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SUMMARY

1. Regular perturbation theory was used to obtain analytical solutions for the
time course of membrane current decay following voltage-clamp depolarizing pulses
when both time-dependent K conductance mechanisms and the process of K accu-
mulation in extracellular spaces are present. These solutions apply when the current
and K concentration changes are small enough for linear relations to be assumed
between current and K concentration.

2. In the case of a single Hodgkin-Huxley type conductance variable with time
constant rT the presence of an accumulation process which, by itself, would produce
a current decay with time constant Ta, induces the appearance of two infinite sets of
components with decreasing time constants ( 1/(n + t/Xr) and 1/( 1/Ta + n/lr), where n
is integer), and decreasing magnitudes.

3. The analytical solutions are used to investigate the range of conditions over
which semi-exponential (curve-stripping) analysis of current decay tails may give
useful information on the kinetics of current change. It is shown that, except at very
large decay tail amplitudes, the method may give a good estimate of the true time
constants of conductance decay even when the currents are assumed to be strongly
dependent on external K concentration.

4. The method introduces error in current amplitude, but over the range in which
curve-stripping gives useful results, the direct distortion of activation curves by
variations in external K concentration is fairly small. However, as the current decay
becomes grossly distorted in its time course by accumulation, so does the activation
curve. The effects are very similar both to those obtained using numerical computa-
tion without linearization, and to those obtained experimentally.

5. Even with a large dependence of current on external K concentration the linear
model does not reproduce ix, fast as a perturbation of ix, slow by K accumulation.

INTRODUCTION

The preceding paper (Brown, DiFrancesco, Noble & Noble, 1980) showed that
semi-exponential curve-stripping analysis of voltage-clamp current tails can give
accurate estimates of the time constants of decay of conductance mechanisms. This
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was demonstrated both using experimental results obtained from frog atrial and
sinus venosus preparations and also using a numerical model designed to reproduce
the major features of the K current and ofK accumulation in these tissues.

It is, however, important to give a more detailed analysis of the conditions under
which such methods may be applied (compare Attwell, Eisner & Cohen, 1979) and
to do this it is desirable to obtain analytical solutions for the current time course.
This paper presents such solutions for conditions in which there is a linear dependence
of ionic current on changes in extracellular K concentration (as may be expected
when the concentration changes are sufficiently small). These solutions are then
used to give a more general analysis of the validity of the method of semi-exponential
splitting for small current changes and of the possible errors involved.

THEORY AND RESULTS

List of symbols
F
V
t
E
Ki,Kc,Kb
ix(E, Kc, t) = x(E, t) . ix(E, Kc)
x(E, t)

ix(E, Kc)
iK1(E, Kc)
ip(KC)
il(Kc) = FP(Kc- Kb)
iin(E)
i(E, Kc, t) = ix + iKi + ip
ii = tx+K,+TP+ftin
Up

A =aix/Kc
I>= a(iK + ip)/bKc
r

= aiK1/dKc+ r dip/dKC-FP
rx
Ta VF/o-
Eh
Kc, h2 ih, ix, h) i~i, h) ip, h

A( )

x0, AKc, o

Faraday's constant (96493 C/g-equiv)
cleft total volume (10-6 1.)
time (see)
membrane potential (mV)
internal, cleft, bulk K concentrations (mm)
gated K current (nA)
activation variable for ix, assumed to change with
time according to a first-order kinetics
fully-activated current for ix (nA)
non-gated K current (nA)
pump current (nA)
current exchanged between clefts and bulk (nA)
total non-K-dependent current (nA)
total K-dependent current (nA)
total current (nA)
permeability constant for cleft-bulk exchange
(10-6 I./sec)
(nA/mM)
(nA/mM)
K fraction of the pump current (for a 3:2 Na:K
exchange r =-2)
(nA/mM)
time constant of x change (see)
(see)
holding potential (mV)
cleft K concentration and currents at the steady
state corresponding to Eh
deviation of the variable ( ) from its steady-state
value at Eh
values of x and AKe at the beginning of repolariza-
tion to Eh
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List of symbols

a = - 1/Ta = Cr/VF (sec-')
b = AxO/VF (sec-')
c = Xoixh/VF (mM/sec)
v = - 1/rx (sec-')
qn, Un coefficients in series defined by eqn. (12)
Li value of series defined by eqn. (A 9)
split current decay after subtracting component with

time constant Ta

1. General equations for the time course of current and cleft K concentration in the linear
case
The model for K diffusion across the extracellular spaces used here is the same as

in the previous paper (Brown et al. 1980). To obtain an analytical solution for the time
course of the recorded current, we will assume that the changes occurring in the cleft
K concentration (Kc) are small enough to allow any K-dependent current to be
linearly dependent on Kc concentration. The total ionic current crossing the membrane
at any time is

ii(E, Kc, t) = ix(E, Kc, t) + iK,(E, Kc) + ip(Ke) + i1n(E, t)
= i(E, Kc, t) + iin(E, t). ( 1)

As discussed earlier (see Brown et al. 1980) an experimental procedure can be used
such that the K-dependent component iin does not greatly contribute to the time
dependence of the recorded current during a voltage clamp. In this case dii/dt = di/dt
and the time course of i1 is coincident with the time course of i, apart from a constant.
The current i(t) can be referred to the steady state at a potential Eh at which no
current ix is activated (x0(Eh) = 0; for the definition of symbols, see list of symbols):

Ai(t) = i(t) -ih = ix(t) + AiEK(t) + Aip(t)
= x(t) ix(t) + AiK1(t) + Aip(t). (2)

During a voltage-clamp pulse to Eh the time-dependent changes of ix, iEl and ip are
only due to changes in the concentration Kc. Therefore, in the limit of linearity
between the currents and Kc concentration, we can write

Ai(t) = X(t) i, h + Ax(t) LKe(t) + vAKc(t)
= X0 ix, h exp (- t/Tx) + AxO AK,(t) exp (- t/r) + PLAKc(t), (3)

where x(t) is assumed to decay exponentially to zero from the initial value xO with
time constant TX. The change of the concentration Kc with time is described by the
continuity equation:

dKC
c (i(E, Kc, t) + iK,(E, Kc) + rip(Kc) -FP(Kc- Kb))

or, referring to the steady state at Eh:

dAKc = I (is + AiK + rAip - FPAKc). (4)
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During a voltage clamp to Eh, ix, AiK,, and hip are proportional to the change in

concentration AK, and (4) can finally be written as

dt - V1 (xo ix, h exp (-t/lr) + Axo AKc(t) exp (-t/xl) + oAKC(t)). (5)

Given the boundary condition AKc(t = 0) = tXKc,0, eqn. (5) can be solved by making
use of regular perturbation theory (see Appendix A). The current time course will
then be found by substituting AKc(t) in eqn. (3).

