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Three-Dimensional Localization of Immunogold Markers Using Two Tilted
Electron Microscope Recordings
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ABSTRACT A method is presented to determine the three-dimensional positions of immuno-labeled gold markers from tilted
electron micrograph recordings by using image processing techniques. The method consists of three basic modules: localization
of the markers in the recordings, estimation of the motion parameters, and matching corresponding markers between the views.
Localization consists of a segmentation step based on edge detection and region growing. It also allows for the separation of
(visually) aggregated markers. Initial estimates for the motion parameters are obtained from a small number of user-indicated
correspondences. A matching algorithm based on simulated annealing is used to find corresponding markers. With the resulting
mapping, the motion parameters are updated and used in a new matching step, etc. Once the parameters are stable, the marker
depths are retrieved. The developed method has been applied to semithin resin sections of A431 cells labeled for DNA and
detected by silver-enhanced ultrasmall gold particles. It represents a reliable method to analyze the three-dimensional distri-
bution of gold markers in electron microscope samples.

INTRODUCTION

Many cellular processes and structures can be understood
and studied better when three-dimensional (3D) information
is available. Therefore, localization of cellular components
in both space and time is an important methodology in cell
biology. The introduction of electron microscope marker
systems, especially colloidal gold particles, revolutionized
the power of electron microscopy. A micrograph no longer
only illustrates the morphology of a cell, but it also shows
the location of biological relevant macromolecules. Thus
biochemical data, the reaction catalized by a macromolecule,
can be correlated with morphological data, revealing the
place in the cell where this reaction takes place. There are
specific probes for all types of cellular macromolecules: pro-
teins, lipids, carbohydrates, and nucleic acids (cf. Horis-
berger, 1992, for a review). The only limitation is given by
the fact that the preservation of the biological fine structure
and the antigenic or binding determinant in general oppose
each other. For unambiguous identification of the cellular
structures, the biological material has to be fixed and em-
bedded optimally. The macromolecule to be identified, how-
ever, should not be altered in its conformation and should be
unimpeded accessible for the marker. Pre-embedding tech-
niques are often the method of choice if the macromolecule
of interest is scarce or very sensitive to the preparation pro-
cedure. Additionally, it offers the advantages that the label
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is present in three dimensions and that it is not restricted to
the section surface. The macromolecule or its polymers can
be followed, and the spatial relationship between the labels
and between label and macromolecule, as well as their in-
tegration into the cell, can be studied better.

In general, a specimen needs to be sliced to acquire spatial
information, either optically or physically. Stacking the sec-
tions to reconstruct the object is then necessary, because
studying single sections can lead to various kinds of mis-
interpretation of the 3D structure (Elias, 1971). To recon-
struct a graphical representation, one can manually extract
the contour of the object in every section, using a digitizer
board. The contours are aligned manually either with (Per-
kins and Green, 1982) or without (Geraud et al., 1988) the
help of internal fiducial markers. Manual tracing is time-
consuming and represents the limiting step in all 3D recon-
struction experiments (Levinthal, 1984). To obtain a pictorial
description, one aligns the sections either by hand (Moss et
al., 1990) or by use of a computer-sided registration method.
The latter method can be based on detected internal feature
points (Bron et al., 1990) or on an optimized similarity meas-
ure between adjacent images (Venot et al., 1984).

Methods of information recovery from within a section
have been developed for light microscopy (Shaw et al., 1989)
and electron microscopy but are used mainly in electron mi-
croscopy where the depth of field (0.1-2 ,um) exceeds the
resolving power (3 A) significantly. Two groups of recon-
struction methods are principally used:

1. Tomography. Electron microscope tomography (EMT)
is a technique for 3D reconstruction of singular objects from
their projection images (Provencher and Vogel, 1988). At
least 11 views around the object are needed (Hoppe and
Hegerl, 1980). The reconstruction process does not use sym-
metry information. As a consequence, all specimen and
preparation shortcomings will be present in the final 3D re-
construction (Skoglund, 1992).
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2. Stereo microscopy. This requires two tilted recordings
of the section (Peachly, 1986), which are mounted side by
side and viewed as a single 3D image (King, 1981). This
rapidly produces a 3D presentation of the specimen but suf-
fers from serious limitations (Bonnet et al., 1985): the stereo
viewer and the images must be aligned exactly with respect
to the orientation of the tilt axis, the stereo angle is limited
taking into account the possibilities of modem goniometer
stages, and it does not give access to accurate quantitative 3D
information.

Quantitative depth information can be obtained by using
a parallax bar or a flying spot, for which the tilt axis must
be normal to the measurement direction. This is a manual
procedure and is very elaborate when processing many
points, but because it relies on simple stereological principles
it is suitable for (semi-)automatic processing. Attempts in
this direction have been made by Bonnet and co-workers,
who reconstruct a graphical representation of biological
specimens from high-voltage electron microscope stereo
views (Bonnet et al., 1985), and by Luther and co-workers,
who monitor the collapse of plastic sections when the plastic
is irradiated (Luther et al., 1988).

