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ON THE FORM OF THE FORGETTING FUNCTION: THE EFFECTS OF ARITHMETIC
AND LOGARITHMIC DISTRIBUTIONS OF DELAYS
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Forgetting functions with 18 delay intervals were generated for delayed matching-to-sample perfor-
mance in pigeons. Delay interval variation was achieved by arranging five different sets of five delays
across daily sessions. In different conditions, the delays were distributed in arithmetic or logarithmic
series. There was no convincing evidence for different effects on discriminability of the distributions
of different delays. The mean data were better fitted by some mathematical functions than by others,
but the bestfitting functions depended on the distribution of delays. In further conditions with a
fixed set of five delays, discriminability was higher with a logarithmic distribution of delays than with
an arithmetic distribution. This result is consistent with the treatment of the forgetting function in

terms of generalization decrement.
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The hallmark of a memory procedure is
the inclusion of a delay between a prior event
and a later choice. In the delayed matching-
to-sample procedure, the delay interval sep-
arates the presentation of a sample stimulus
and the choice between two or more com-
parison stimuli. The monotonic decrement in
matching accuracy, typically found with in-
creasing delay, describes the forgetting function
(White, 1985, 2001; Wixted, 1989).

Rubin and Wenzel (1996) argued that in
order to investigate the form of the forgetting
function, it is important to vary the duration
of delays over a wide range. Subsequently,
Rubin, Hinton, and Wenzel (1999) reported
data for recognition and recall procedures
with humans for 10 delay intervals. None of
the 105 two-parameter mathematical func-
tions provided adequate fits. Only a double
exponential function provided a satisfactory
fit. The majority of studies with nonhuman
animals have included only a few delays, and
a small number of studies have described
functions for more than four delays. In de-
layed matching-to-sample procedures with pi-
geons, the number of delays tends to be con-
strained by the total number of trials needed
to calculate stable measures of proportion
correct or discriminabilty. In the present
study, we describe a delayed matching-to-sam-
ple procedure that allows forgetting functions
to be constructed from 18 delays. The first
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aim of the present study, therefore, was to de-
scribe the form of the forgetting function
based on multiple delay intervals.

Here we also asked whether the form of
the forgetting function is influenced by the
distribution of delays with which remember-
ing is tested. The distributions most common-
ly used in delayed matching to sample are
arithmetic and logarithmic (see below). In an
arithmetic distribution, delays are equally
spaced apart. In a logarithmic or exponential
distribution, the spacing between delays in-
creases as delay lengthens. If accuracy at a
certain delay is determined by a temporally-
related process such as decay of a memory
trace, the form of the forgetting function
should be fixed. That is, it would make sense
to search for the single bestfitting mathe-
matical description of the forgetting function
(Rubin & Wenzel, 1996).

If, instead, the forgetting function is sensi-
tive to the temporal context of delays, as sug-
gested by the notion that remembering is dis-
crimination (White, 2001, 2002a), the
distribution of delays should influence both
the form of the forgetting function and its
mathematical description, analogous to the
way that generalization gradients depend on
the distribution of stimulus values along the
dimension of duration (Church & Gibbon,
1982; Wearden, 1992; Wearden, Denovan,
Fakhri, & Haworth, 1997). The possibility
that forgetting functions can be treated in the
same way as generalization gradients was sug-
gested by Sargisson and White (2001), who
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demonstrated that matching accuracy de-
pended on the relation between the delay
used in training (typically O s at the outset of
training) and the delays used in testing.

Some delayed matching-to-sample experi-
ments have used logarithmic distributions of
delay intervals (e.g., Jones & White, 1994; Ur-
cuioli, 1985; Weavers, Foster, & Temple,
1998). Other researchers have used arithme-
tic distributions of delay intervals (e.g., De-
Long & Wasserman, 1981; Grant & Spetch,
1993; Kraemer, Mazmanian, & Roberts, 1985;
Nevin & Grosch, 1990; Spetch & Rusak,
1989). Because a logarithmic distribution of
delays includes fewer long delays than an
arithmetic distribution, the form of the for-
getting function may be different when delays
are distributed arithmetically as opposed to
logarithmically.

