

Figure S1. Time evolution of the root-mean-square deviation (RMSD) of the atoms that make up the central tetranucleotide where the bis-intercalators bind along the targeted MD simulations. Similar results were obtained when the simulation lasted 5 ns.

Table S1. Intermolecular Distances and Angles Between Hydrogen Bonding Donor and Acceptor Atoms^a in the Equilibrated Complexes of 2QN and CysMeTANDEM with Each of its Target Decanucleotides.^b

Donor-Acceptor	2QN: d(GCGG	CGCCGC) ₂	2QN: d(GCG	2QN: d(GCGD TD TCGC) ₂		
	d (Å)	Angle (°)	d (Å)	Angle (°)		
N2 D6/G6–O Ala2	3.5 ± 0.5 (44%)	157.3 ± 9.4	3.5 ± 0.5 (40%)	158.7 ± 9.7		
N Ala2–N3 D6/G6	3.4 ± 0.3 (40%)	152.2 ± 11.5	$3.4 \pm 0.3 \; (34\%)$	151.2 ± 12.1		
N2 D16/G16–O Ala1	3.2 ± 0.3 (71%)	159.7 ± 8.7	3.1 ± 0.2 (76%)	159.0 ± 9.1		
N Ala1–N3 D16/G16	3.7 ± 0.4 (16%)	145.3 ± 12.3	3.5 ± 0.3 (31%)	149.1 ± 11.2		
	CysMeTAN	IDEM:	CysMeTA	ANDEM:		
	d(CTCATA	TCAG) ₂	d(CTCICICCAG) ₂			
	d (Å)	Angle (°)	d (Å)	Angle (°)		
N Ala2–N3 A6/I6	$3.4 \pm 0.4 (93\%)$	123.7 ± 31.0	$3.3 \pm 0.3 (57\%)$	144.0 ± 15.8		
N Ala1–N3 A16/I16	$3.4 \pm 0.3 (35\%)$	119.3 ± 30.1	$4.4 \pm 0.5 (0\%)$	113.8 ± 18.2		
N Val1/O Ala2	3.4 ± 0.4	138.4 ± 23.7	3.5 ± 0.4	131.3 ± 21.6		
N Val2/O Ala1	3.2 ± 0.2	149.9 ± 13.7	3.1 ± 0.2	145.9 ± 20.1		

^aResidue numbering scheme as in Figure 3.

^b Percentages in brackets indicate the percent of snapshots in which these intermolecular distances fulfill the criterion for hydrogen-bond formation (d \leq 3.2 Å).

AMBER PREP file for 5-methyl-cytosine

0 0 2

5-met cytC	chyl-cyt data	osine	e for	TI c	alcu	lati	ons; 6-31	G* RESP cł	narges	
DUC CORR 0.0	INT OMIT DU	1 Bl	EG							
1	DUMM	DU	м	0	- 1	- 2	0.00	0.00	0.00	0.000
2	DUMM		M	1	0	- 1	1.00	0.00	0.00	0.0000
3	DUMM	DU	M	2	1	0	1.00	90.00	0.00	0.0000
4	P	P	М	3	2	1	1.60	119.04	200.00	1.1659
5	01P	02	E	4	3	2	1.48	109.61	150.00	-0.7761
6	02P	02	Е	4	3	2	1.48	109.58	20.00	-0.7761
7	05'	OS	M	4	3	2	1.60	101.43	-98.89	-0.4954
8	C5 '	СТ	М	7	4	3	1.44	119.00	-39.22	-0.0069
9	Н5'1	Н1	Е	8	7	4	1.09	109.50	60.00	0.0754
10	Н5'2	Н1	Е	8	7	4	1.09	109.50	-60.00	0.0754
11	C4 '	СТ	М	8	7	4	1.52	110.00	180.00	0.1629
12	H4 '	H1	Е	11	8	7	1.09	109.50	-200.00	0.1176
13	04 '	OS	S	11	8	7	1.46	108.86	-86.31	-0.3691
14	C1'	СТ	В	13	11	8	1.42	110.04	105.60	-0.0116
15	H1'	H2	Е	14	13	11	1.09	109.50	-240.00	0.1963
16	N1	N*	S	14	13	11	1.49	108.10	-127.70	-0.0339
17	C6	CM	В	16	14	13	1.36	121.10	81.59	-0.0183
18	НG	H4	Е	17	16	14	1.08	120.00	0.00	0.2293
19	C5	CM	В	17	16	14	1.36	121.00	180.00	-0.3185
20	C7	СТ	3	19	17	16	1.09	120.00	180.00	-0.3646
21	H71	HC	Е	20	19	17	1.08	109.50	60.00	0.1157
22	H72	HC	Е	20	19	17	1.08	109.50	180.00	0.1157
23	H73	HC	Е	20	19	17	1.08	109.50	300.00	0.1157
24	C4	CA	В	19	17	16	1.43	116.90	0.00	0.8439
25	N4	N2	В	24	19	17	1.32	120.10	180.00	-0.9773
26	H41	Η	Е	25	24	19	1.01	117.70	180.00	0.4314
27	H42	Η	Е	25	24	19	1.01	120.27	0.00	0.4314
28	N3	NC	В	24	19	17	1.33	121.70	0.00	-0.7748
29	H3	D3	Е	28	24	19	0.40	116.77	180.00	0.0000
30	C2	С	S	28	24	25	1.36	120.50	0.00	0.7959
31	02	0	Е	30	28	24	1.24	122.40	180.00	-0.6548
32	C3 '	СТ	М	11	8	7	1.53	115.78	-329.11	0.0713
33	Н3 '	Н1	E	32	11	8	1.09	109.50	30.00	0.0985
34	C2 '	СТ	В	32	11	8	1.53	102.80	-86.30	-0.0854
35	H2'1	HC	E	34	32	11	1.09	109.50	120.00	0.0718
36	H2'2	HC	E	34	32	11	1.09	109.50	240.00	0.0718
37	03 '	OS	М	32	11	8	1.42	116.52	-203.47	-0.5232

