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Supplementary Material

Stability analysis

The dynamical systems corresponding to a particular régnylanetwork motif consisting oh
interconnected nodes can be represented by a system oédiftd equations

X =fi(X,....%), i=1...,n (1)

where the variablg represents the state of the node and; represents the combined influence
of all nodes having connections with tite node. Thef; may be linear or nonlinear functions.
The local stability properties of the system about its (fg@gsnultiple) equilibria can be deter-
mined using Lyapunov’s indirect method (Khalil, 2002). §mvolves determining the location
of the eigenvalues of the Jacobian matdix; {a;; } = {Jf;/dx;}, evaluated at the equilibrium of
interest.

The termsa;; represent the sign and strength of influence ofjtihenode onto théth node.
If this term is zero, thgth node does not influence tlign node at this equilibrium. Thus the
Jacobian matrix serves to denote the local connectivithefdystem. It can be reduced to the
corresponding adjacency matrix by normalizingaheto ones or zeros. In this study itis assumed
that the self-connections for all nodes of the mo#fs(the diagonal terms of the Jacobian matrix)
are always negative. This assumption reflects the commdsigreed mechanisms of constitutive
degradation or inactivation of the biological entities;lirding gene products, phosphorylation
states of signaling molecules or depolarization state®ofans. Further assumptions about the
values ofaij adopted in computational analysis are described below.

Open loop systems. In the following four cases,

a; 0 O a; 4 A3
Ji= a3y ay 0], bL=10 a, 0
(837 0 ag |0 0 ag
a;, a4, O a, O 0
J3= 10 ay ay|, =13y ay 0
[0 0 ag] [831 83y 833

the eigenvalues are just those of the diagonal tethi®) = {a,,,8,,,a55}. By assumption on
the negativity of all;, the corresponding dynamical systems are all stable, attsgsarof the sign
or magnitude of the off-diagonal terms.



Systemswith onetwo-node loop. In these four systems

(a,;, 0 O] a,; a, O
Jp= |8y 8y ayl, =10 ay ay
| 0 a3, ag 0 a3 ag
a; 0 O a4y ap a3
Jo= |8 8y ay|, Jio=| 0 ay ay
(83 83y 83 0 a; ag

one of the states acts either as an input filtedgiandJg) or as an output filter (id; andJ, ). In
either case, the Jacobian is block diagonal, so the speciréns given by:

A(A) = {311”\ ([Zj Zj)}

Hence, the stability of the overall system is determinedhay bf the 2x 2 subsystem. We can
think of this system as consisting of two first-order stalylstems, with poles,, andas; and
gain 1, interconnected with a feedback g a,a,,.

In a manner complementary to the Monte Carlo analysis, warsasstigate the stability of
the closed-loop systems analytically using root locus @gnts (Evans, 1948). This analysis
tool allows determination of the stability properties ofygtem as a parameter is varied. Thus,
rather than “sampling” the parameter space, as is the cdbetlvé Monte Carlo approach, we
can consider all the possible dynamic behavior that mag assve vary the systems’ parameters
over their allowable range.

In our case we determine the stability of the closed-loopesysvhile we allow the gaik
to vary. For example, if-1 < a,;,a5, < 1, it follows that—1 < k < 1. We then trace out the
location of the closed-loop poles &svaries over this range. For this second-order system the
closed-loop system has two poleskk= 0, these closed-loop poles coincide with the open-loop
poles. Ask varies, these poles trace out the “branches” of the roatsdoErom their location in
the complex-plane, we can then determine the stability@&gstem.

For this second order system, if the parametggsandag, are of opposite sign, so that the
feedback gain is negativek & 0), the root-locus branches approach each other along &he re
axis, and meet afa,, + as3)/2 Whena,sas, = —48,,333/ (3, + a35)% < 0. For more negative
values ofa,4as,, the branches are no longer on the real axis and approacihtyinfilowever,
they they remain in the left-half plane, implying that thesgd-loop system is stable whenever
ay585, < 0.

