 250 ,us and 2.5 ms, there is no change in the RS.
Likewise, the stochastic phase-plane calculations of Lecar
and Nossal show no dependence of RS on stimulus duration.
For the N-channel model, there was no statistically signifi-
cant change in the RS despite a fourfold change in threshold
for rectangular pulses between 100 ,s and 3 ms duration. The
strength-duration time constant of the model is 320 ,us as
compared with 309 ,s for the underlying deterministic
model.

Sensitivity to model parameters

The model parameters have been doubled and halved and the
effects on RS and threshold tabulated in Table 2 for N =
4000. For temperature, the numbers reflect the effects of
increasing temperature from 20 to 370C. This reflects only
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FIGURE 5 Input-Output functions forN = 250, 1,000, and 16,000. With
increasing N, there is a steeper slope and a smaller relative spread of thresh-
old (RS).

FIGURE 6 Relationship between number of channels, N, and the RS. The
equation is a linear fit to the logarithmically transformed data. The slope of
-0.45 is consistant with a binomial process whose standard deviation is
proportional to N-1/2.
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TABLE 2 Sensitivity to model parameters for N = 4000

Parameter RS Threshold

Rm (*2: *0.5) +20%: -13% -39%: +89%
Cm (*2: *0.5) -22%: +24% +35%: -16%
YNa (*2: *0.5) +40%: -30% -10%: +12%

Temperature (20--37°C) -24% -11%

Numbers separated by colons represent the percent change from dou-
bling and halving, respectively, the standard parameter values from
Table 1. The results for temperature represent increasing the tempera-
ture from 20 to 37°C.

the temperature dependence of the rate constants. The con-

ductances have not been altered so as to illustrate the isolated
effects of increasing the rate constants a and j3. For activation
rate constants, Q1o = 2.2; for inactivation, Qlo = 2.9
(Schwarz and Eikhof, 1987). Modeling mammalian nodes
will require altering the conductances as well. As noted by
Lecar and Nossal, although elevating temperature increases
the "noisiness" of individual channels by increasing their
open-close rate, the population effect is to decrease RS or the
"noisiness" of threshold.

Relation to Frankenhauser-Huxley kinetics

The kinetic equations used to derive the stochastic particle
trajectories are obtained from the rat nerve data of Schwarz
and Eikhof (1987) at 200C rather than from the amphibian
data of Frankenhauser and Huxley (1964). The original
Frankenhauser-Huxley equations include several voltage-
dependent conductances, in addition to the sodium conduc-
tance, that would significantly increase numerical overhead.
To maximize the number of sodium channels that could be
represented and the number of stimulus repetitions in the PST
histograms, a simplified nodal representation was used. This
simplification preserves certain fundamental excitation prop-
erties of the original equations as demonstrated in Fig. 7. The
similar slope of the spikes' rising edge indicates similar so-
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FIGURE 7 Deterministic action potentials produced by the modified (SE)
and original (FH) Frankenhauser-Huxley models. Both are with near-

threshold stimuli. The similar slope of the spikes' rising edge indicates
similar sodium activation rates.

dium activation rates. The modified model (SE) has a dif-
ferent spike size and duration than the original
Frankenhauser-Huxley model (FH), but this would not be
expected to cause differences in RS. The membrane capaci-
tance of the SE and FH models are quite similar. The leak
conductance of the SE model is approximately twice that of
the FH model but from Table 2, this difference would lead
to less than a 15% change in the calculated RS. Of greater
concern are the sodium channel activation characteristics.
Lecar and Nossal have demonstrated that sodium channel
activation is a primary determinant of RS. The nearly iden-
tical nature of the sodium activation is seen in the similar
leading edge of the two action potentials. The validity of this
argument could be directly tested by the implementation of
an N-channel model of the exact Frankenhauser-Huxley
equations. For the modified model, the input-output function
for N = 32,000 required 1 week of computation on a 16-
MFlop UNIX workstation. The computational load would be
correspondingly increased by the presence of a significant
number of voltage-sensitive channels for potassium, and for
the nonspecific p current.

DISCUSSION

A stochastic model of the amphibian node of Ranvier has
been presented that is based on the open-close kinetics of
single sodium channels. As noted by Clay and DeFelice, the
patch-clamp literature provides numerous examples of so-
dium channels whose microscopic kinetics do not obey
Hodgkin-Huxley type equations (Aldrich and Stevens,
1987). The amphibian nodal sodium conductance does ap-
pear, however, to have classical microscopic kinetics (Hille,
1992; Wang and Strichartz, 1985). Unitary currents have
been recorded from amphibian (Jonas et al., 1989) and hu-
man (Scholz et al., 1993) nodal sodium channels, but the
exact nature of their microscopic kinetics remains unknown.
It is likely, however, that the microscopic kinetics need not
be exactly represented to reproduce accurately the macro-
scopic behavior of the node. It is difficult to distinguish be-
tween different kinetic models of a voltage-gated channel
with fluctuation analysis, precisely because different kinetic
schemes, when averaged over a large number of channels,
produce similar macroscopic behavior (Hille, 1992). This
argument could be addressed further by incorporating dif-
ferent kinetic analyses into the N-channel model and simu-
lating the macroscopic effect.