Manual localization of the gold markers in the projected
views by using some pointing device such as a digitizer tablet
or a mouse is still widely used. Because these locations are
used to calculate the depth components of the markers, the
disadvantages of this approach are clear: it is biased and
poorly reproducible. In this paper we describe a method to
localize gold markers accurately in a thick section from (two)
tilted transmission electron microscope recordings, using im-
age processing techniques. Immunogold labeling ofDNA in
interphase nuclei was used as a model system. To challenge
the image analysis method further and to be close to routine
situation, we used silver-enhanced ultrasmall gold particles
as a detection system. Thus high label density was achieved
and the particles were partially aggregated.

MATERIALS AND METHODS
The method to retrieve the marker depths can be divided into five steps (Fig.
1). First the markers are localized in the recordings. An initial registration
is performed, using the positions of a small number of markers supplied by
the user. Then the markers are matched and the model parameters are re-
estimated, using the resulting pairs. This procedure is iterated until the model
parameters are stable. Finally, the marker depths are retrieved.

Although intermediate results provided, we have tried to keep their ad-
justment by the user to a minimum at all stages. In particular, the marker
positions in the views are preferably not determined manually, because they
are closely related to the marker depths and the model parameters.

The methods were implemented in c and linked to the image processing
package scIL-Image (University of Amsterdam, Amsterdam, The Nether-
lands) on a SUN SPARCstationlO. The negatives were recorded by a Sony
XC-77CE CCD camera attached to an Imaging Technology VFG frame
grabber (Imaging Technology Inc., Woburn, MA) mounted in a PC 486
compatible.

Model
The gold markers are distributed within the section that sits on a grid in the
specimen holder. The electron beam projects a bright field image of the

FIGURE 1 Five steps in the method to recover the depth components of
the gold markers from tilted electron microscope recordings.

specimen onto the image plane, which is defined as the xy plane. The x axis
is assumed parallel to the electron beam (the optical axis). The section is
tilted about the tilt axis by the tilt angle 4). The actual image acquisition is
most conveniently done by attaching a camera to the electron microscope
and digitizing the signal. However, we chose to photograph the images on
6 cm X 9 cm negatives, to place them on a dazzle light, and to digitize by
means of a CCD camera. In this way the region of interest can be chosen
afterward, without losing resolution as a result of resampling.

Let the coordinates of the marker centers in 3D space be given by pi,
i = 1 ... N. Tilting changes coordinates to p', determined by the following
geometric operations:

1. Scaling. A scaling difference s between the two recordings is intro-
duced that is due to focusing differences, both in the electron microscope
and during digitization of the negatives.

2. Rotation. The specimen is tilted by 4) about the tilt axis. Furthermore,
the electron beam is rotated because of the magnetic forces induced by the
microscopes lenses, causing an image rotation by a about the z axis. A
rotation by (3 about the z axis is introduced as a result of misalignment of
the negatives during digitization. All these rotations are combined in rotation
matrix R.

3. Translation. Relocation ofthe area of interest after tilting, and a relative
shift ofthe negatives during digitization, cause a translation Tin thexy plane.

Because the sections are thin and the opening angle of the electron beam
is very small (-0.7°), we assume weak perspective projection instead of
perspective projection. This is modeled by a scaling, included in parameter
s. The model parameters are combined in an affine transform between the
points pi and p':

p,= sR p + T. (1)

Marker localization
Localization of the gold markers is an important step because the positions
of the markers are used to estimate the model parameters and consequently
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the marker depths. The algorithm we use to find the marker centers is based
on recent work (Starink and Young, 1993) and consists of two subsequent
steps: segmentation and separation. Before localization, noise peaks are
removed (Immi, 1991), and the background, estimated by using circular
local max-min filters, is subtracted from the images. The result is smoothed
with a Gaussian filter, yielding the image I(k, 1).

The segmentation step starts with edge detection by applying a gradient
method. We use the ramp version of the Lee detector for a better suppression
ofnonramp edges (Lee et al., 1986; Verbeek et al., 1988). This filter is based
on max-min filters, where the extreme is searched within a circle with radius
n centered on (k, 1):

E(k, 1) = min[LOWn(k, 1) - MINn(k, 1), MAX.(k, 1) - UPD(k, 1)], (2)

where LOWn(k 1) = MAXn[MINn(k, 1)] and UPn(k, 1) = MINn[MAX.(k 1)].
Region growing (Zucker, 1976; Pavlidis and Liow, 1990) starts by find-

ing kernels with a peak detection algorithm, for which we used the con-
vergent squares algorithm (O'Gorman and Sanderson, 1984). Each neighbor
of a kernel is marked "candidates" and is checked against the region-
growing criteria (Table 1). If it is a region pixel, it is added to the region,
and all unmarked neighbors are marked "candidates." If it is a boundary
pixel, it is also added to the region, but all its unmarked neighbors are marked
"stop." Based on the response of the smoothing filter (parameter a) and the
edge likelihood operator (parameter b), the rule referred to is

(k,I)E {boundary
I(k, 1) - a/bE(k, 1) < 0
otherwise

Region growing stops when no candidates remain and all kernels have been
processed.