2. Time course of the recorded current in the absence of ix
When a depolarization from Eh is small enough not to activate x, the concentration

change AK, on returning to Eh is simply described by

dAK a, AKc, (6)

as obtained from eqn. (5) with x0 = 0. The solution of eqn. (6) is

AK,(t) = AKc, oexp (-t/ra) (7)

where a = - VF/lo.
Substituting eqn. (7) in (3) with x = 0 we obtain

Ai(t) = vAKc,0 exp (- tira) (8)

It should be noted that o- is proportional to the rate at which K is accumulated in
the clefts by the flow of 'K. minus the rate at which it is removed by diffusion to the
bulk solution and by pumping (see the definition of o- in the list of symbols). The
above treatment is essentially the same as that of Attwell et al. (1979) who showed the
dependence Of Ta on the cleft volume and on the rates at which the cleft is accumulated
and depleted. An exponential decay of AK, is, of course, necessarily obtained when
the processes by which accumulation occurs (i.e. i'K) and decays (i.e. diffusion and
pumping) are proportional to the concentration change AK,. For small changes in
K, concentration it is then expected that the current change will also be exponential
(cf. Noble, 1976, eqn. (11)).

It is worth noting that when AK, > 0, i.e. when the depolarization preceding the return to Eh
has induced accumulation of cleft K, the stability condition of eqn. (6) requires that oa < 0.
According to the definition of ao (see list of symbols) this means that the total K flux entering
the cleft decreases for increasing K,.
Equation (8) may describe the time course of current change when the membrane

potential lies below the threshold for activation of ix. In frog atrium this threshold
lies at about -40 mV. Current changes following voltage steps near -70 mV have
been recorded by Noble (1976, Fig. 14). Fig. 1 shows these records plotted semi-
logarithmically against time. To a first approximation the current changes are
exponential, though there is a tendency for a faster decay to occur very early in the
records (see Appendix B). Note also that the time constant varies with the potential.
This result is expected since il is strongly voltage-dependent and a(iK1 + ip)/aKc
varies with potential (Brown et al. 1980). It is this variation of Ta with potential that
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TIME COURSE OF ATRIAL K CURRENT 155

enables the kinetics of current change in the absence of i, to resemble those of a
Hodgkin-Huxley mechanism (see Attwell et al. 1979). It is also clear from Fig. 1
that the voltage dependence of Ta can be very large. Ta changes from 9 5 sec to I-5 sec
on hyperpolarizing from -70 to -81 mV.

-70 mV

sec

200 . * K ~ sec

-81 mV
sec

100 _

-81

Ta= 1*5 sec

50

20-
-76

r*= 2-25se

10 _

AS_ -70
a=9-5 sec

5 -

0 1 2 3 4 5 6
Time (sec)

Fig. 1.Top (insert): Current changes following voltage steps in frog atrialmuscle negative
to the threshold (about -40 mV) for activating the current i,. The holding potential
was -74 mV. Depolarization to -70 mV produces a decaying outward current. Hyper-
polarizations produce decaying inward current (from Noble, 1976, Fig. 14). Bottom:
semilogarithmic plots of current change (measured as a deviation from the steady-
current level at each potential). Each plot has been fitted by eye with a single expo-
nential. Note the strong voltage dependence of the time constant, Ta. Note, also, a
very small deviation from exponentiality at beginning of each record. This deviation is
extremely small compared to the i. currents and hasbeenignoredinthemajorpart ofthis
paper (but see Appendix B for further analysis and discussion).

In the experimental results we shall consider later in this paper, the potentials
involved lie in the range (positive to -70 mV) over which Ta is large. Values of Ta
in the region of 10 sec are then usually obtained (Brown et al. 1980,'Figs. 5 and 6).
We may now consider how the time course of Ai deviates from eqn. (8) when ix

is present. We shall approach this problem in three stages. We shall first obtain the
solution when ix is a simple exponential, as is virtually the case over a wide range of
current amplitudes in the numerical model. We shall then generalize this treatment
to the case where ix is represented by a sum of exponentials, either because more than
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one conductance component is present or because changes in Kc perturb the time
course of a single component. In each of these cases a particular time course of ix
must be assumed in advance of calculating Ai. Our third, and most general, approach
will be to derive the complete time course of ix as it is influenced by changes in Kc.
It is convenient to develop the mathematics in these three stages since each may be
used to introduce important results.

3. Time course of Ai when ix decays as a single exponential
This case is relevant when a single Hodgkin-Huxley type component like ix is

present and when A = 0, i.e. when we may neglect the influence of Kc changes on ix
Then from eqn. (5), setting A = 0,

dtKc I

(x0 ix, h exp (-tia) + o}AK,(t)). (9)

This equation can be solved with the method used in the Appendix A for eqns. (A 4).
The result is

AKc(t) -txh XOTx/VFexp (- t/T) +(AK,,0+ Zx hXO Tx/V) exp (-t/ra).
Tx/T -Ta (10)

The time course for the current Ai is given by substituting eqn. (10) in (3):

ii(t) = Xx, h sXO (1- BeI exp (- t/Tx)

+ vAK I + (ixx hrXTx)/( VF. AKc, ))exp(-t/za) (11)

from which it is clear that the total current will be given by the sum of two simple
exponentials with time constants TX and Ta. Semi-exponential splitting will therefore
give these time constants exactly.