In the present experiment, forgetting func-
tions were generated for two different distri-
butions of 18 delay intervals ranging from 0.1
s to 20 s. In the first and third conditions, the
delay intervals were distributed arithmetically,
with equal spacing between delays. Five delays
were arranged per session with values (s) of
0.1d, d, 2d, 3d, and 4d. Over five consecutive
sessions, the value of d varied randomly from
1 to 5, thus generating 25 delay intervals
across the five sessions, 18 of which were dif-
ferent. In the second condition, the delay in-
tervals were distributed logarithmically. Five
delays were arranged per session with values
(s) of 0.1d, 0.5d, d, 2d, and 4d. As in the arith-
metic conditions, the value of d varied ran-
domly from 1 to 5 over five consecutive ses-
sions. The shortest and longest delays in each
set were the same for arithmetic and logarith-
mic distributions so that the type of distribu-
tion was not confounded with differences in
range. Across b pigeons, the forgetting func-
tions were no different for logarithmic distri-
butions of delays than for arithmetic distri-
butions, perhaps because the distributions
differed only in one delay in the context of
multiple delays (0.5d in the logarithmic dis-
tribution vs. 3d in the arithmetic distribu-
tion). The possibility that the effects of the
different distributions were minimized by dai-
ly changes in different sets of the 18 delays
was suggested by the results of two additional
conditions, in which a fixed set of five delays
was used, with d = 5 for the two distributions.
With the fixed set of delays, discriminability
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was overall higher with the logarithmic distri-
bution.

METHOD

Subjects

Five homing pigeons, aged approximately
5 years at the beginning of the experiment,
served as subjects. The pigeons were individ-
ually housed in wire cages measuring 40 cm
deep, 50 cm high, and 40 cm wide, with free
access to water and grit. The pigeons were
weighed daily and were maintained at 85% *
10 g of their free-feeding weights through
postexperimental feeding of a mixture of
wheat, corn, peas, and pellets. If a pigeon’s
weight fell outside the range, it was excluded
from experimental sessions until its weight
was within the range.

Apparatus

Five Med Associates Inc. chambers, mea-
suring 295 mm high, 295 mm wide, and 245
mm deep, were used. The side walls of the
chambers were made of transparent plastic.
The chambers were separated by partitions
and were located in a dark room, such that
the pigeons were unable to see one another.
Ventilation fans masked extraneous sounds.
Three translucent plastic response keys, 21
mm in diameter, were recessed 10 mm into
the front panel of each chamber, 210 mm
from the grid floor, 60 mm apart. The keys
could be illuminated red or green and re-
quired a force of at least 0.15 N to be oper-
ated. A hopper situated behind an aperture
125 mm below the center key provided access
to wheat when raised. The hopper was illu-
minated with a 1-W white bulb when raised.

Procedure

All 5 pigeons had identical previous expe-
rience with delayed matching-to-sample tasks
and so required no training. Each daily ses-
sion was terminated after 50 minutes, or after
82 trials had been completed, whichever
came first. Sessions were conducted 7 days
per week. The first two trials of each session
were treated as warm-up trials and were not
included in analyses. Each trial began with
the center key lit either red or green (the
sample stimulus). Five responses to the cen-
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Table 1

Sets of delays arranged in arithmetic and logarithmic conditions.

Interval
set Arithmetic delays Logarithmic delays
1 0.1 1 2 3 4 0.1 0.5 1 2 4
2 0.2 2 4 6 8 0.2 2 4 8
3 0.3 3 6 9 12 0.3 1.5 3 6 12
4 0.4 4 8 12 16 0.4 2 4 8 16
5 0.5 5 10 15 20 0.5 2.5 5 10 20

ter key turned the center key light off and
initiated a delay interval. After the delay, one
of the side keys was lit red and the other
green (the comparison stimuli). A peck to
the red key was deemed correct following
presentation of the red sample, and a peck
to the green key correct following presenta-
tion of the green sample. Every correct re-
sponse produced 3-s access to wheat. Incor-
rect responses produced a 3-s blackout. The
blackout or reinforcer was followed by a 12-s
intertrial interval, during which all keys were
dark. Five different delay intervals were ar-
ranged within each session, giving 16 trials
per delay per session. The five delays oc-
curred in random order equally often in com-
bination with each sample stimulus and com-
parison stimulus location on left and right
keys.