The result is an image with regions containing the gold markers. If
a region contains only one marker, its center is readily estimated by
averaging over the region pixel coordinates. For various reasons such
as noise, overprojection, lack of resolution, and abundant staining, the
markers may (visually) aggregate. To separate and localize the indi-
vidual markers, initial estimates for their positions and sizes are de-
termined. Because a marker is approximately round, its inscribing
circle, identified by a peak value in the distance image (Borgefors,
1986), serves as an initial estimate. The location of the peak corresponds
to the center; its value, to the radius. Usually, more peaks than the
number of actually present markers are detected. To yield the most
probable peaks, they are selected in descending order of magnitude, and
peaks covered by the inscribing circle of a selected peak are removed.

Then all markers, initially the inscribing circles, are dilated simulta-
neously. If a marker cannot be dilated with pixels not covered by the mark-
ers, it is left unchanged. Dilation continues until the region is entirely cov-
ered. The new markers are used to update their center positions and radii,
which are fed into a new dilation step. This process is iterated until the
centers are stable. Three operations allow manual correction of the results:

1. Dark spots resulting from noise or staining may result in untrue mark-
ers. These may affect the final result and should be removed.

2. Although it is unwanted, manual localization of undetected markers
is supported. This operation can be partially avoided by tuning the region
growing parameters such that slightly more markers than actually present
are detected. Afterward, the remaining untrue markers can be removed.

3. Identifying undetected markers in multimarker regions is done by
supplying the separation procedure with points located near the centers of
the missing markers.

Model parameters

For parallel and weak perspective projections, the locations and direction
of the epipolar lines can be estimated from four correspondences of two
views (Lee and Huang, 1990). Thus the user must supply the system with
at least the four sure correspondences to perform the initial mapping. To
estimate tilt angle 4, four correspondences of at least three views are re-
quired (Ullman, 1979; Huang and Lee, 1989). When only two views are used
in the analysis, the tilt angle must be read from the goniometer stage.

An iterative procedure to estimate the model parameters from two views
has been described in Bonnet et al., 1985. A more sophisticated model and
a numerical procedure to estimate the parameters from any number ofviews
have been described by Luther et al. (1988). Here we briefly describe a
numerical procedure to estimate the parameters in our model using two
views, assuming that the tilt axis is parallel to the image plane. First the
user-indicated correspondence (pl, p;) is used to undo translation T, using
relative displacement:

p - p = sR - pi + T - (sR pi + 7) = sR * (Pi - Pt). (3)

With matrix R = Rz(I) * R,(a) * R,(4) * R.(-a), the points are corrected for
translation and normalized for scaling and rotation in the xy plane:

pBth s Rz(- in) s(pbc- parael toRzte (P'a-.E ). (4)

By this, the epipolar lines become parallel to the x axis. Now Eq. I becomes

(5)
This rotation about the x axis leaves the x coordinate unchanged, so p' =

cos(-a-13) * p'. - sin(-a-13) * p'

= s cos(-a) * pi, - ssin(-a) * pj Y.
This nonlinear system is rewritten as

y1(a) = cos(,y)p'X + sin(y)p'- s cos(a)piX- s sin(a)pi,y,
a = (ary s)', Y =a +13.

(6)

(7)

Minimizing x2 = liy'. is readily performed with a standard, nonlinear mini-
mization scheme such as the Levenberg-Marquardt method (Vetterling et
al., 1993). Finally, the depth component is estimated, using the y coordinate
of the normalized coordinates in Eq. 5:

p = s CS(4P),- Pisy (8)

The distance d(p, A;) of the candidate pj to the epipolar line Ai of pi is given
by

d(p,A;) = Ipi,. - p I.

TABLE 1 Classification of pixel candidates

'(k 1)

E(k, 1) [0, a-oa) [a-oa, a+o,J (a+cr,, 1]

[0, b-orb) Reject Region Region
[b-o,b, b+crb] Boundary Rule Region
(b+crb, 1] Boundary Boundary Boundary
For both the pixel intensity I(k, 1) and the pixel edge likelihood E(k, 1), three
regions are defined based on the parameters a and b and their standard
deviations a. and oJb. Classifications are given for all combinations. The rule
referred to is explained in the text.