Notice, however, that the intercepts at t = 0 are not exactly the same as vIKc o
(i.e. the true initial value of A'iK1 + Aip) and ix h x0. Thus, the intercept that would be
obtained by semi-exponential splitting for the term in exp (- t/Tx) is

Ox, h To ( I-T-/

Since the only parameter changing with the depolarizing pulse preceding the return
to Eh is x0, the intercept will be proportional to it. This intercept may therefore be used
to construct an activation curve for ix. The method of semi-exponential curve-
stripping will not itself distort this activation curve.
To obtain ix from the results, however, we need more information. Since TX and Ta

are known exactly from the semi-exponential analysis, we need to know vo and V.
This requires information of the kind obtained by Brown et al. (1980) and involves
measuring a(iK1+ii)/aKc and obtaining an estimate of the cleft space volume. In
practice, it is unlikely that such information will be available in most experiments
since it requires an extensive experimental protocol in addition to that required to
measure activation curves.
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However, it is worth noting that the error involved may be given an upper limit. The difference
between the real value of A(iIL+ ip) at t = 0, i.e. vAK0 0, and the intercept obtained by semi-
exponential analysis is given by

A =i x TI/VF

which is the same as the error in estimating ix by exponential splitting, but with opposite sign.
Thus, as A is positive

A vAK0+A < vAK.0+A
i, hXO Zz, h XO ix,hXo-A

and therefore the percent error in estimating i, h xO (i.e. A/z hXO) is smaller than the ratio between
the intercepts ofexp (- tiTa): and exp (- t/lT) (i e. (vAK. 0 + A)/(i .bxO- A)).

Thus, in the atrial analyses illustrated in Brown et al. (1976 a, b), Figs. 6A and 7 A, the inter-
cept of exp (- t/rT) is about 1.0% of the total tail current. Thus when the above treatment
applies, the error in the estimate of ix, would be less than (10/90) x 100 - 11 %0 In the frog
sinus results described by Brown, Giles & Noble (1977) the intercept of exp (- t/r) forms about
30% of the total current which gives an upper limit of 43 % for the error in estimating iz.

4. Time course of Ai where ix is multi-exponential
In this section we will suppose that ix, during its decay, can be represented with

the series
00

ix(t) = (qn exp (unt)) (12)
0

This description will be appropriate either when more than one K conductance
mechanism is present (in which case the un values may be true rate constants if
A = 0, i.e. if ix is not significantly influenced by changes in the concentration Kc) or
when a single or multicomponent ix is perturbed by changes in Kc concentration.
In the latter case, the relation of the un values to the true conductance time constants
requires further analysis (see section 5).
Equation (4) then becomes

dAoc . .F ( q(qn exp (Unt)) + AKc), (13)

which can be integrated as done with eqn. (9):

AKc(t) = (AKco-
*

(uq+/VF ) exp (-t/Ta)+ ( qn/VF exp(Unt)) (14)un+ 1/Ta!! o Run+ I1/Ta
As in the simpler case considered in the previous section, the time course of AK,

acquires components with the time constants of ix in addition to the time constant
Tra. The total current will be given by substituting (14) and (12) in (2):

Ai(t) = v (AKc,° (In/VF)) exp (-t/Ta) + Z (qn (1 + u: exp (unt))
0 u+1/ra0n+'~

(15)

so that semi-exponential splitting will again give the exact time constants Ta, -1/uo,
- 1/u1, - 1/u2, etc. The error in estimating the magnitude of each component of ix
will now vary with its time constant since (1 + (v/ VF)/(un + 1/Ta)) varies with un.
Clearly, the error will be least when Un is very large, i.e. the time constant of the nth
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component is very small, so that (for v > 0 and un + 1/Ta < 0) faster components will
be underestimated less than slower components.
Note also that for each component, the fractional error ((v/VF)/(u. + 1/Ta)) is

constant. If each component corresponds to a separate conductance mechanism and
if A = 0 then semi-exponential analysis will not itself distort the separate activation
curves, even though their respective amplitudes are modified to differing degrees.
Of course, if the multi-exponential time course of ix is itself attributable to accumu-
lation then the representation of ix by separate conductance processes is not relevant.
We shall discuss this question further in section 5.

5. Time course of total current when ix and iK, + ip are perturbed by accumulation
In this section, for simplicity, we shall assume only one true conductance mechanism

of the Hodgkin-Huxley type, i.e. ix. However, the analysis may, in principle, be
extended to the situation when more than one mechanism is present. Part of our
reason for exploring the situation when one mechanism is involved is that we wish to
determine whether its perturbation by accumulation may give rise to bi-exponential
decay patterns of the kind usually found for the delayed K currents in atrium (Brown
et al. 1976a, b;), frog sinus (Brown et al. 1977); mammalian SA node (DiFrancesco,
Noma & Trautwein, 1979); Purkinje fibres (Noble & Tsien, 1969) and ventricular
muscle (Katzung & Morgenstern, 1977; McDonald & Trautwein, 1978).

According to the assumptions made in section 1, to represent the effect of changes
in Kc on ix we use the equation

ix(t) = ix, h + AAKC(t), (16)
which assumes that, for small enough current changes, the partial derivative dix/dKc
is constant. Note that A and v can have very different values. The results described
in the preceding paper (Brown et al. 1980) show that the value ofA is negative, whereas
v is positive over the range of potentials generally used for tail analysis.
The cleft K concentration will change according to eqn. (5). With the definitions

given in the Appendix, eqn. (5) can be re-written as

dAKc - aAKc + bAKC exp (vt) + c exp (vt), (17)dt

whose solution is eqn. (A 8) in Appendix A.
The total current is now, according to eqn. (A 13)

Ai(t) = ti2h exp (- ti-ra) + ix, h XO0 (1 y~x/7V exp,( t/Tx)

/ x./( XAT/VF)-tnTx/VFn n!e (n- vTx/ VF) exp t(n 1+I /Ta)))

(xh (2- jxV) - (n- lVF -T'/Ta)exp (-t(n/r))A(Tx/VF (I _x/Ta) (2 -Tx/T.a)... (n-Tx/Ta) ~ / T/a x dn x)

(18)

where Q is the series defined by eqn. (A 9). Note that when A = 0(b = 0) only the first
two terms appear and the solution becomes the same as eqn. (11). When A $ 0 i.e.
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ix varies significantly with Kc, then additional time constants will appear. All these
time constants (I/((n+ 1)/Tx) and I/(n/rTx+ 1/Ta) (n = 1, ... oo)) willbeshorterthanrx.