IMPROPER

C6	C2	N1	C1'
N1	N3	C2	02
C4	H41	N4	H42
N1	C5	C6	НG
C6	C4	C5	C7
N3	C5	C4	N4
C2	C4	N3	HЗ
LOOP	CLOSI	NG E	XPLICIT
C1 I	C2 I		

C1' C2 C2 N1

DONE

STOP

AMBER PREP file for inosine

0 0 2

Inos	ine for	TI C	calcula	ation	s; 6	-31G*	RESP cha	rges		
ipe.	lata									
IPE	INT	1								
CORR	OMIT DU	JE	BEG							
0	.00000									
1	DUMM	DU	М	0	-1	- 2	0.0000	0.0000	0.0000	0.00000
2	DUMM	DU	М	1	0	- 1	3.0000	0.0000	0.0000	0.00000
3	DUMM	DU	М	2	1	0	3.0000	90.0000	-90.0000	0.00000
4	Р	Ρ	М	3	2	1	1.60	119.04	200.00	1.1659
5	01P	02	Е	4	3	2	1.48	109.61	150.00	-0.7761
6	O2P	02	E	4	3	2	1.48	109.58	20.00	-0.7761
7	05'	OS	М	4	3	2	1.60	101.43	-98.89	-0.4954
8	C5'	СТ	М	7	4	3	1.44	119.00	-39.22	-0.0069
9	H5 ' 1	Н1	Е	8	7	4	1.09	109.50	60.00	0.0754
10	H5 ' 2	Н1	Е	8	7	4	1.09	109.50	-60.00	0.0754
11	C4'	СТ	М	8	7	4	1.52	110.00	180.00	0.1629
12	Н4 '	Н1	Е	11	8	7	1.09	109.50	-200.00	0.1176
13	04'	OS	S	11	8	7	1.46	108.86	-86.31	-0.3691
14	C1'	СТ	В	13	11	8	1.42	110.04	105.60	0.0431
15	H1'	H2	Е	14	13	11	1.09	109.50	-240.00	0.1838
8	N9	N*	S	4	3	2	1.4798	37.8434	205.2975	-0.0138
9	C8	CK	В	8	4	3	1.3867	126.9832	119.9587	0.0783
10	Н8	Н5	Е	9	8	4	1.0625	121.8634	0.0287	0.1773
11	N7	NB	S	9	8	4	1.2976	111.9036	180.0196	-0.5367
12	C5	CB	S	11	9	8	1.3858	105.6528	0.0000	0.1663
13	C6	С	В	12	11	9	1.4327	130.4467	179.9769	0.5066
14	06	0	В	13	12	11	1.5387	130.6550	0.1288	-0.5472
15	H61	D6	Е	14	13	12	0.4	120.0290	359.9088	0.0000
16	Н62	D6	Е	14	13	12	0.4	119.9751	179.8939	0.0000
17	N1	NA	В	13	12	11	1.4196	109.5335	180.0248	-0.4092
18	Н1	Н	Е	17	13	12	1.0013	114.5060	179.9724	0.3234
19	C2	CO	В	17	13	12	1.3614	125.8243	0.0740	0.2284
20	H2	нS	Е	19	17	13	1.0691	116.4181	179.8593	0.1571
21	N3	NC	S	19	17	13	1.2829	123.7782	359.9587	-0.5392
22	C4	CB	Е	8	4	3	1.3540	126.9783	299.9951	0.3033
31	C3 '	СТ	М	11	8	7	1.53	115.78	-329.11	0.0713
32	Н3'	H1	Е	30	11	8	1.09	109.50	30.00	0.0985
33	C2'	СТ	В	30	11	8	1.53	102.80	-86.30	-0.0854
34	H2'1	HC	Е	32	30	11	1.09	109.50	120.00	0.0718
35	H2 ' 2	HC	Е	32	30	11	1.09	109.50	240.00	0.0718
36	03 '	OS	М	30	11	8	1.42	116.52	-203.47	-0.5232
IMPRO	OPER									
C8	C4 1	19	C1'							
			-							