In each condition, five sets of delay inter-
vals were arranged. At the beginning of each
session, one of the five sets was chosen ran-
domly, without replacement, so that each of
the five delay-interval sets was chosen once
for each of five consecutive sessions. Table 1
gives the delay intervals used in each delay
interval set for the first three conditions. In
the first and third conditions, the delay inter-
vals used formed an arithmetic series, where-
as in the second condition, they formed a log-
arithmic series. The shortest and longest
delays in each set were the same for the arith-

Table 2

Number of sessions completed by each pigeon.

Condition Bl B2 B3 B4 Bb
1 Arithmetic 80 79 54 78 78
2 Logarithmic 79 76 72 80 80
3 Arithmetic 57 57 57 57 57

4 Arithmetic 5 delays 22 21 20 17 21
5 Logarithmic 5 delays 26 29 24 29 29

metic and logarithmic distributions. Table 1
also shows that the delay interval sets in each
condition differed only by one delay. In the
arithmetic condition, there was one longer
delay (the fourth delay) and in the logarith-
mic set there was one shorter delay (the sec-
ond delay). By including the logarithmic set
in the second condition and including the
arithmetic set in the first and third condi-
tions, order effects in the comparison of log-
arithmic and arithmetic conditions were tak-
en into account.

Table 2 shows the number of sessions com-
pleted by each pigeon in each condition. We
had planned for Conditions 1 and 3 to be in
effect for 50 sessions each because 50 sessions
was the minimum number required for each
of the five delay sets to be in effect five times
and to be replicated once. Condition 2 con-
tinued for an additional 25 sessions because
it was in effect only once. Condition 1 was in
effect until Pigeon B3 had completed at least
50 sessions, and as a result, more sessions
were completed by the other pigeons. Al-
though, as originally planned, it was possible
to use data for Sessions 26 through 50 in Con-
ditions 1 and 3, and Sessions 51 through 75
in Condition 2, analyses were based on the
last 25 of all the sessions that were actually
conducted.

Following Conditions 1 through 3, two fur-
ther conditions were conducted using the
procedure described above but with a fixed
set of five delays in each session. In Condition
4, an arithmetic distribution of five delays
(0.5, 5, 10, 15, and 20 s) was arranged in each
session. In Condition 5, a logarithmic distri-
bution of five delays (0.5, 2.5, 5, 10, and 20
s) was arranged in each session. Table 2 gives
the number of sessions conducted for each
pigeon.
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RESULTS

Log d measures of discriminability were cal-
culated using the last 25 sessions in each of
Conditions 1 through 3 for each pigeon for
the two arithmetic conditions and the loga-
rithmic condition. Response frequencies
summed over the five sessions for each delay
in each of the five delay sets over the 25 ses-
sions are given in Appendices A, B, and C.
The rationale for using 25 sessions for data
analysis was that many previous studies with
five delays summed responses over the last
five sessions per condition, providing totals of
40 trials per sample per delay, a number just
sufficient for a discriminability analysis
(White, 1985). In the present experiment,
with five different sets of five delays, 25 ses-
sions were needed to provide a total of 40
trials per sample per delay. Log d is the bias-
free measure of discriminability described by
Davison and Tustin (1978). It is the log (base
10) of the geometric mean of the ratio of cor-
rect (¢) to error (e) responses following red
(r) and green (g) samples, and is calculated
by log d = %2 log [(¢, s e,) (¢g / €g)]. In instanc-
es of perfect performance (zero error), a
constant of one was added only to zero cells
to avoid infinite log d values (Jones & White,
1992). (An alternative correction is to add 0.5
to each of the summed frequencies [Hautus,
1995], but when there are relatively few in-
stances of zero frequencies in a data set, add-
ing 1.0 in those instances has the advantage
of leaving the majority of the original data set
uncorrected and intact [Jones & White,
1992]. As it happens, conclusions about the
effects of important parameters such as delay
interval do not differ according to the type
of correction used, as shown by our reanaly-
ses, in terms of the “add-0.5" correction, of
previous data sets in which the *“add-1" cor-
rection was used [Jones & White, 1992; White
& Wixted, 1999]. A more detailed analysis of
the relation between trial frequencies and the
magnitude of the constant added to each
summed frequency, however, has not yet been
published.) In the present analyses, log d had
a maximum of 1.6 given the number of trials
that contributed to the analyses.