This paper demonstrates that a number of experimental
observations are reproduced by the N-channel model. In par-
ticular, the RS values predicted by the model are consistant
with those measured experimentally by Verveen (1962) and
by Poussart (1965). Sigworth (1980) has noted that after
shrinkage artifact, Verveen's nodal measurement is consis-
tant with fibers 10-12 ,um in diameter. Given that Sigworth's
representative fiber had a diameter of 14.5 ,um and 32,000
sodium channels, and assuming a constant density of chan-
nels, Verveen's and Poussart's preparations would have ap-
proximately 26,000 sodium channels per node. Using the
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relationship in Fig. 6, this corresponds to an RS of 1.2%.
Verveen measured a mean RS of 1.1% from 80 fibers, and
Poussart reported a mean of 1.6% from 10 fibers. The de-
pendence of RS on the number of channels is similar to the
experimentally determined relationship between RS and fi-
ber diameter. The slopes of these functions are different, but
the presence of shrinkage artifact makes interpretation of this
difference difficult. Note also that Verveen's equation re-
lating RS to fiber diameter was based on three data points
each from a different species.
The independence of RS from pulse duration has been

noted in several of the aforementioned experimental studies.
The N-channel model provides a means of testing this in-
dependence for very long pulse widths, where stimulus ar-
tifact interferes with measurements. Between 100 ,us and 3
ms, RS for the model has no statistically significant change.
A relation between temperature and RS was not noted by

Verveen or Poussart, but clearly they expected its presence.
The analysis of Lecar and Nossal did show a temperature
effect on RS of similar magnitude to that reported here. A
decrease in RS with increasing temperature has been seen
experimentally as well (Erlanger et al., 1941).

It appears that the N-channel model adequately predicts
certain stochastic properties of spike excitation in the am-
phibian node. Further comparisons with the experimental
literature are in order but await implementation of N-channel
nodes into a distributed axon model. This will allow pre-
diction of spike jitter, the standard deviation of the PST his-
togram. Experimental and theoretical work has illustrated a
relationship between spike latency, RS and spike jitter
(Ten Hoopen and Verveen, 1963; Verveen and Derksen,
1965). Most jitter is thought to arise from the excitation pro-
cess, but models clearly illustrate that propagation can also
affect the magnitude of the jitter (Rubinstein, 1994). Because
the latency of a single-node model cannot be compared with
experimental data from intact fibers, distributed, multinode
models are necessary. Such a model could be of experimental
as well as theoretical interest.

Cochlear implants represent an active contemporary ap-
plication of electrical stimulation. Because the cat auditory
nerve has been used extensively in studies of normal hearing,
it is a logical choice for single-unit studies of cochlear im-
plants (e.g., Dynes and Delgutte, 1992). With electrical
stimulation of the cat spiral ganglion, multiple sites of ex-
citation have been identified (Rubinstein and Dynes, 1993;
van den Honert and Stypulkowski, 1984, 1987). These sites
demonstrate different strength-duration time constants,
thresholds, and jitter. There are possible anatomic correlates
for these sites of excitation on the spiral ganglion cell, and
extensive morphometric data are available (Liberman and
Oliver, 1984). Kinetic data from ionic currents in mammalian
spiral ganglion cells are now becoming available (Santos-
Sacchi, 1993). By altering the kinetics of the N-channel
model, it may be possible to study the effects of fiber
anatomy on threshold, latency, RS, and jitter.
The primary differences between single-unit responses to

acoustic and electric stimuli are related to synchrony.

An effort to understand the stochastic mechanisms under-
lying these differences has potential practical application
in developing speech processing strategies for cochlear im-
plants (Finley et al., 1990). Preliminary tests of the model
with biphasic and sinusoidal stimuli appear consistent
with experimental data regarding the intensity dependence of
synchrony.

Sigworth noted the historical relationship between early
work with threshold fluctuation and the study of single chan-
nels with fluctuation analysis. Clay and DeFelice noted that
"the relationship between single channel kinetics and mem-
brane excitability effectively turns the noise problem back to
its origins." It may be possible to use macroscopic threshold
fluctuation as a tool to study the microscopic nature of the
different sites of excitation in intact cells. An obvious ex-
ample would be to use threshold fluctuation to count sodium
channels at the different sites of excitation on the spiral gan-
glion cell. This would indeed represent a return to the origins
of "the noise problem." The success of this approach will
depend critically on the absence of significant threshold
noise sources other than the microscopic fluctuation of the
voltage-sensitive sodium channel.

L. H. Carney, D. K. Eddington, N. Y. S. Kiang, and J. R. Melcher provided
much useful criticism of the manuscript. I. F. Garcia-Otero provided expert
UNIX system administration. M. W. White introduced me to the work of
Verveen. This work was supported by National Institutes of Health program
project DC00361.
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