(9)

Marker correspondences
In the matching step we have to determine for each marker in the untilted
view the corresponding marker in the titled view. Generally, in matching one
tries to identify corresponding elements in slightly different views. De-
pending on the representation of the elements, this can be approached in
several ways (Lemmens, 1988). The signal approach treats the images as
two-dimensional signals. The elements are usually pixel neighborhoods,
which are detected in one image and sought for in the other. The feature
approach was introduced by Marr (Marr, 1979). The elements are local
objects such as points and edges. They are detected in both images and
matched afterward. In the structural approach, structures and their relation-
ships are organized in graphs (Boyer and Kak, 1988), which are matched
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by using inexact graph matching (Shapiro and Haralick, 1981). If costs are

defined reciprocal to the similarity measures, the minimum cost match cor-

responds to the optimum match. General approaches to finding this match
include linear programming (Ullman, 1979), relaxation labeling (Hummel
and Zucker, 1983), simulated annealing (Barnard, 1980), and dynamic pro-

gramming (Otha and Kanade, 1985).
In our problem the markers, represented by their centers, are the elements

in the matching. Inasmuch as both views probably contain a different num-
ber of markers, looking for one-to-one correspondences is not sufficient.
Therefore a marker is allowed to match either a marker in the other view
or the null space. Cost c(pi, pj) specifies the pair cost that is charged when
pi and p' are paired and is a weighted sum of the coefficients Ck(p;, pj):

c(pj, p!) = Cakck(Pi, p;), (10)

k

where the coefficients ck should reflect both general and application-specific
properties and features. We describe three such cost coefficients.

Epipolar distance

Although all possible correspondences should be regarded, commonly the
candidate lists are reduced by setting an upper boundary on the distance to
the epipolar line. Consider the candidates pi and pj for matching. The po-
sitional error of the epipolar line Ai is op,. If the error is normally distributed,
then the positional error of p' relative to A1 is V2rpos. With a probability
of 95%, the true correspondence of pi is located within distance dm. = 1.96

t2oe - 2.8 (p.,o of the epipolar line. The cost coefficient is now defined

as the squared epipolar distance when it is smaller than dm. and as +00
otherwise. It is set to 1.2 dm when either candidate is null:

d(p, Ai)2
C (pi, p;) = +00

1.2 d2

d(p!, As) < dma,
d(sp, Ai) 2- d..
Pi = 0Oorp, = 0

Gray-value correlation

The gray-value correlation between the neighborhoods of the marker
centers is used to define another cost coefficient. The correlation co-

efficient r(p1, pj) between the two regions surrounding the candidates,
corrected for scale changes in gray-value amplitude as defined in
Gonzales and Wints (1987) lies between -1 and 1, ranging from non-

correlation to perfect correlation. The second cost coefficient is now
defined as c2(p1,pi) = 1 - r(p1,pi).

Layout similarity

The third cost coefficient is based on the layout configuration between the
candidates' closest neighbors. First the n nearest points to pi are collected
as Sk, k = 1 ... n. Assume that sk, = pi,,, than with Eq. 8 the expected
position of these neighbors is 9', where 9' = sk, and Sk= p, + cos(4)
(sky - p1y). If the two points pi and p' are a true correspondence, then the
true counterpart of each sk should be located near its expected position. This
is examined by matching each s'k to the set of tilted markers. The cost matrix
is of size n X N'. The pair cost c* is defined as a weighted sum of the squared
distance to the epipolar line (Eq. 11) and the distance between the candidates
along the epipolar line:

c*(sk, p') = al*cl (sk, p') + a* -p7,1.

This matching problem is solved with a simple best-first scheme: Repeat
selecting the minimum cost pair until at least one set is empty. The cost
coefficient c3 is now the mapping cost of the n matched points.

The method that we present here to generate the (close to) minimum
cost mapping between the markers in the two views is based on simu-
lated annealing (Starink, 1995). Simulated annealing is a stochastic
optimization algorithm based on the physical analogy of annealing a

system of molecules to its ground state. To bring a synthetic system to

equilibrium, the cooling process is simulated by the standard method
of Metropolis et al. (1953). The rate of cooling must be slow enough
so that the system does not get stuck in local minima. Originally de-
veloped by Kirkpatrick et al. (1983), the method has been applied to a

variety of hard optimization problems (El Garnal et al., 1987; Cerny,
1985; Carnevali et al., 1985; Tan and Gelfland, 1992; and Barnard,
1986).
We are given the finite set A of all possible mappings and the cost

(energy) function E(X), which is the sum of all pair costs. The probability
of occurrence of any particular mappingm is proportional to its Boltzmann
weight, P[m] X exp(E(m)/T). For each state m e AM there is a set N(m) c
A that contains the neighboring mappings of m. Let T12 T2 ' . . . be a

sequence of strictly positive numbers such that limk,. Tk = 0. With
[X]+ = max(X, 0), the general form of the annealing algorithm is

Set k = 0.
Choose initial mapping mk
while Tk # 0 do

Choose a next state m' from N(mk):

Set mk+l = { m

Set k = k + 1.

with probability exp( 7 )

otherwise

end.
With 44* the set of globally minimal states, we try to achieve limk-. P[mk
E A*] = 1 by letting Tk tend to zero as k leans to infinity. Asymptotic
convergence in this probability is reached only if

kE xp( = 00, (12)

where d* is the maximum of depths of local minima (Geman and Geman,
1984; Hajek, 1988). If the temperature schedule assumes the parametric
form Tk = cllog(k + 1), this is true when c 2 d*.