Figure 1 shows, for each pigeon, log d val-
ues for each of the two arithmetic conditions
and the log d values for the logarithmic con-
dition. Log d values were averaged for delays
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O Arithmetic Cond 1
o Arithmetic Cond 3
® Logarithmic Cond 2

Discriminability (log d)

Delay (s)

Fig. 1. Discriminability (log d) as a function of delay
for each pigeon for the first (open circles) and third
(open squares) conditions, with arithmetic distributions
of delays; and, for the second condition (filled circles),
with logarithmic distributions of delays. Smooth curves
are exponential functions in the square root of time fit-
ted to the data from each arithmetic condition (dashed
lines) and to data from the logarithmic condition (solid
line).
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in common to the five different sets of five
delays (Table 1), resulting in data points for
18 unique delays for each pigeon (Figure 1).
Discriminability in the logarithmic condition
(Condition 2) was overall higher than in the
first arithmetic condition (Condition 1) but
was similar to that in the second arithmetic
condition (Condition 3) for each pigeon ex-
cept B2. For Pigeon BI, of 36 data points
from the two arithmetic conditions, only 3
were higher than the data points from the
logarithmic condition. For Pigeons B3 and
B5, respectively, of 36 data points from the
arithmetic conditions, 9 and 6 were higher
than the data points from the logarithmic
condition. For these 3 pigeons, therefore, it
is tempting to conclude that the logarithmic
distributions produced overall higher dis-
criminability than the arithmetic conditions.
But a more conservative conclusion based on
a comparison of the logarithmic condition
and only the second arithmetic condition in-
dicates that there was no consistent differ-
ence in the effects of the two distributions.

Exponential functions with time scaled to
the square root (White, 2001; White & Harp-
er, 1996; Wixted, 1990) were fitted to the 18
data points from each of the three conditions
shown in Figure 1 using the procedure pro-
vided by the Sigmaplot 2000® software. This
equation is given by y = a-e¢ V! where a
and b are the intercept and slope parameters
and ¢ is delay interval. Across three fits for 5
pigeons, the average variance accounted for
was 75.8% (range 50.3 to 92.7). The values
for the intercept and slope parameters of the
fitted functions provide a further basis for
comparison of the effects of the different de-
lay distributions. This comparison is de-
scribed below in the context of the results
from Conditions 4 and 5.

Figure 2 shows log d values based on cor-
rect and error responses summed over the
last 10 sessions of Conditions 4 and 5 (Ap-
pendix D). With the exception of Pigeon B5,
discriminability at the different delays was
overall higher for each pigeon in the loga-
rithmic condition than in the arithmetic con-
dition. Exponential functions in the square
root of time were fitted to these data. The
main effect of delay distribution, for a fixed
set of five delays, was a higher intercept for
the logarithmic distribution.

Figure 3 shows the values of the intercept
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Fig. 2. Discriminability (log d) as a function of delay
for arithmetic and logarithmic distributions of delays for
each pigeon, for conditions with a fixed set of five delays.
Smooth curves through the data are bestfitting expo-
nential functions in the square root of time.
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Fig. 3. Values of intercept and slope parameters for fits of square-root exponential functions to the data for each
pigeon plotted in Figures 1 and 2, for arithmetic (ARITH) and logarithmic (LOG) distributions of delays. Data points

are plotted in order of conduct of the conditions.

and slope parameters of the functions fitted
to each pigeon’s data for each of the five con-
ditions. The parameter values are plotted in
the order of conduct of the five conditions.
For Conditions 1 through 3 with multiple de-
lays, there was no consistent change in inter-
cept values, but slope values systematically de-
creased across conditions suggesting an effect
of order. For Conditions 4 and 5, there was
no systematic difference in slopes, but the
higher intercept for the logarithmic distri-
bution than for the arithmetic distribution is
evident for each pigeon.

