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Stability analysis

The dynamical systems corresponding to a particular regulatory network motif consisting ofn
interconnected nodes can be represented by a system of differential equations

ẋi = fi(x1, . . . ,xn), i = 1, . . . ,n (1)

where the variablexi represents the state of theith node andfi represents the combined influence
of all nodes having connections with theith node. Thefi may be linear or nonlinear functions.
The local stability properties of the system about its (possibly multiple) equilibria can be deter-
mined using Lyapunov’s indirect method (Khalil, 2002). This involves determining the location
of the eigenvalues of the Jacobian matrix,J = {ai j}= {∂ fi/∂x j}, evaluated at the equilibrium of
interest.

The termsai j represent the sign and strength of influence of thejth node onto theith node.
If this term is zero, thejth node does not influence theith node at this equilibrium. Thus the
Jacobian matrix serves to denote the local connectivity of the system. It can be reduced to the
corresponding adjacency matrix by normalizing theai j to ones or zeros. In this study it is assumed
that the self-connections for all nodes of the motifs,aii (the diagonal terms of the Jacobian matrix)
are always negative. This assumption reflects the commonly observed mechanisms of constitutive
degradation or inactivation of the biological entities, including gene products, phosphorylation
states of signaling molecules or depolarization states of neurons. Further assumptions about the
values ofai j adopted in computational analysis are described below.

Open loop systems. In the following four cases,

J1 =





a11 0 0
a21 a22 0
a31 0 a33



 , J2 =





a11 a12 a13
0 a22 0
0 0 a33





J3 =





a11 a12 0
0 a22 a23
0 0 a33



 , J7 =





a11 0 0
a21 a22 0
a31 a32 a33





the eigenvalues are just those of the diagonal terms:λ (A) = {a11,a22,a33}. By assumption on
the negativity of allaii, the corresponding dynamical systems are all stable, regardless of the sign
or magnitude of the off-diagonal terms.
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Systems with one two-node loop. In these four systems

J4 =





a11 0 0
a21 a22 a23
0 a32 a33



 , J5 =





a11 a12 0
0 a22 a23
0 a32 a33





J9 =





a11 0 0
a21 a22 a23
a31 a32 a33



 , J10 =





a11 a12 a13
0 a22 a23
0 a32 a33





one of the states acts either as an input filter (inJ4 andJ9) or as an output filter (inJ5 andJ10). In
either case, the Jacobian is block diagonal, so the spectrumof A is given by:

λ (A) =

{

a11,λ
([

a22 a23
a32 a33

])}

Hence, the stability of the overall system is determined by that of the 2×2 subsystem. We can
think of this system as consisting of two first-order stable systems, with polesa22 anda33 and
gain 1, interconnected with a feedback gaink ≡ a23a32.

In a manner complementary to the Monte Carlo analysis, we caninvestigate the stability of
the closed-loop systems analytically using root locus arguments (Evans, 1948). This analysis
tool allows determination of the stability properties of a system as a parameter is varied. Thus,
rather than “sampling” the parameter space, as is the case with the Monte Carlo approach, we
can consider all the possible dynamic behavior that may arise as we vary the systems’ parameters
over their allowable range.

In our case we determine the stability of the closed-loop system while we allow the gaink
to vary. For example, if−1 ≤ a23,a32 ≤ 1, it follows that−1 ≤ k ≤ 1. We then trace out the
location of the closed-loop poles ask varies over this range. For this second-order system the
closed-loop system has two poles. Ifk = 0, these closed-loop poles coincide with the open-loop
poles. Ask varies, these poles trace out the “branches” of the root-locus. From their location in
the complex-plane, we can then determine the stability of the system.

For this second order system, if the parametersa23 anda32 are of opposite sign, so that the
feedback gain is negative, (k < 0), the root-locus branches approach each other along the real
axis, and meet at(a22+ a33)/2 whena23a32 = −4a22a33/(a22+ a33)

2 < 0. For more negative
values ofa23a32, the branches are no longer on the real axis and approach infinity. However,
they they remain in the left-half plane, implying that the closed-loop system is stable whenever
a23a32 < 0.

We next consider the stability of the system assuming that these parameters have the same
sign, (k ≡ a23a32 > 0). In this case, for increasing values ofk, one branch traces the real axis
starting at max{a22,a33} and enters the right-half plane whenevera23a32 ≥ a22a33. Thus, for
these two cases, we can state that the system is:

system is











oscillatory if a23a32≤−4a22a33/(a22+a33)
2 < 0

stable if−4a22a33/(a22+a33)
2 < a23a32 < a22a33

unstable ifa23a32≥ a22a33 > 0
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Single loop involving three nodes.

J8 =





a11 0 a13
a21 a22 0
0 a32 a33





This can be treated as a feedback loop involving three stable, first order systems with a feedback
connection with gaink ≡ a13a21a32. Without loss of generality, we can assume thata11 ≤ a22 ≤
a33.