To apply this scheme, first an initial mapping is generated, using the
best-first approach described above. Remaining unmatched points are

matched to null. Parameter c is set to the maximum pair cost in the initial
mapping. Although this value is probably too high, it proves to be an ad-
equate guess. Now define a rearrangement as a change in the mapping such
that the two candidates pi and p' become a pair and the new mapping is part
of N(m). The candidates are randomized, and one of them may be null. If
the change in energy AE resulting from the rearrangement is negative, the
rearrangement is accepted; otherwise it is accepted with a chance according
to the Boltzmann probability distribution.

Allowing candidates to match either null (unmatched) or another point
gives rise to six different configurations. The rearrangements are illustrated
in Fig. 2. The configurations left of the arrows represent the situation before,
the configuration right of the arrows the situation after the rearrangements.
The candidates are gray, pi in the left sets, and p; in the right sets. Null is
drawn as a circle on top of the sets.

FIGURE 2 Rearrangements of the randomized configurations. Six dif-
ferent configurations can occur (left of the arrows), which are rearranged
such that a legal configuration results (right of the arrows). (a)-(f), Related
energy changes as described in Eq. 13.

3 4 Mai Mi

(a) (b) (c)

I (d) (e) (f)
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The energy changes related to the six rearrangements are

AE = - 2c(p, p) + c(P!, 0) + c(O, P'), (13a)

AE = -2c(pi, Pi) + c(p1, 0) + c(O, P)' (13b)

AE = -c(pi, 0) - c(O, p;) + 2c(p., p!), (13c)

AE = -c(p;, 0) -c(p;, p) + c(p;, p) + c(p', 0), (13d)

AE = -c(p;, P) -c(O, p) + c(pi, p;) + c(O, pi), (13e)

AE = -c(pi, P) - c(P, p;) + c(pi, p;) + c(pi, P), (13f)

where 0 corresponds to a null candidate and where the points that are
matched to the candidates are denoted by Pi and p;

Rearrangements are randomized until, theoretically, the temperature is
zero. But, because the temperature will never reach zero, the following stop
criterion is used. At first, the mapping will change rapidly to lower-energy
mappings. Later, as temperature decreases or when the minimum cost map-
ping is approached, the rate of accepted changes toward higher-cost map-
pings will steadily increase until it approximates the rate of changes to
lower-cost mappings. A reasonable test for equilibrium is when the ratio of
changes to higher- and changes to lower-cost mappings, as measured over
a fixed number of accepted rearrangements, is stable.

Specimen preparation

The methods described in the previous sections were developed for general
use in 3D marker localization. We have quantified the method using A431
epidermoid carcinoma cells. The cells were grown in Dulbecco's modified
eagle's medium supplemented with 7.5% (v/v) fetal calf serum in a hu-
midified atmosphere at 7% CO2 and 37°C. They were seeded on Thermanox
cover slips (LUX, Naperville, IL) and grown to a density of 500-60%
confluency. The cells were washed with PBS (pH 7.4), prefixed with 0.25%
(v/v) acrolein in PBS, and permeabilized with 0.5% (w/v) Triton X-100 in
a cytoskeleton buffer (CSK, 100-mM NaCl, 300-mM sucrose, 3-mM MgCl2,
1-mM ethylene glycol-bis(P3-aminoethyl ether) N,N,N',N'-tetraacetic acid,
1.2-mM phenylmethylsulfonyl fluoride, 10-mM piperasine-N,N'-bis[2-
ethanesulfonic acid], pH 6.8) (Fey et al., 1986) for 5 minutes at room tem-
perature. The cytoskeleton preparations were fixed with 2% (w/v) formal-
dehyde and 0.02% (v/v) glutaraldehyde in PBS. They were labeled with a
primary antibody against DNA (gift of Dr. R. Smeenk, The Netherlands Red
Cross blood transfusion service, Aisterdam, The Netherlands) and a sec-
ondary ultrasmall gold-tagged antibody. The ultrasmall gold particles were
enlarged with silver enhancing according to the method of Denscher (1981)
for 25 min at 20°C. The preparations were cryoprotected with 30% (v/v)
dimethylformamide in bidistilled water (Meissner and Schwarz, 1990) and
frozen in a cryofixation system KF80 (Reichert-Jung, Wien, Austria) by
plunging. The samples were dehydrated with methanol containing 0.5%
(w/v) uranylacetate by freeze substitution (Humbel and Muller, 1986) and
embedded in Epon. Sections of -250-nm thickness were cut parallel to the
substrate. The sections were irradiated in the electron beam for a few min-
utes prior to taking pictures were taken. Thus blurring and loss of resolution
owing to the initial collapsing may be avoided (Luther et al., 1988).