The Form of the Forgetting Function

Figure 3 indicates that the parameter val-
ues for the square-root exponential function
fitted to the multiple-delay data in Figure 1
were not systematically influenced by the dis-
tribution of delays. We assessed whether the
multiple-delay data were adequately fitted by
other mathematical forms of the forgetting
function by fitting functions to the log d val-
ues averaged over 5 pigeons, separately for
the logarithmic condition (Condition 2) and
the second arithmetic condition (Condition
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3). Only log d values for the 16 delays in com-
mon to these arithmetic and logarithmic con-
ditions were used. Therefore, both yvalues
and xvalues and their ranges were the same
for all fitted functions. Accordingly, assess-
ment of goodness of fit for the different fitted
functions was not confounded with differenc-
es in y- or x-axis variation. A set of functions
was then fitted to the mean log d values plot-
ted in Figure 4 using the nonlinear least-
squares fitting algorithm provided by the Sig-
maplot 2000® software. These functions,
identified by Rubin and Wenzel (1996) as the
best fitting functions, were the exponential in
the square root of time, the exponential, y =
a-e ~Y the logarithmic, y = a — b- log({),
the power, y = a- (¢ + 1)7%, and the hyper-
bola, y = a/(1 + b- t). All are two parameter
functions with intercept (a) and slope (b) giv-
en by the fits. A straight line, y = a + b- ¢,
was included for purposes of comparison. Fig-
ure 4 shows the same data plotted in each
panel, with different fitted functions in the
different panels along with the percentage of
variance in the data for the arithmetic (A)
and logarithmic (L) distributions accounted
for by the different equations.

Figure 4 shows that some functions appear
to fit the data better than did others. In terms
of variance accounted for, the straight line
and logarithmic functions provided the worst
fits and the square-root exponential, hyper-
bola, and exponential the best fits. When re-
siduals were plotted as function of delay (not
shown) systematic deviations between points
predicted by the different functions and the
data were consistent with the variance ac-
counted for by the fitted functions. That is,
greater systematic deviations corresponded to
smaller variance accounted for.

The values of the intercept and slope pa-
rameters were similar for the different best-
fitting equations (not shown). Despite the
similarity of parameter values across fitted
functions and the absence of a systematic dif-
ference between log d values for the arith-
metic (Condition 3) and logarithmic distri-
butions, different equations best fitted the
mean data depending on the distribution of
delays. For example, with the arithmetic dis-
tribution, the hyperbola and simple exponen-
tial functions both accounted for 96% of the
variance. With logarithmic distributions, the
hyperbola and square-root exponential func-
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Fig. 4. Discriminability (log d) for the 16 delays com-
mon to the arithmetic and logarithmic conditions (Con-
ditions 2 and 3) averaged over pigeons. Different math-
ematical functions were fitted to the same data in each
panel, with variance accounted for shown in each panel,
for data from arithmetic (A) and logarithmic (L) con-
ditions.
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tions accounted for 94% of the variance (Fig-
ure 4). As another example, for arithmetic
distributions, the exponential accounted for
92% of variance and the power function ac-
counted for 92.7% of the variance. But for
logarithmic distributions, the exponential ac-
counted for 96% of the variance and the pow-
er function accounted for 88.5% of the vari-
ance. These differences in variance
accounted for are not large. If, however,
goodness of fits of these functions were
ranked (Wixted & Ebbesen, 1991, 1997), the
result would depend on whether the delays
were arranged with arithmetic or logarithmic
intervals.