60	C4	119	CT.
N9	N3	C4	C5
N3	N1	C2	H2
C2	C6	N1	Н1
N1	C5	C6	06
N7	N9	C8	Н8
C6	H61	06	Н62

LOOP

C1' C2' C4 C5 C4 N9

DONE

STOP

AMBER PREP file for 2,6-diamino-purine

0	0	2								
2,6-0 dapal DAP	diamin o.data INT	10 - pui	rine f	or I	'I ca	lcul	ations, 6	5-31G* RE;	SP charges	
CORR	OMLI	DU	BEG							
0.0										
1	DU	DU	M	0	- 1	- 2	0.0000	0.0000	0.0000	0.00000
2	DU	DU	М	1	0	- 1	8.8730	0.0000	0.0000	0.00000
3	DU	DU	М	2	1	0	2.3079	90.0000	-90.0000	0.00000
4	Р	Р	Μ	3	2	1	0.7800	64.3232	90.0000	1.16590
5	01P	02	Е	4	3	2	1.4760	114.4963	80.5727	-0.77610
6	O2P	02	E	4	3	2	0.9501	56.7517	291.4063	-0.77610
7	05'	OS	М	4	3	2	1.5945	132.5370	282.2855	-0.49540
8	C5 '	СТ	М	7	4	3	1.4498	118.7822	228.3665	-0.00690
9	н5 '	1 H1	Е	8	7	4	1.0900	109.7613	93.9934	0.07540
10	Н5 '	2 H1	Е	8	7	4	1.0895	109.7582	333,9654	0.07540
11	C4 '	СТ	M	8	7	4	1,5109	109.7677	213.9796	0.16290
12	н4 ч	н1	E	11	, 8	7	1 0901	107 7608	156 3397	0 11760
13	∩4 '	09	q	11	8	7	1 1632	108 6489	279 1130	-0 36910
14	C1 I	CTT CTT	с q	12	11	0	1 /1/5	100.0409	106 1011	0.00910
15			D	11	1 D	11	1 0001	107 0205	115 7040	0.04311
10	HI.	HZ	E	14	10	11	1.0901	107.9285	115.7842	0.18380
16	N9	N*	S	14	13	11	1.48//	107.7679	232.4945	0.00498
17	C8	CK	В	16	14	13	1.3685	128.2779	82.2317	0.12688
18	H8	Н5	E	17	16	14	1.0905	123.1877	0.2565	0.16505
19	N7	NB	S	17	16	14	1.2997	113.6206	180.2646	-0.59650
20	C5	CB	S	19	17	16	1.3836	103.8157	359.3635	0.12491
21	C6	С	В	20	19	17	1.3661	9.5850	285.5802	0.59450
22	N6	N2	В	21	20	19	1.3342	53.0502	56.7783	-0.87871
23	Н61	Н	Е	22	21	20	1.0296	58.6492	172.7085	0.40649
24	Н62	Н	Е	22	21	20	1.0301	178.3823	136.8361	0.40649
25	N1	NA	В	21	20	19	1.3412	60.4955	223.2029	-0.74502
26	н1	D1	E	25	21	2.0	0.4000	117.3600	179.9000	0.00000
27	C2	CA	B	25	21	2.0	1 3296	118 9288	178 9914	0 90381
28	N2	M2	B	27	25	21	1 1798	115 2686	180 3182	-0 97652
20	1VZ 1101	11고	D F	27	23	21	1 0206	110 0036	100.0102	0.97052
29	1122	. п. тт	E F	20	27	25	1 0206	120 0270	170 0000	0.42014
20		п	E Q	20	27	20	1 2150	120.0279	1/9.9090	0.42014
20	2113	NC	2	27	20	21	1.3159	129.4640	0.3197	-0.65999
32	C4	CB	E	31	27	25	1.3459	110.2047	359.7759	0.1//88
33	C3 -	СТ	М	11	8	.7	1.5272	116.3826	36.3615	0.07130
34	НЗ'	Н1	E	33	11	8	1.0901	111.1425	33.6094	0.09850
35	C2 '	СТ	В	33	11	8	1.5202	102.8645	273.6140	-0.08524
36	H2'	1 HC	Е	35	33	11	1.0903	111.3657	205.0801	0.07180
37	H2 '	2 HC	E	35	33	11	1.0894	111.3650	85.0665	0.07180
38	03	OS	М	33	11	8	1.4265	112.1694	156.4746	-0.52320
IMPRO	OPER									
C6	H61	N6	H62							
C2	H21	N2	H22							
N7	N9	C8	Н8							
N1	N3	C2	N2							
C5	N1	C6	N6							
N1	N3	C2	N2							
N7	N9	C8	н8							
	02	11	110							
60	CZ	INT	ΗT							
1005										
LOOP	~~ .									
C1'	C2'									
C4	C5									
C4	N9									
DONE										
STOP										