EXPERIMENTAL RESULTS

In this section we discuss the accuracy of the localization
method and the matching method as determined from model
data. A practical study on A431 cells is presented.

pixels. In Starink (1993) these parameters were determined
experimentally for different edge types and for a broad range
of the signal-to-noise ratio as a 0.6 ± 0.1 and b 0.3 ±
0.1.

Also in Starink (1993) the localization error was deter-
mined experimentally. Here, convex objects of 15 pixels in
size were used to construct one-, two-, and three-marker re-
gions with nonoverlapping centers. The localization error
was determined, again over a broad noise range (Fig. 3).
Under regular conditions, the localization error proves to be
smaller than 0.5 pixel and approaches 1.0 only for very low
signal-to-noise ratios (-1.0).

Matching

An experiment was performed to determine the rate of con-
vergence of the matching algorithm. As a model system, 100
points were randomly distributed in a 100 X 100 X 50 rec-
tangular space, rotated over 300 around the x axis and pro-
jected onto the xy plane. We displaced these points by adding
a normally distributed, zero mean vector. The initial mapping
was constructed by matching all the points in both sets to
null. Pair costs were calculated by using the squared epipolar
distance (weight 0.75) and five-neighbor layout similarity
(weight 0.25). Parameter c in the temperature schedule was
set to the difference between the minimum and the maximum
pair costs in the initial mapping.

Fig. 4 a shows that smaller positional errors lead to lower-
cost mappings and that the matching algorithm converges
faster. The percentage of correctly matched pairs (Fig. 4 b)
was determined from matching 100 sets.

Practical example

As a practical example, we show a study onA43 1 epidermoid
carcinoma cells, which were prepared as described in the
subsection headed Specimen Preparation. Pictures of the
specimen were taken in untilted position and at a tilt angle

1.0

0.8

U,

a) 0.6

0.4

0.2

0.0 L
1

Localization

The region growing procedure depends on the two param-

eters a and b, where a is related to the gray-value range of
the internal pixels and b to the gray-value range of the edge

10
SNR

100

FIGURE 3 Localization error. The positional error ao, of the localized
marker centers in one-, two-, and three-marker regions was determined as
a function of the signal-to-noise ratio (SNR). The markers had a surface area
of -15 pixels.
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~~~~~~~~~1.0085.3%
0
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FIGURE 4 Convergence of the matching algorithm. In a 100 x 100 x
50 block, 100 points were randomly distributed and tilted about the x axis
by 30°. The tilted set was displaced by a normally distributed, zero-mean

vector. The mapping cost as a function of the number of rearrangements was
determined for oPs equal to 0.25, 0.50, 0.75 and 1.00 (a). Over 100 tests,
the mean percentage of correctly matched pairs was calculated (b).

of 300 at a magnification of 34,600 in an EM 420 (Philips,
Eindhoven, The Netherlands) electron microscope at 120-kV
acceleration voltage and were recorded on Agfa Scienta
23D56 sheet films.
The images are shown as pairs; the left image shows the

untilted view and the right image shows the tilted view. The
original recordings, shown in Fig. 5 a, were preprocessed by
removing the noise peaks and applying a background sub-
traction. Fig. 5 b shows the segmentation result and Fig. 5 c

the detected markers overlayed on the original recordings.
The initial registration was computed from eight user-

supplied correspondences. The result of the matching is
shown in Fig. 5 d and as two perspective views of the 3D
positions of the gold markers in Fig. 5 e.

The matching procedure was called three times before the
model parameters were stable. The cost coefficients used
were the epipolar distance (weight 0.75) and the five-
neighbor lay-out similarity (weight 0.25). The tilt angle
seemed to be too big to give a useful gray-value cross cor-

relation. Angle a between the x axis and the tilt axis was

estimated as 100.90 ± 0.18, rotation j3 between the two re-

cording as 0.80 + 0.05, and scaling s as 1.001 ± 0.00.
The localization step resulted in 105 markers in the un-

tilted view and 152 markers in the tilted view. Visual in-
spection showed that in the untilted view four markers were

occluded and nine were not present in the tilted view. In the
tilted view nine were occluded, and thirty-six were not
present in the untilted view. The simulated annealing loop
needed about 9,000 rearrangements to reach convergence.

The matching results showed that from the 99 present pairs,
the method missed 4 true pairs and made 7 mismatches
among the 103 matched pairs, yielding an error of -6%.

DISCUSSION

An image-processing method is presented to extract three-
dimensional (3D) information on thick resin sections of pre-

embedding labeled biological specimens. Visualization of
the third dimension can be essential to unequivocal allocation
of a label to a certain structure or to deciding whether there
is colocalization.