DISCUSSION

One debate relating to forgetting functions
concerns the mathematical equation that best
describes the course of forgetting (Harnett,
McCarthy, & Davison, 1984; McCarthy &
White, 1987; Rubin & Wenzel, 1996; White,
2001, 2002b; Wixted & Ebbesen, 1991). Dif-
ferent mathematical equations imply that
memory performance changes in different
ways across time (Wixted & Ebbesen, 1991).
Therefore, the selection of a single best-fit-
ting function is considered useful in that it
may model memory processes. In order to
find the best-fitting function, Rubin and Wen-
zel fitted over 100 different functions to over
100 data sets from a variety of memory pro-
cedures and species and found a small set of
functions that best fitted the data equally
well. In the present study, forgetting func-
tions were generated with multiple delays to
optimize the fit of a variety of mathematical
functions to the data compared to fits ob-
tained when only a few delays are arranged
(cf. Rubin et al., 1999). Rubin et al. conclud-
ed that the only satisfactory fit was provided
by a double exponential function. This was
the same as the double exponential function
used by Sargisson and White (2001) and
White (2001) to describe two components of
forgetting functions, a temporal distance
component and an exponential generaliza-
tion component.

When the double exponential function was
also fitted to the 16 points in common for
arithmetic and logarithmic delay distribu-
tions in the present study, it accounted for
over 96% of the variance for both fits (not
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shown); not surprisingly in view of its four
free parameters. The two-parameter func-
tions also satisfactorily fitted the mean data in
Figure 4, and except for the logarithmic func-
tion, accounted for over 88% of the variance
in the data. The two-parameter square-root
exponential, hyperbola, and exponential
functions in Figure 4 accounted for similarly
high percentages of variance in the data, and
nearly as much as the four-parameter double
exponential. This result supports the conclu-
sion by White (2001) that it is difficult to dis-
criminate between mathematical forgetting
functions on the basis of goodness of fit. In-
stead, the discrimination must be based on
theoretical grounds (Killeen, 2001).

The second question asked in the present
study, whether the mathematical form of the
forgetting function depends on the distribu-
tion of delays, is of theoretical interest. The
treatment of remembering as discrimination
emphasises the importance of the stimulus
and reinforcer control of remembering
(White, 2002a). For example, the effects of
arithmetic versus logarithmic distributions of
delays on the form of the forgetting function
might be analogous to the effects of arith-
metic versus constant-probability variable-in-
terval schedules on response rate (Catania &
Reynolds, 1968). Similarly, White and Bun-
nell-McKenzie (1985) suggested that the ef-
fects of mixed versus fixed delays within ses-
sions were analogous to the effects of
variable- versus fixed-interval reinforcement.
With variable delays, discriminability is overall
higher. An alternative notion suggested by a
reviewer is that discriminability is determined
by associative (trace) stimulus value. Because
stimulus value accumulated across delay in-
tervals is higher for logarithmic distributions
in which there are proportionately more
shorter delays, discriminability should be
higher for logarithmic distributions. This no-
tion predicts more rapid trace autoshaping
where trace intervals are logarithmically dis-
tributed.

There was no convincing evidence from
the present data, however, for overall higher
discriminability when multiple delays were
distributed logarithmically as opposed to ar-
ithmetically. The absence of a difference in
the mean data for the logarithmic and sec-
ond arithmetic conditions (Figure 4) is per-
haps to be expected, however, because the
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distributions differed by only one delay. Ad-
ditionally, using five sets of delays might have
masked the effect of the delay distribution be-
cause it reduced the discriminability of the
delays, thus reducing the differences between
the conditions. This possibility was confirmed
by the difference in discriminability between
Conditions 4 and 5, in which fixed sets of five
delays were used. The result that distributing
a fixed set of five delays logarithmically pro-
duced overall higher discriminability in Con-
ditions 4 and 5 is generally consistent with the
findings of Honig (1987) and Carter and
Werner (1978), in which accuracy at one de-
lay depended on the context of shorter or
longer delays. The advantage of the present
procedure over procedures used in prior re-
search, however, was that the range of delays
was not confounded with the distribution of
delays.