Marco et al.

AMBER PREP file for quinoxaline

0 0 2

CysMe	etandem	qui	inoxal	line	èc	chrom	nopho	ore; 6-31	G* RESP cl	harges	
qxn.d	lata										
QXN	INT	1									
CORR	OMIT D	U	BEG								
0	.00000										
1	DUMM	DU	I	1	0	-1	- 2	0.0000	0.0000	0.0000	0.00000
2	DUMM	DU	ľ	1	1	0	- 1	3.0000	0.0000	0.0000	0.00000
3	DUMM	DU	ľ	1	2	1	0	3.0000	90.0000	-90.0000	0.00000
4	C1	CA	I	1	1	2	3	3.0000	90.0000	90.0000	0.282326
5	H2	HA	I	E	4	1	2	1.0670	90.0000	270.0000	0.058160
6	N3	NC	ľ	1	4	1	2	1.2993	29.6628	90.0000	-0.541737
7	C4	СВ	P	1	6	4	1	1.3662	118.6143	180.0000	0.411620
8	C5	CA	P	1	7	6	4	1.4097	120.1383	180.0000	-0.324433
9	Hб	HA	I	2	8	7	6	1.0707	117.8403	0.0000	0.185916
10	C7	CA	ľ	1	8	7	6	1.3574	119.7937	180.0000	-0.137170
11	Н8	HA	I	E 1	0	8	7	1.0716	120.1759	180.0000	0.163712
12	C9	CA	ľ	1 1	0	8	7	1.4165	120.6362	0.0000	-0.137170
13	H10	HA	I	E 1	2	10	8	1.0710	119.1897	180.0000	0.163712
14	C11	CA	I	1 1	2	10	8	1.3565	120.5247	0.0000	-0.324433
15	H12	HA	I	E 1	4	12	10	1.0708	122.2935	180.0000	0.185916
16	C13	СВ	I	1	7	6	4	1.3996	120.3973	0.0000	0.411620
17	N14	NC	I	1 1	6	7	6	1.3643	119.5362	0.0000	-0.510937
18	C15	CA	I	1 1	.7	16	7	1.2960	118.8597	0.0000	0.083498
19	C16	С	I	1 1	8	17	16	1.4964	120.1073	180.0000	0.597300
20	017	0	Η	E 1	.9	18	17	1.2228	120.3004	180.0000	-0.567900

IMPROPER									
C15	N3	C1	H2						
N3	C5	C4	C13						
C4	C7	C5	Hб						
C5	C9	C7	Н8						
C7	C11	C9	H10						
C13	C9	C11	H12						
N14	C11	C13	C4						
C16	N14	C15	C1						
C15	+M	C16	017						