At present, pre-embedding techniques need permeabili-
zation of the cell membrane and, to a certain extent, removal
of some of the cytoplasmic proteins to guarantee label and
marker penetration. There are several methods in use, such
as prefixation of the cells and treatment with detergents, such
as Triton X-100 (Nickerson et al., 1990; de Graaf et al., 1991)
or Sapomin (Burry et al., 1992). Detergent treatment results
in a complete loss of lipids and an uncontrolled loss of pro-
teins. Additionally, it favors aggregation of the retained mac-
romolecules. An improved method especially useful to label
membrane proteins was introduced by Krijnse-Locker et al.
(1994). The plasma membrane is permeabilized with the
pore-forming toxin streptolysine 0; the intracellular mem-
branes are not affected. Even the targeting mechanism for
nuclear proteins remains intact (Downes et al., 1992).
The success of pre-embedding labeling is dependent not

only on an adequate permeabilization protocol but also on the
size of the marker. Large gold particles cannot pass the bar-
rier of the lamina-pore complex; hence only ultrasmall gold
particles could reveal the distribution of an intranuclear an-
tigen (de Graaf et al., 1991). Ultrasmall gold particles may
even penetrate into nonpermeabilized, glutaraldehyde fixed
PtK2 cells (Leunissen et al., 1989) and into formaldehyde-
fixed and borohydride-treated nerve cells (Lookeren-
Campagne et al., 1992). Those nondetergent methods would
greatly improve the structural preservation and thus give bet-
ter information about the 3D distribution of a labeled mac-
romolecule. An additional method that is not yet fully ex-
ploited is labeling of sections after removal of the embedding
material (Nickerson et al., 1990; Baigent and Miller, 1990).
When labeling cytoskeletal proteins, say with 5 or 10-nm

markers, the labeling efficiency usually is adequate. The
markers are clearly visible, and aggregation stems only from
overprojection. These studies and even double-labeling stud-
ies can be processed without many difficulties. To label
nuclear proteins, ultrasmall gold markers of -1 nm are
needed to penetrate the nucleus. The label density of these
small markers is higher for several reasons. The steric hin-
drance of other gold-tagged antibodies is reduced, and the
repulsion between the charged markers is smaller, resulting
in a smaller minimum distance between labeled proteins.
Additionally, more markers may bind to the secondary an-
tibody. The particles are not visible in electron microscope
bright field images, and a silver enhancement step must be
used to visualize them. But because the particles are closely
spaced, physical aggregation is unavoidable. Furthermore,
the ultrasmall particles are not homogeneously sized. They
vary from less than 1 nm to 3 nm in size (Otten et al., 1992;
Stierhof et al., 1992). The not effect is that in the recordings
the markers not show only a large degree of aggregation but
also variations in size, which further complicates the local-
ization procedure.
The sections are preferably as thick as possible to maxi-

mize the 3D information obtained. This also benefits serial
section studies. On the other hand, the number of markers
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FIGURE 5 Three-dimensional lo-
calization of silver enhanced, ultras-
mall gold markers, immuno labeled
for DNA in A431 cells from two
views (00 and 30°). The original re-
cordings (a) were segmented into
gold regions (b). The marker centers
were localized (c) and matched. Panel
(d) shows the corresponding markers
and panel (e) two perspective views
of the 3D marker distribution. Origi-
nal magnification x 34,600. Bar =
150 nm.

©

increases in thicker sections, resulting in more overprojec-
tion hampering localization and matching. Additionally, the

contrast decreases and staining will overshadow the markers,
again hindering localization. Finally, the lateral resolution
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decreases because of the contribution of inelastic scattered
electrons. Generally, we are able to process sections of up to
-300 nm and containing more than 300 markers success-
fully.
The presented method employs the positions of the mark-

ers in the projection views. The size of a marker should be
approximately 15 pixels to be detected with a satisfactory
accuracy. This, of course, depends on the magnification and
the sampling resolution. Furthermore, the markers should be
clearly distinguishable from the rest of the image. At best,
they are the only visible structures. However, on their own
they do not supply meaningful information and should be
related to biological relevant structures visualized by stain-
ing. Denser staining means that it is harder to find the mark-
ers, but because the markers are always somewhat darker, a
possibility of obtaining a better distinction between the two
is to record the specimen twice, one (normal) recording aim-
ing for an optimal stain contrast and the other for an optimal
marker contrast by overexposure. By this, the dynamic range
of the gray values is moved toward the marker intensity
range, which may benefit localization. Recording directly
with a slow-scan CCD camera would further add to the qual-
ity of the images and thus to the reconstruction method de-
scribed.
The matching result depends directly on the accuracy of

the marker locations, the cost function, and the marker den-
sity. High marker density results in more overprojection and,
consequently, in more unmatched markers. To deal with the
overprojection more efficiently, a marker could be allowed
to match any number ofmarkers in the other view. In this way
also, overprojected particles can be localized. Allowing this
multiple matching increases the matching time slightly but
generally generates a better mapping. However, studies
showed that allowing a marker to match more than two mark-
ers does not necessarily improve the mapping result (Starink,
1995).
The model parameters are estimated from the marker lo-

cations in two views of the specimen. The tilt angle in this
case is read from the goniometer stage. Although the tilt
angle may be estimated from the marker positions in the
projection views when three or more tilts are employed
(Luther et al., 1988), we have chosen to use only two re-
cordings. By this we save processing time and avoid possible
inaccuracy from matching errors. Furthermore, the tilt angle
can be read from the goniometer stage quite accurately (error
<0.25°). The analysis in Appendix A shows that the effect
of an error in the tilt angle on the marker depth may well be
below the effect of the localization error on the depth.