The result of fitting different functions to
the mean data from Conditions 2 and 3 (Fig-
ure 4) shows that it is possible for the best-
fitting forgetting function to depend on the
distribution of delay intervals, despite the ab-
sence of a consistent difference between the
discriminability values for the two conditions.
A recent debate contrasts exponential with
power functions (Anderson & Tweney, 1997;
Wixted & Ebbesen, 1997). In the present
study, when the delays were distributed arith-
metically (Condition 3), the power function
accounted for 92.7% of the variance and the
exponential function accounted for 92%. But
when the delays were distributed logarithmi-
cally, the exponential function accounted for
96% of the variance whereas the power func-
tion accounted for 88.5%. This difference in
the rank order of fits of exponential and pow-
er functions to data from the logarithmic
condition was also evident when the residuals
were plotted as a function of delay (not
shown). The high goodness of fit is consistent
with the generally high proportions of vari-
ance accounted for by simple exponential
functions fitted to delayed matching-to-sam-
ple data from this laboratory where logarith-
mic distributions of delays are routinely ar-
ranged (see Rubin & Wenzel, 1996, Table 7).

The effect on discriminability of arithmetic
versus logarithmic distributions of delays with
a fixed set of delays can be accounted for by
generalization of performance at one delay
to similar delays (Sargisson & White, 2001;
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White, 2001). In the logarithmic condition in
the present experiment, the greater numbers
of short delays, and hence the greater likeli-
hood of generalization across the short de-
lays, could have resulted in discriminability
being overall higher in the logarithmic con-
dition compared to the arithmetic condition
in which there were fewer short delays. The
present findings thus provide support for the
idea that a process of generalization contrib-
utes to the form of the forgetting function
(Sargisson & White, 2001; White, 2001,
2002b). Alternative notions, however, such as
the trace strength account noted above, are
not ruled out by the present results.
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APPENDIX A

Correct red (CR) and green (CG) and incorrect red (ER) and green (EG) responses, for
each pigeon, summed over the last five sessions for each delay in each delay set in the first
arithmetic baseline.

Delay B1 B2 B3 B4 B5
Set (s) CR CG ER EG ER EG CR CG ER EG CR CG ER EG
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20 37 38 3 2 37 3% 3 7 29 34 8 3 40 40 0 O 36 37 4 3
30 34 36 6 4 31 39 9 1 32 3 5 3 39 39 1 1 40 40 O0 O
40 33 3 7 5 31 36 9 4 32 28 7 9 40 40 0 O 35 36 5 4
2 0.2 38 37 2 3 39 39 1 1 26 29 3 1 40 40 0 O 39 40 1 0
20 36 3 4 5 35 36 5 4 28 27 3 3 40 40 0 O 40 38 0 2
40 30 35 10 5 32 29 8 11 25 27 5 3 38 40 2 0 37 37 3 3
6.0 30 37 10 3 33 34 7 6 21 25 9 b5 40 39 0 1 36 33 4 7
80 32 3 8 5 31 3 9 5 24 23 7 7 37 40 3 0 38 35 2 b
3 03 40 36 0 4 38 37 2 3 26 30 3 0 40 40 0 O 39 39 1 1
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APPENDIX B

Correct red (CR) and green (CG) and incorrect red (ER) and green (EG) responses, for
each pigeon, summed over the last five sessions for each delay in each delay set in the loga-
rithmic distribution.

Delay B1 B2 B3 B4 B5
Set (s) CR CG ER E ER EG CR CG ER EG CR CG ER EG CR CG ER E

@)
0
=
@]
Q

Q

1 0.1 40 40 0 37 39 3 1 40 38 0 40 40 0 O 39 40 1 0
05 40 39 O 1 34 36 6 4 40 40 0 O 40 40 0 O 39 39 1 1

1.0 39 40 1 0 38 37 2 3 40 40 O 40 40 0 O 40 37 0 3

20 39 39 1 1 31 3 9 5 39 40 1 0 39 40 1 0 38 40 2 0

40 37 38 3 2 33 32 7 8 33 37 7 40 38 0 2 39 35 1 5

2 02 40 40 O O 38 3 2 b 38 40 2 0 39 40 1 0 40 39 0 1
1.0 39 40 1 0 38 38 2 2 39 39 1 40 39 0 1 40 39 0 1