In principle therefore it is possible to reproduce components faster than x. Thus,
if in the experimental results, TX, slow is the genuine conductance time constant, it is
conceivable that Tx fast may represent the faster components produced by the per-
turbation of the time course of it by changes in Kc.

400

100 "

40

A
10

4

2
3

4

1 2 3
Time (sec)

Fig. 2. Semilogarithmic plot of the components of current in eqn. (19). Component
1 is the component in exp (- t/'r_). Line B (interrupted) shows the amplitude that this
component would have had if it were not reduced by K accumulation (eqn. (20)).
Line 2 shows the component in exp (- t(l/rt + 1/ra)). This component is negative,
but is plotted as positive here for convenience. Lines 3 and 4 show the components in
exp (- 2tl/r) and exp (- t(2/T_ + 1/ra)) respectively. Curve A (thick line) shows the
sum of the four components, i.e. i,,,t. Note that except for a slight difference at
early times, the total current decays with the same time course as the component in
exrp (-tIT)

We will now consider whether this idea may be correct by using eqn. (18) with known
or plausible values of the coefficients to determine whether bi-exponential decays of
ix may be reproduced.

Using parameters from the numerical model ofBrown et al. (1980), at Eh =-40mV
and Kc, h = 4 mm we have approximately v = 30 nA/mM, (i.e. per 1 mm concentration
change), A = -33 nA/mM and x,h = 868 nA. With 1/VF = 4-10-3 mM/nA see and
assuming AK,,o = 4 mM, xO = 0 4, Ta = 8 see and Tr = 1-2 see we obtain from eqn.
(A 12) a value of LI = 5-7 mM. (The series in (A 12) converges very rapidly so that
fourth and higher order terms are less than 0-1 %). Substituting in eqn. (18) gives a
coefficient iv = 170 nA for the component exp (- t/Ta). This is the component that
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would be subtracted first using semi-exponential splitting. The faster components
can be calculated to be

ifpiit = 288exp(-t/TX).)+24exp(-2t/T.)-64exp (-t(++))

-4 exp(-tQ.2i+!)) (19)

Higher order terms have coefficients less than 1 and have therefore been neglected.
Fig. 2 shows these components plotted together with their algebraic sum, i8plit which
is the current that would be obtained after subtracting the term in exp (-t/a). Also
plotted is the exponential

ix, h x0 exp (- t/Tx) = 347 exp (- t/Tx) (20)
which represents the time course of ix that would have been obtained in the absence
of accumulation. The total current actually obtained can be seen to be smaller but
to decay with a time constant that is very close to Tx.
The reason for the accuracy with which the apparent time constant approximates

to Tr is that only the coefficients for the terms in exp (- t/Tx) and exp (- t(1/Ta + 1/T))
are large. Moreover, when Ta> Tx, (1/Ta + 1/Tx) approximate to 1/rT. Faster com-
ponents, such as exp (- 2t/Tx) contribute less than 10 % of the total current and, in
this case, would not be separable within the likely error of experimental results.

Thus, with the parameters similar to those used by Brown et al. (1980) (which were
based on their experimental results) the faster components in eqn. (18) do not produce
a strong enough deviation from an exponential time course to enable a single compo-
nent of conductance to give the appearance of two components. This result is in
agreement with the numerical calculations of Brown et al. (1980, Figs. 4 and 7).

In Fig. 3 we have extended our calculations to cover the complete range of activation
of x. In each case the same parameters were used as in Fig. 2 except for the values of
xo and AKC,0. xo was set to 0-2, 04,0-6, 0-8 and 190. The values of AKCi,were chosen
by allowing this parameter to vary linearly with the degree of activation. This assump-
tion was tested by using the numerical model of Brown et at. (1980) to compute the
values of AKC 0 after 10 see pulses to various potentials. The resulting variation of
AKC 0 with x0 is shown in Fig. 3A. The relation is close to linear up to x0 = 0 8. For
the solutions to eqn. (18) we allowed AK,,0 to be 10 x0 mm, which is larger than the
maximum value in Fig. 3A. Nevertheless, over the whole range, the decay tails (after
splitting off the term in exp ( -t/Ta)) are nearly parallel, with time constants very
close to Tx. The 'fast component' is always very small. (Fig. 3 B). Fig. 3C shows the
'activation curve' that would be obtained. A small degree of distortion (a negative
shift of 6 mV in the half activation point) occurs as the initial value of ix is reduced
at the larger values of AKc, 0. Attwell et al. (1979) have already drawn attention to
effects of accumulation on the activation curve.

It should be noted, however, that a maximum value of AK, 0 of 10 mm is much
larger than that in the analysis of Brown, Clark & Noble (1976b). The maximum
coefficient of the term exp ( -t/Ta) in their analysis is about 0 025 #aA (see Figs. 6A
and 7 A), which corresponds to an increase in K concentration of only 1 mM.

It is however worth exploring the possibility that other parameters may be signi-
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Fig. 3. A, relation between x activation and AK,, 0 obtained using numerical model of
Brown et al. (1980) as described in text. B, semilogarithmic plots of decay tails obtained
using eqn. (18) after subtracting component in exp (- t/,ra). The lines are in fact slight
curves but the deviation from a single exponential is very small. The time constants
obtained using a single exponential are virtually identical with Ta,. C, activation curves.
The filled symbols show the time activation curve that would be obtained without
accumulation. The open circles show that obtained from the tails shown in B. The
open triangles are the same results 'scaled up' to compare with the true curve. There
is a -6 mV shift in the half activation point. This computation assumes 10 mM of K
accumulation in the largest tail which, in a typical preparation would produce about
100-200 nA change in (i' + i,) at -40 mV (cf. Brown et al. 1980, Fig. 2; Noble, 1976,
Fig. 12). The intercept of exp (- t/ra), which over-e8timatue A(iK1 +'i)I obtained
experimentally is in fact only about 10-20 nA (Brown et al., 1980 (Fig. 8). The results
shown here therefore show more distortion than would occur in the experimental
analysis in this range (but see Fig. 5 for the situation when K accumulation is deli-
berately made very large).
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ficantly different from the numerical model and results of Brown et al. (1980). The
obvious parameter to choose is Six/aKc, i.e. A, since this determines the magnitude
of the perturbation of the time course of ix for a given amount of accumulation. We
have therefore repeated the calculations of eqn. (18) for various values of A larger
than -33 nA/mM. Over a wide range of values we have been unable to reproduce the
simple bi-exponential nature of the experimental results on ix. Fig. 4 shows the