In serial section reconstruction, the assumption of the tilt
axis being parallel to the image plane may prove to be too
strict. Releasing this assumption mainly complicates evalu-
ating the cost function. In the Appendix B we derive an
equation for the epipolar distance in case of nonparallel tilt-
ing. With it, the cost coefficient of Eq. 11 can be evaluated,

This work was partially supported by "The Netherlands' Team for Computer
Science Research (SPIN)," project "Three-Dimensional Image Analysis."

APPENDIX A: ERROR ANALYSIS

The marker depths are estimated by utilizing the normalized y coordinates
of the markers and tilt angle (Eq. 8). The accuracy of the estimate is
determined by the accuracy of the marker localization and by the accuracy
of the tilt angle.

The positional error of the markers in the projection views is or,,. From
Eq. 8 its influence on the depth estimate is expressed as

cos2(o) + 1

rz= V sin2(o) .0P.S- (14)

For example, at = 40°, a. is about twice the localization error O5.
When two tilted views are used, the tilt angle must be read from the

goniometer stage of the microscope. Assume that the readout error &4 is
additional, so $ = + 84). The z coordinate of a marker is then estimated
as

cos(W)y - y'
7 =

sin($)
Substituting y' = cos(4))y - sin(4))z, the relative error E is given by

- z, yicos( )- cos(4)) sin(4)

Zi Zi sin($i) sin($-)

(15)

(16)

Assuming that the particles are uniformly distributed throughout the speci-
men, the expectation of E with respect to y and z becomes

sin($)
EY Z sin(4)) (17)

For example, at 300 tilting and for a readout error of 0.250, the average error

is -0.75%. The error shows that underestimation of affects the depth
estimate more than overestimation by the same amount.

To obtain an average error in terms of pixel units, the difference between
the estimated depth and the real depth is determined:

cos() cos(O) +
sin(4))

Z :--Y si($) + z sin( )(18)

Consider recordings of a 250-nm section on 6 cm X 6 cm negatives at a

magnification of 150,000. The specimen area imaged is 4 ,um X 4 ,um, and
at a sampling density of 512 X 512 pixels the height would be 64 pixels.
The specimen is recorded at two positions, one at 00 and one tilted by 300.
If the readout error 84 is 0.250, then the average error in the z coordinates
would be 0.67 pixel, obtained by integrating Eq. 18 over y and z.

The analysis indicates that a readout error in the tilt angle probably affects
the depth estimate less than the localization error (Jpo, does.

APPENDIX B: NONPARALLEL TILTING

When the assumption that the tilt axis is parallel to the image plane is
discarded, the epipolar distance (Eq. 9), and consequently the cost coeffi-
cient (Eq. 11) are no longer valid. To derive the epipolar distance, the
direction and the locations of the epipolar lines must be estimated from four
correspondences of two views, as described in Lee and Huang (1990). For
that purpose, the rotation matrix R is written as R = [rij], i, j = 1, 2, 3. Now
define

(rl3, r23)' = T11, (r31, r32)' = q12, (-r23, rl3)

= pljl, (r32, -r3l)Y ='rj,i2e R

such that

(19)

and matching can be performed as described.
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All mappings between any four noncoplanar points of the two sets are
possible by a rigid, one-parameter family of motions under the weak per-
spective model. The principal 2 x 2 minor R* of R can be written as

R* = (11lII *t. l2, 1snc1 (21)

yielding

2[2 3 ] (22)

With the four known correspondences (0,0), (P2, P), (P3, p'3), and (p
p') the basic mapping f is defined as

f(c1p2 + c2p3) = cAf(p2) + c2f(P3), f(P2) = P2 A f(p3) = p'3 (23)

for cl, c2 E R and where (P2. p3) forms a basis in R2. A sufficient and
necessary condition for points 0, P2, p3, and p4 to be noncoplanar is that f(p4)
# 0. A necessary condition for a point p; to be a correspondence of pi
is that it lie on the line Ai that passes through f(p,) and has direction 11.
Now the scale s is recovered uniquely from P2 * Il = s P2 * * and the
matching direction 1l is determined by f(p4) - p;. Now the epipolar distance
is given by

d(p,, Ai) = 1 * s3- I* f(pi)I (24)
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