We next consider the stability of the system assuming theddetparameters have the same
sign, k = a,5a,, > 0). In this case, for increasing valueslgfone branch traces the real axis
starting at maa,,, a3} and enters the right-half plane whenewegga,, > a,,a55. Thus, for
these two cases, we can state that the system is:

oscillatory  ifaysag, < —48,,85,/ (8, +a55)% < 0
system i stable if—48,,835/ (89, + 8g3)2 < 8y383, < Byngs
unstable  ifa,,a,, > a,,a55>0



Single loop involving three nodes.

a; 0 a3
Jg=ay ay 0
0 a;, ag

This can be treated as a feedback loop involving three statdeorder systems with a feedback
connection with gaikk = a,,a,,a5,. Without loss of generality, we can assume thgt< a,, <
aSSOnce again, we can use root locus analysis. In this case,dhethree branches starting in the
left-half plane at each of the three poles. If the feedbackieotion is negativek(= a,5a,,85, <

0), the two closest to the imaginary axis approach each atheefore for more negative values
of k. The system becomes oscillatory. However, as the magnitikies further increased, these
two branches enter the right-half plane, so that the systamstable. Thus, unlike system with
a simple two-node feedback connection, negative feedbackdestabilize the system. When
k > 0, the branch closest to the imaginary axis remains on tHeaxés, but will move into the
right-half plane wherk = —a,;a,,855. The other two branches will meet. Thus, oscillatory
behavior is possible, provided the feedback is not too gtrbat unstable behavior is a certainty
for sufficiently high values o, ;a,,a5, > 0.

I nterconnections involving multiple loops. Though there are several of these, it is useful to
analyze in detail the fully connected system:

Q1 p 343
Jiz= |8y 8y, 8y

a3 83 833

because the others are special cases.
This system can be treated as the feedback interconnedtioa fllowing first-order system:

Xp =% +Y
u=x,

with the following second order system:
-l [
X3 932 833 % a3
X
y=[ay, ag Xﬂ

The transfer function (Frankligt al., 2002) fromu toy is given by:
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where

A(S) = § — (8yy + 33)S+ BpyBg3 — Ky, aNdk, = ayqa,.
The eigenvalues of this subsystem can be stable, oscillatamstable, exactly as in the analysis
of the single feedback loops discussed above. The systerhadsa single zero, at

Q4383781 + 31893831 — 81581833 — 8138583
810851 + 31383

which can be stable or unstable. Additionally, there wilbgtable pole &, ;. These three poles,
together with one zero, can be used to obtain a root locugsinalith gaink = a,,a,, +a;585;.
The system with Jacobian
a; 0 a3
Jig= |8 8 A3
0 azp ag;
is a special case df 5, with a;, = a5, = 0. These two assumptions mean that the zero disappears.
Thus, itis possible to think of this as a feedback system siciem the interconnection of a system
with two poles, with roots at the eigenvalues [(Sg 2;:} with a second system, with one pole
ata;; < 0 and feedback gaik = a,,a,,33,. In the root locus analysis, the starting points for
two of the branches are not uniquely specified. In partictifer 2x 2 subsystem is of the class
considered earlier. We know that these may be stable, asriyi or unstable. If stable, then the
analysis is exactly as in that @f. If the subsystem is oscillatory, the analysis is similathiat of
Jg. If k < 0 the system will first continue being oscillatory, and thexdme unstable. K> 0,
the system will become unstable, but may stop being osmillatif the subsystem is unstable,
then negative feedback will not be able to stabilize it. Gsdther hand, positive feedback may.
The following system
a, a, O
Jo= |1 3 A3
0 azp ag
is also a special case 8f;. Sincea,; = a5, = 0, itis easy to check that the zero is always.at
and is therefore stable. Stable zeros tend to increase #ralbstability of the system.
Finally,
a7 a1 843
Jio= |8 8 A3
0 azp ag
is almost idential td; ;. Unlike J;, we can not determine the stability of the zero.

Systemsinvolving four nodes. By breaking these systems down to simpler cases, we can say
a few things. They are:

1. Open loop systems. In which the Jacobian’s are all bloagatal, which are themselves
triangular. Thus, the eigenvalues are the diagonal tarfA$= {a;; }. Hence, these systems
are always stable.

2. Involving one single-node feedback loop. These systeams hlock triangular adjacency
matrices, and the diagonal blocks are of size two, one and Blneir stability properties
are determined by the stability of the size two block.
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3. Two single-loop loops. Again, the adjacency matrix isckltriangular, but there are two
blocks of size two on the diagonal. The analysis of the syssatietermined by these two
blocks.

4. One single three-node loop. The adjancency matrix iskiie@ngular with one diagonal
block of size three.

5. One single four-node loop. This is straightforward tolgrey, and is similar to the single
three node loop.

6. Multiple, interacting loops. The way to analyze this ibteak this down into feedback
connection of the & 3 subsystem

Xy 1 dp A3 | X Q14
| = | 821 8 g3 | |Xo| T |8 U
X3 931 93 a3 | [X3 34
Xy
y=1[ay ap a3l (%
X3

with the first order system:

Xy = Q¥ +Y
u=x,

The general % 3 subsystem has three poles and two zeros. The other sub&y/ptde is
stable.
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