400 "a

04 andti
0.6

100

C

0~~ ~ ~ ~ ~ 0

4~~~~~~~~~~~~~~-4 |
0 1 2 3

Time (sec)

Fig. 4. Semilogarithmic plots of decay tails obtained after increasing the dependence of
% on K, by a factor of 5. This corresponds either to a sensitivity of t% to K, much greater
than that usually found experimentally or to a situation in which K accumulation is
deliberately made very large (e.g. by using very long pulses). In each case, the com-
ponent in exp (- t/ra) has been subtracted. For discussion see text.

computations done with a value of A = - 150 nA/mM, which is considerably larger
than the experimental results suggest (see Brown et al. 1980, Fig. 1) since it would
require only a 6 mm increase in Kc to reduce tx to zero at the holding potential whereas
increasing Kb from 2 to 8 mm in fact leaves ix still large and positive at -40 mV
(Brown et al. 1980, Fig. 1). For values of x0 up to 0 4 we still find only a moderate
deviation from the true time course of x. Between x0 = 0 4 and 0-8 the deviation
becomes more significant but is in the wrong direction to account for ix fast, i.e. the
major effect is that the decay tail is slowed rather than accelerated. At x0 = 1 the
decay tail amplitude is greatly reduced and the tail ceases to be monotonic. These
effects are however very similar to the results obtained experimentally when large
amounts of accumulation are produced. Thus, Brown et al. (1976b, Fig. 3) show an
example of a distorted 'activation curve' obtained following very long pulses (10 sec)
which shows a decrease in tail amplitude following large depolarizations; and Noble
(1976, Fig. 5) shows an example of a decay tail that ceases to be monotonic (panel 2)
before it reverses direction (panel 3). The decay tail is either slowed or initially rises
with time. This result is typical of those obtained when amounts of accumulation
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occur that nearly reverse the sign of the decay tail (Brown, H. F. & Noble, S. J., un-
published). Fig. 5 shows a comparison of the 'distorted' activation curves obtained
experimentally by using very long pulses and that obtained from our equations.

Thus, although it is relatively easy to reproduce some of the effects of substantial
amounts of accumulation on the time course of ix, eqn. (18) does not readily allow the

5LA 0 03

0-2

- 0-02

0*01

-50 -40 -30 -20-10 0 10 20 -50 -40 -30 -20 -10 0 +10 +20 +30 +40'
mV Em

Fig. 5. Left: Strongly distorted 'activation' curve obtained by plotting initial ampli-
tudes of those tails in Fig. 4 that are monotonic. Right: 'activation' curve obtained
experimentally by Brown, Clark & Noble (1976b, Fig. 3) using very long (10 see)
depolarizations. Their kinetic analysis was in fact restricted to using much shorter
pulses at large depolarizations where x activates more rapidly. The difference between
results of the kind shown in Fig. 3 and those shown here is therefore attributable to
the protocol used.

component iX,ft to be reproduced. A small fast component is evident in Fig. 3 but
its magnitude is quite insufficient to account for the i, f,,t observed experimentally.
This component can in fact be as large as ix,slow (see Brown et al. 1976b, Figs. 6A
and 7A).

DISCUSSION

Before discussing the particular conclusions we may draw from our results it may
be helpful to the reader to give some physical insight into the equations we have
obtained for the complete time course of current decay when both ix and AiK, are
present and are both perturbed by K accumulation and its decay.

In the simplest case, when iK1 + ip is involved without ix (i.e. at potentials below
the x current threshold) and when the Kc concentration changes involved are small
enough to use linearized equations, the current will change with a single time constant,
Ta. To a first approximation, this is true for the experimental records below the x
current threshold (see Fig. 1; also Appendix B). Similarly, if only one Hodgkin-
Huxley mechanism is present and no significant accumulation occurs, the current
will decay with the time constant of the gating mechanism, Tx. This reproduces the
experimental situation for very small voltage pulses or for the small current recorded
by clamping at the beginning of a pace-maker potential (Brown et al. 1980, Fig. 5).
When both processes occur, the current is will produce a perturbation in iK, + i
and will itself in turn be distorted by the change in concentration Kc occurring when

6-2
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the total K flow across the membrane changes. If, in a first approximation, we ignore
the effects of accumulation on the time course of ix, (as done in section 3 with the
assumption A = 0), then the perturbation of AK., and hence of A(i.l + in), will also
display the time constant Tx (eqn. 10). The perturbation associated with it decay
generates the terms

+ ~p)= -x0 i VT-X/VF - v~rx/VF ep(~/a
8A(iK, + lP)-O /T,h I xl a exp (-t/Tx) + X0 ix, h 1 Tx/Ta (xp ta)

which are obtained from eqn. (11) by subtracting the 'pure' components

XO ix, h exp (- tlTx) and vAK,, 0 exp (-t/Ta)

In eqn. (22) the symbol a is used to indicate a first-order perturbation. The part of
(22) decaying with time constant Tx will be identified in a semi-exponential analysis
as part of ix and will introduce an error in the estimate of its amplitude, though not
of its time constant. Since this term is negative it will reduce the estimate of ix, and
since it is proportional to x0, it will not introduce any distortion of the shape of the
activation curve, i.e. the error in each case will be simply proportional to the degree
of activation.