Once again, we can use root locus analysis. In this case, there are three branches starting in the
left-half plane at each of the three poles. If the feedback connection is negative (k ≡ a13a21a32 <
0), the two closest to the imaginary axis approach each otheras before for more negative values
of k. The system becomes oscillatory. However, as the magnitudeof k is further increased, these
two branches enter the right-half plane, so that the system is unstable. Thus, unlike system with
a simple two-node feedback connection, negative feedback can destabilize the system. When
k > 0, the branch closest to the imaginary axis remains on the real axis, but will move into the
right-half plane whenk = −a11a22a33. The other two branches will meet. Thus, oscillatory
behavior is possible, provided the feedback is not too strong, but unstable behavior is a certainty
for sufficiently high values ofa13a21a32 > 0.

Interconnections involving multiple loops. Though there are several of these, it is useful to
analyze in detail the fully connected system:

J13 =





a11 a12 a13
a21 a22 a23
a31 a32 a33





because the others are special cases.
This system can be treated as the feedback interconnection of the following first-order system:

ẋ1 = a11x1+ y

u = x1

with the following second order system:
[

ẋ2
ẋ3

]

=

[

a22 a23
a32 a33

][

x2
x3

]

+

[

a21
a31

]

u

y =
[

a12 a13

]

[

x2
x3

]

The transfer function (Franklinet al., 2002) fromu to y is given by:

Y (s)
U(s)

=
[

a12 a13

]

[

s−a22 −a23
−a32 s−a33

]−1[

a21
a31

]

=
1

∆(s)

[

a12 a13

]

[

s−a33 a23
a32 s−a22

][

a21
a31

]

=
[a12a21+a13a31]s+[a13a32a21+a12a23a31−a12a21a33−a13a22a31]

∆(s)
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where
∆(s) = s2− (a22+a33)s+a22a33− k2, andk2 = a23a32.

The eigenvalues of this subsystem can be stable, oscillatory or unstable, exactly as in the analysis
of the single feedback loops discussed above. The system also has a single zero, at

−
a13a32a21+a12a23a31−a12a21a33−a13a22a31

a12a21+a13a31

which can be stable or unstable. Additionally, there will bea stable pole ata11. These three poles,
together with one zero, can be used to obtain a root locus analysis with gaink ≡ a12a21+a13a31.

The system with Jacobian

J11 =





a11 0 a13
a21 a22 a23
0 a32 a33





is a special case ofJ13, with a12 = a31 = 0. These two assumptions mean that the zero disappears.
Thus, it is possible to think of this as a feedback system. Consider the interconnection of a system
with two poles, with roots at the eigenvalues of

[ a22 a23
a32 a33

]

, with a second system, with one pole
at a11 < 0 and feedback gaink ≡ a13a21a32. In the root locus analysis, the starting points for
two of the branches are not uniquely specified. In particular, the 2×2 subsystem is of the class
considered earlier. We know that these may be stable, oscillatory or unstable. If stable, then the
analysis is exactly as in that ofJ8. If the subsystem is oscillatory, the analysis is similar tothat of
J8. If k < 0 the system will first continue being oscillatory, and then become unstable. Ifk > 0,
the system will become unstable, but may stop being oscillatory. If the subsystem is unstable,
then negative feedback will not be able to stabilize it. On the other hand, positive feedback may.

The following system

J6 =





a11 a12 0
a21 a22 a23
0 a32 a33





is also a special case ofJ13. Sincea13 = a31 = 0, it is easy to check that the zero is always ata33
and is therefore stable. Stable zeros tend to increase the overall stability of the system.

Finally,

J12 =





a11 a12 a13
a21 a22 a23
0 a32 a33





is almost idential toJ13. Unlike J6, we can not determine the stability of the zero.

Systems involving four nodes. By breaking these systems down to simpler cases, we can say
a few things. They are:

1. Open loop systems. In which the Jacobian’s are all block diagonal, which are themselves
triangular. Thus, the eigenvalues are the diagonal termsλ (A)= {aii}. Hence, these systems
are always stable.

2. Involving one single-node feedback loop. These systems have block triangular adjacency
matrices, and the diagonal blocks are of size two, one and one. Their stability properties
are determined by the stability of the size two block.
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3. Two single-loop loops. Again, the adjacency matrix is block triangular, but there are two
blocks of size two on the diagonal. The analysis of the systemis determined by these two
blocks.

4. One single three-node loop. The adjancency matrix is block triangular with one diagonal
block of size three.

5. One single four-node loop. This is straightforward to analyze, and is similar to the single
three node loop.

6. Multiple, interacting loops. The way to analyze this is tobreak this down into feedback
connection of the 3×3 subsystem





ẋ1
ẋ2
ẋ3



 =





a11 a12 a13
a21 a22 a23
a31 a32 a33









x1
x2
x3



+





a14
a24
a34



u

y =
[

a41 a42 a43

]





x1
x2
x3





with the first order system:

ẋ4 = a44x4 + y

u = x4

The general 3×3 subsystem has three poles and two zeros. The other subsystem’s pole is
stable.
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