LOOP C4 C13 C15 C1

DONE STOP

AMBER PREP file for quinoline

0 0 2

2QN q 2qn.d 2QN I	uinol lata NT 1	ine	chromo	phor	re; 6	-31G*	RESP cl	harges		
CORRE	CT OM	IIT D	U BEG							
0.0										
1	DU	DU	М	0	-1	- 2	0.0000	0.0000	0.0000	0.00000
2	DU	DU	М	1	0	-1	2.4495	0.0000	0.0000	0.00000
3	DU	DU	М	2	1	0	2.0000	144.7356	-90.0000	0.000000
4	Н5	HA	М	3	2	1	3.7912	86.7944	319.6216	0.165641
5	C5	CA	М	4	3	2	1.0808	118.7887	43.9467	-0.253310
6	C6	CA	М	5	4	3	1.4059	119.8764	270.5244	-0.133851
7	Н6	HA	E	6	5	4	1.0802	120.1480	359.9331	0.143678
8	C7	CA	М	6	5	4	1.4057	119.7328	179.6767	-0.087290
9	H7	HA	E	8	6	5	1.0808	120.0570	180.6633	0.143583
10	C8	CA	М	8	6	5	1.4058	119.8135	0.9029	-0.359955
11	Н8	HA	E	10	8	6	1.0806	119.8615	179.8028	0.180070
12	C9	CB	М	10	8	6	1.4083	119.9120	359.5544	0.519497
13	C10	CB	М	12	10	8	1.3831	120.2566	359.6219	0.055632
14	C4	CA	М	13	12	10	1.3617	119.8069	180.8568	-0.178854
15	H4	HA	E	14	13	12	1.0895	119.7083	179.5981	0.166755
16	C3	CA	М	14	13	12	1.3469	120.5991	359.6021	-0.143611
17	HЗ	HA	E	16	14	13	1.0805	119.0838	179.6788	0.124858
18	C2	CA	М	16	14	13	1.4115	119.8436	359.2852	0.197612
19	N1	NC	E	18	16	14	1.3503	119.0634	1.2107	-0.569855
20	С	С	Μ	18	16	14	1.4491	121.3476	180.9885	0.597300
21	0	0	E	20	18	16	1.2297	119.5463	357.6658	-0.567900
IMPRC	PER									
C3	N1	C2	С							
C2	+M	С	0							
LOOP										
C10	C5									
C9	N1									

DONE STOP

Additional AMBER parameters for mutated DNA bases

Atom types					
D6 1.008		Dummy	atom of guani:	ne bonded to O6	
D5 1.008		Dummy	atom of cytos	ine bonded to H5	
D3 1.008		Dummy	atom of cytos	ine bonded to N3	
D1 1.008		Dummy	atom of DAP b	onded to N1	
D4 1.008		Dummy	atom of thymi:	ne bonded to 04	
DH 1.008		Cytosi	ne H to be mu	tated to methyl car	rbon
Der 1-					
Bonds	0 100			.	
0 - D6 434.	0.400		guanine for T		
DH-D5 340.	1.090		cytosine for		
NC-D3 434.	0.400		cytosine for	1.1	
0 - D4 434.	0.400		tnymine		
NA-DI 434.	0.400		DAP	nT	
CM-DH 317.	1.080		cytosine for	1.1	
Angles					
CM - DH - D5	50.0	109.50	cytosine	with dummy atoms	
D5 - DH - D5	35.0	109.50	cytosine	with dummy atoms	
CA-NC-D3	50.0	118.00	cytosine	with dummy atoms	
D3 - NC - C	50.0	116.80	cytosine	with dummy atoms	
C -O -D6	50.0	120.0	guanine y	with dummy atoms	
D6-0 -D6	35.0	120.00	guanine y	with dummy atoms	
D4-0 -D4	35.0	120.00	thymine	with dummy atoms	
CA-O -D4	50.0	120.0	thymine	with dummy atoms	
CA-NA-D1	50.0	118.00	DAP with	dummy atoms	
D1 - NA - CA	50.0	116.80	DAP with	dummy atoms	
C -NA-D1	50.0	116.8	DAP with	dummy atoms	
CM - CM - DH	50.0	119.70	cytosine	for TI	
DH - CM - CA	50.0	123.30	cytosine	for TI	
Dihedrals					
X - CD - CD - X	4 4.	00	180.0	2.	
X - CD - CT - X	60.	00	0.0	2.	
X - CD - CM - X	4 26.	60	180.0	2.	
X - CM - DH - X	60.	00	0.0	3.	
Improper dil	nedrals				
X - X - 0 - D6	1	. 0	180.	2.	quanine for TT
X - X - O - D4	1	0	180	2.	thymine for TI
X - X - NC - D3	1	0	180	2	cytosine for TT
X - X - NA - D1	1	0	180	2.	adenine for TI
CM - CA - CM - DH	1	.1	180.	2.	cytosine for TI
Non-bonded p	parameters				
MUD4 RE	- -	0 0		dummer at ar	
20	0.0	0.0		Jummy atom	
D4 DE	0.0	0.0		dumming atom	
20 DA	0.0	0.0		dummy acoil	
DH	1 4590	0.0		H to be mutated to	С
		2.2100		~~	-