Thus, the time course of A(iK, + ip) and of AXK, will have two components decaying
with time constants Ta and Tx. If we now allow tx to change (i.e. A * 0) the first-order
perturbation of ix due to changes of Kc will be composed of two terms, obtained by
multiplying eqn. (10) for AK,(t) by Ax(t). One of these terms is

81 = Ax AK , xo xxhTx/ VF) exp( (t( I+)) (23)

The time constant (1/Ta+ 1/Tx) arises from the perturbation of a process decaying
with time constant Tx by a process with time constant Ta. Note that when ra > rx this
new time constant is not very different from Tx itself. Since A is negative, this pertur-
bation also reduces the estimated ix but does not greatly change its apparent time
constant.
Eqn. (23) allows for the perturbation of ix by changes in Kc concentration with

time constant Ta. In addition we have a further first-order perturbation

82ix = Ax0 /Ta ) exp- t
1

(24)

The time constant Tx/2 is produced by the multiplication of a process decaying with
time constant Tx (i.e. by itself) by another process with the same time constant, i.e.
the perturbation of the concentration Kc by ix. This component is proportional to
(xO)2 and will produce a term that decays exactly twice as fast as ix when unperturbed
by accumulation. Since this varies as (xO)2 it can be made very small by considering
tails produced by very short or very small depolarizations, when x0 is small. If A is
sufficiently large it will, however, produce a significant current as x0 is increased and
this may give rise to an apparent second component, perhaps the ix, fat of the experi-
mental results, at a more depolarized range of potentials.
At first sight, this appears to be a very attractive explanation of ix, fat since in
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atrium (Brown et at. 1976a, b) and in sinus venosus (Brown et al. 1977) ix fast does
appear at a more depolarized range of potentials than ix s10ow There are however two
major difficulties with this explanation of ix, fast:

(1) Tfast is typically not half of rs10w but rather lies between 0O2 and 0 33 of slo
It might be thought that this difficulty could be met by considering even higher order
perturbations. Thus, the second-order perturbation in the time course of ix also
contains the term

ix, h (X0 Arx/VF)3 (3- PTx/VF - Tx/Ta) exp(-t (t1 ) (25)
ATr/VF (1 -x/Ta) (2T-x/Ta) (3T-x/Ta) -rxl3

which is in fact 3 times faster than x. Note however that this term is proportional to
(xO)3 and will therefore be extremely small for low values of x0. This gives rise to the
difficulty that, on this explanation of ix, fast' it should first appear with time constant
Txl2 and then acquire faster components (Tx/3, Tx/4 etc.) as x0 increases. In fact,
however, within the limits of experimental error. Tx fast is approximately invariant
with the degree of activation (Brown et al. 1980, Fig. 6B).

(2) The more serious difficulty is that, as our results (see Figs. 2 and 4) show, the
inclusion of second- and higher order perturbations does not in fact reproduce a
component resembling ix, fast. This failure arises from the fact that as the positive
decay terms in exp (- t/(Tx/2)) and exp (- t/(rx/3)) are added, negative decay terms in
exp (-t(2/x+ 1/Ta)), exp (-t(3/rx + 1/Ta)) must also be added (see eqn. (18)). As is
clear from Fig. 4, it is these negative terms that dominate and that give rise to the
non-monotonic time course of ix as the effects of accumulation are further increased.
So far as the origin of ix, fast is concerned we are left with three other possibilities:
(a) ix,fast may in fact represent a genuine second conductance mechanism (or,

perhaps, the x conductance mechanism does not obey simple exponential kinetics of
the Hodgkin-Huxley type). This was the hypothesis favoured by Brown et al. (1976a,
b). The attraction of this hypothesis lies partly in the fact that it has so far proved
very difficult to reproduce ix, fast with models that represent it as a perturbation of
ix 81w) and partly in the experimental observation of Brown et al. (1980) that sub-
stantially increasing the bulk extracellular K concentration, which might be expected
to reduce the proportionate effect of a given amount of accumulation, does not tend
to reduce or eliminate ix, fast-

(b) The assumption that, for small current changes, the currents are linearly
dependent on Kc may be incorrect. In Appendix B we show that allowing a quadratic
dependence of (iK1 + 'p) on AK, readily enables the small deviation of this component
from an exponential time course to be reproduced. An extension of this approach to
the equation for total current, however, requires experimental information of a more
detailed nature than is at present available. Furthermore, the numerical analysis of
the three-compartment model, in which the dependence of currents on the concen-
tration Kc is largely non-linear, does not reproduce a significant fast component
(Brown et al. 1980). We conclude therefore that if the non-linearity between currents
and Kc plays any role in determining the appearance of tx, fast it cannot be the only one.

(c) The assumption that the spaces in which K+ ion accumulation occurs are well
mixed and homogeneous in K concentration may be incorrect. We have therefore
extended the numerical model of Brown et al. (1980) to the system represented by
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the equation for diffusion in a cylindrical trabeculum:

a = DK (a- +
I

ED-x) + 1i-kKel(#KC = (1-r) ip/FV) (26)

where DE is the diffusion constant for K+ ions in the extracellular space, i is the ionic
current given by eqns. (9)-(13) of Brown et al. (1980), and k is the rate constant for
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Fig. 6. Semilogarithmic plot ofcurrent decay tail produced following 5 sec depolarization
to 0 mV and return to -40 mV. The current was computed using eqn. (26) with the net
current, i, given by eqns. (9)-(13) in the numerical model described by Brown et al.
(1980). The equations were solved using a matrix inversion procedure with the par-
ameters given in the text. During the pulse the value of KC increased by 5-5 mmn (from
7-2 to 12-7 mM) at the centre of the preparation, while the surface K was kept constant
at 2 mu. Despite this large degree of inhomogeneity, the resulting current decay tail is
very similar to that obtained using the simpler three-compartment model (see Fig. 10
of Brown et al. 1980).

the Na-K exchange pump. This pump is assumed to be a linear function of Kc. Eqn.
(26) was solved using the boundary conditions that Kc = Kb at x = r (the surface of
the trabeculum) and aKc/Ox = 0 at x = 0 (the centre of the trabeculum). With a
trabeculum radius of 100 ,sm we found we could reproduce the experimental current
records, including the slow decay with time constant about 10 sec, with DK = 200,tm2
sec-1 and k = 0-0625 sec 1. The decay tail following a 5 sec depolarizing pulse to 0 mV
followed by return to a holding potential of -40 mV (cf. Brown et al. 1980, Fig. 7)
is in fact well fitted by two exponential, the value of the fast time constant being very
close to rx. Thus, assuming a non-uniform distribution of K+ ions within the extra-
cellular space does not reproduce the fast component (see Fig. 6).
Our conclusion therefore is that neither the three-compartment model in its simplest

form, nor its extension using eqn. (26) to include non-uniformity in Kc concentration,
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can reproduce i, fast. The possibility that this current is a genuine property of the i,
system, either as a separate component of membrane current or because ix itself
does not obey simple Hodgkin-Huxley kinetics, is therefore still an open one.

We should like to thank Dr D. Attwell, Professor L. Fox and Professor L. C. Woods for their
valuable advice on some mathematical points. This work was supported by the Medical Research
Council and by the Wellcome Trust.

APPENDIX A

Solution of equation (5)
Setting a = ol/VF,

b = AxO/VF,
c =XOtX,h/VF, (A 1)
V =-1/TmI
y = AKc,

eqn. (5) of the text can be rewritten

dy(t)/dt = ay(t) + by(t) exp (Vt) + c exp (vt). (A 2)
A series solution can be found for eqn. (A 2) making use ofregular perturbation theory
(Lin & Segal, 1974). Regarding the coefficient of the cross-term, b, as the perturbation
parameter, y can be expressed as a power series in b:

a)

y(t) = Z yn(t) *b.]. (A 3)
0

The functions yn(t) (n = 0, mo) can be found by substituting the expression (A 3) in
(A 2) and equating the coefficients of the same powers of b in the two members.
This gives the set of equations:

d-yOay = c exp (Vt),

dy~ (A 4)
~n_ aYn = Yn-1 exp (Vt) (n = 1*).

The eqns. (A 4) are of the general type dy/dt + P(t) = Q(t) whose solution is

y(t) = exp (-fPdt).(kI+fexp (fPdt) Qdt)
k being a constant which is determined by the border conditions. The solution of
(A 4) is therefore given by the recurrent set:

yo(t) = ko exp (at) + (c/(v -a)) exp (vt), (A 5a)
yn(t) = kn exp (at)+ exp (at) fexp ((v-a) t) Yni(t) dt (n = 1, ... xo), (A 5b)

where the kn values (n = 0, ... oo) are constant. Substituting (A 5a) in (A 5 b) we obtain

yl(t) = k1 exp (at) + k exp ((v + a) t) + C
- exp (2vt).

V ~~~(v-a) (2v-a)

167



D. DiFRANCESCO AND D. NOBLE

This expression can be used in (A 5b) to obtain y2(t) and so on. With this iterative
procedure, the general expression for y.(t) is written as:

YnMt Iz (>k exp ((mv + a) t))

+ ()(2) ((n+1))t (n =0, ...cxo)(v-a) (2v-a) ..(n -a) ((n + 1) v-a) ( .**()

According to (A 6) the time dependence of y(t) is completely described by the series
of exponentials

exp ((nv+ a) t), exp ((n +1) vt) (n = 0O ....c)

Substituting the expressions (A 6) in (A 3) the coefficients of the above exponential
can be calculated. With the definition

co 0 = Z [knbnl ~~~(A 7)
0

this procedure leads to the explicit solution of (A 2):

y(t)=
1

( !() exp ((nv+a)t))

0 ((v-a) (2v-a) . .. ((n + 1) v-a) x((+l)v).(A8
The two series in (A 8) are convergent, as is easily proved by observing that the first
one is an exponential series whose value is exp (at + (b/v) exp (at)), while for the second
one we have

lim exp (vt) (b exp (vt))n l/exp (vt) (b exp (vt))n- = lim b exp (vt) -0
(v-a)... ((n+1)v-a) / (v- a)... (nv-a) (n+l)v-a

and thus according to d'Alembert's ratio test, the series is absolutely convergent.
The value of Q is obtained by setting the border condition y(t = 0) = AK,,o in

(A 8):

AKC O=Q(E")c/EAK~~0 = n!0( )(v-a . ((n+l)v-a))
Now nI I

) exp(b/v)

and therefore

Q=exp(-b/v)(AKe~o-cz (v-a) (2v-a) * ((n + 1) v-a))' (A9)

Finally, defining
ra I=-1/a= -VF/ (A 10)

the time dependence of AK, will be described by substituting (A 1) in (A 8). This
results in the expression

((-xo0Ar./VF)n(AK (t) =f E (\ l exp - t n +
I

0 n Ta
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where = exp(xArz/VF)(K~ A-A ((1-rzlra)(2- ra) .(nr'ra)) 12)

From eqn. (3) in the text and eqn. (A 11) the expression for Ai(t) can also be found.
The substitution gives

i(t) = - n/VFS ((XOATz/ VF)fn( VTx) exp

+ x, h -z (- r0 n- PT, TX exp t(n/r))
A~x V \( TrxI'a)V.2 -Txf'a) ... (flT-,r/Tra) V ra(A13)

An alternative solution
Another solution of equation (A 2) can be given by using the method adopted to

integrate (A 4). In this case

y(t) = c exp (at + (b/v) exp (vt)) (h/c + f exp (vt) exp (-at - b/v exp (vt)) dt). (A 14)
Using the border condition y(O) = y

,
( = AKCO) to determine k:

y(t) = exp (at + (b/v) exp (vt)) (y exp (-b/v) + cf exp (vt) exp (- at - b/v exp (vt)) dt).
(A 15)

A series expression of (A 15) can be obtained by observing that, in general, given any
real numbers p, q, s:

X qnexp(ns+p)et co(qexp,(st))nfexp (pt +qexp (st)) dt = fn dt =eepn (pt)tn n!=(ns+P)
(A 16)

The following identity also holds (for any real numbers a, b, c):

an co (- ab~~~~~~~n (A 17)n (n!((n+ ;)b+c)) 0 (!n. ((b+c) ... ((n+l1)b+c)) (17

The latter identity is demonstrated by noting that the nth term of the product on

the right hand side is

la(L (ab)n- )n ___________
z§(j! (b + c).. ((n-j + 1 ) b + c)) = (-ab)nEi (j.(-_b)f (b +c) . .. ( (j + 1 ) b +c))

(-ab)n an

n!(-b)nf((n+ l)b+c) n;!((n+l1)b+c)'where we have used the property
n 1 1

o j!i (-b)j(b+c)...((n-j + 1)b+c n!(-b)n((n+ 1)b+c)'
Using (A 16) and (A 17) we can therefore express the integral in (A 15) as

|exp ((v-a) t-(b/v) exp (vt))dt = exp ((v-a) t) +n (( (lv) v-p(a)))
=exp((s-a~~~~t~~z¢( /n! !va ((n+1)v-a))

= exp ((v-a)t)- c -lv exp(vt)) ((v-) . (n 1) v 't)))
n / E \(v -a)... 1 va

expat lv ex (v))0 bn exp((n+ 1) vt)
( 8=exp-at-bvexp~t)En (v-a . ((n+1I)v-a)'(180

I
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and therefore (A 15) can be rewritten

y(t) = exp (at + (b/v) exp (vt)) ( exp (- b/v) + c exp (- at - (b/v) exp (vt)).

00ab/vxp(n ) vt ( )ex((+1t)(A19*.En ((V-a) ..((n + 1) v-~a))- c exp (-blv) E. ((v-a) ... ((n+ 1) v-a))

o (b/n! exp((nv+a)t) +cw.( bn exp ((n +1)vt) (A 19)

where we have used (A 9). The expression (A 19) is identical to (A 8). An analytical
form for the solution (A 15) can also be given using the incomplete F function which
is defined as

r(x, y) = f:21 exp (-p) dp
(Abramowitz & Stegun, 1964, p. 260).

With the substitution p = (b/v) exp (vt) the integral in (A 15) can be written

fetetxp (-at-b/v evt) dt = v p /ve- dpV~b bit,
from which the final expression for y(t) is derived as

y(t) = exp (at + (b/v) eOl) (y e-b/v + (c/v) (v/b)l-a/v (P(l- a/v, (b/v) ett) - P(1- a/v, b/v)))
(A 17)

APPENDIX B

Time course ofthe current with a quadratic dependence on Kc in the absence ofa Hodgkin-
Huxley component
In the case of a quadratic dependence of i~K, ip on Kc, and for i, = 0, eqns. (3) and
(4) of the text become

Ai(t) = vAKc + yAKc2, (B 1 a)

dAKc(t)/dt = Vh(o.AKc + 7AKc2) (B ib)
where

y(E) =1 +i2 (B 2a)

,(E) 2 (2 K + rip)). (B 2b)

With the border conditions AKc(0) = AKC,0, vAK,(oo) = 0 the solution to eqn. (B 1 b) is

AK0(t) = 1 AK010 exp( - tira) B3+AK0 0 ()Kyr) (1 -exp (-t/Ta)) (B3t)
Where Ta =-VF/cr. Substituting in (B 1 a)

Ai(t) = 1 yAK0, 0exp (- t/ra) AKC, 02exp (-t/(a/2))
+ AKc0o (I/o) (1 -exp (-t/Ta)) +Y(1 +K0 O(q/o) ( -exp (-t/Ta)))2 (B 4)
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The continuity of AKC(t) in 0 < t < so and the condition AKc(oo) = 0 require that

0. < 0O

AKc, <-0.. (B 5)

The current given by (B 4) obviously deviates from the single exponentiality obtained
when linearity between currents and Kc is assumed (e.g. eqn. (8)). The ability of
expression (B 4) to reproduce the experimental records has been checked on the data
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Fig. 7. The same experimental points as in Fig. 1 are now fitted with eqn. (B 4). Values
of parameters used are a = -80 nA/mM and a- = - 50 nA/mm for all three cases.
Then, respectively, for - 81, -76 and -70 mV: v = - 98-14, - 91-4 and - 77.5 nA/
mM; AK,, o = 1-65, 065 and -0.1 mu; r = 2-2, 2-5 and 8-0 sec. l/VF = 0.004 mm/
nA sec. Note that in the cases of the currents recorded during hyperpolarizations (-76
and -81 mV) eqn. (B 4) is able to reproduce the curvature observed experimentally,
but fails to do so for the current recorded on depolarizing to -70 mV. See text for
further discussion of this point.

shown in Fig. 1 of the text, and the results are shown in Fig. 7. As Fig. 7 is the result
of a limited series of attempts, it has to be considered only an illustrative example.
The data refer to currents recorded at different potentials, and therefore 0., q and y
could be varied in general. However, in order to limit the degrees of freedom the
second derivatives I and y have been kept constant (and negative).
Values for the parameters have been used which reproduce the appearance of a

positive fast component for the curves at -81 and - 76, while for -70 mV the second
derivative at time zero is, if anything, negative. However the limitation on the repro-
ducibility of a positive fast component on depolarizing pulses, as the case for -70 mV,
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depends on the sign of the derivatives. The slope of the semilog plot is in fact calcu-
lated as

dig A (V+2yAK') dKt VF v+ yAK* (a+o Kc) (B 6)

and its derivative as

d2lg jAij 1 (,(1Ac v+2yAKC Gc+,AK~
dt2 (VFP)2 AKc( +Kc) V+ Kc + AK

Considering the case of a depolarizing pulse, then A Kc,0 < 0 and Aio > 0, which
implies

v+yAKc0 Aio < 0 (B 8)

and consequently v < 0 if y < 0. According to (B 5) and (B 8) a negative slope at
t = 0 is obtained only if

v+2yAKc,0 < 0 (see eqn. (B 6)). (B 9)

On the other hand at t = 0 the second derivative will be positive if

v v+2yAK0c °+ yoJAv+ AKc, ° > °
v+yAKC,0 +Y(P+yAKc, )2

which, assumed that A, y are negative and according to (B 5), (B 8) implies

v+ 2yAKc, 0 > 0. (B 10)

The contradiction between (B 9) and (B 10) can be removed using positive values for
h,y. In this case it is possible to obtain a curve with a positive fast component for
-70 mV (not shown).
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