20 40 39 0 1 38 38 2 2 37 40 3 0 40 37 0 3 40 38 0 2

40 38 38 2 2 34 3 6 b5 37 39 3 1 40 39 0 1 40 40 0 O

80 3 33 4 7 31 3 9 5 29 40 11 0 39 39 1 1 38 37 2 3

3 03 40 39 O 1 38 37 2 3 38 39 2 1 40 40 0 O 40 38 0 2
1.5 39 39 1 1 36 34 4 6 35 40 5 0 40 40 0 O 40 39 O 1

30 37 37 3 3 34 34 6 6 33 40 7 0 40 40 0 O 40 39 0 1

6.0 37 30 3 10 37 31 3 9 34 39 6 1 38 39 2 1 39 39 1 1

120 30 29 10 11 32 32 8 8 36 37 4 3 39 39 1 1 37 36 3 4

4 04 40 39 O 1 38 38 2 2 40 40 0 O 40 40 O O 40 40 0 O
20 40 38 0 2 38 37 2 3 38 38 2 2 40 40 0 O 40 39 0 1

40 35 36 5 4 34 3 6 b 34 39 6 1 40 39 0 1 39 34 1 6

80 34 31 6 9 33 32 7 8 34 38 6 2 40 39 0 1 37 37 3 3

16.0 28 32 12 8 28 31 12 9 34 30 6 10 35 39 5 1 39 35 1 5

5 05 40 39 O 1 36 37 4 3 39 38 1 2 40 39 0 1 39 40 1 0
25 3 37 4 3 35 28 5 12 38 37 2 3 40 40 O0 O 39 40 1 0

50 34 3 6 b5 35 32 5 8 37 36 3 4 38 39 2 1 40 40 0 O

10,0 30 32 10 8 31 29 9 11 34 35 6 b5 36 39 4 1 36 38 4 2
200 30 24 10 16 32 24 8 16 32 20 8 20 37 37 3 3 34 32 6 8
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APPENDIX C

Correct red (CR) and green (CG) and incorrect red (ER) and green (EG) responses, for
each pigeon, summed over the last five sessions for each delay in each delay set in the second
arithmetic baseline.

Delay B1 B2 B3 B4 B5
Set (s) CR CG ER EG CR CG ER EG CR CG ER EG CR CG ER EG CR CG ER EG

1 01 40 40 O O 38 37 2 3 38 40 2 0 40 40 0 O 39 38 1 2
1.0 39 40 1 0 37 40 3 0 38 40 2 0 40 40 0 O 39 39 1 1

20 36 39 4 1 37 37 3 3 37 40 3 0 40 39 1 39 37 1 3

30 37 36 3 4 36 35 4 b5 35 40 5 0 39 40 1 0 40 39 0 1

40 39 37 1 3 36 36 4 4 38 40 2 0 38 40 0 39 38 1 2

2 02 38 39 2 1 39 40 1 0 40 40 0 O 40 40 0 O 40 40 0 O
20 34 3 6 5 39 38 1 2 36 38 4 2 40 40 0 40 39 0 1

40 30 38 10 2 37 36 3 4 38 38 2 2 40 38 0 2 40 40 0 O

60 37 33 3 7 35 3 5 b5 36 39 4 1 37 40 3 0 37 39 3 1

80 31 32 9 8 36 37 4 3 37 37 3 3 40 39 0 1 36 37 4 3

3 0.3 39 40 1 0 40 40 0 O 39 40 1 0 40 40 0 O 40 39 0 1
30 3 32 5 8 35 35 b 5 39 39 1 1 39 39 1 1 40 37 0 3

6.0 3 31 4 9 34 37 6 3 38 37 2 3 40 40 0 O 40 40 0 O

90 32 34 8 6 34 37 6 3 37 36 3 4 40 40 0 O 37 39 3 1

120 31 36 9 4 36 32 4 8 34 39 6 1 40 39 0 1 36 37 4 3

4 04 40 38 0 2 39 40 1 0 40 40 O O 40 39 O 1 40 38 0 2
40 32 38 8 2 39 38 1 2 37 34 3 6 40 40 0 O 40 38 0 2

80 33 26 7 14 38 37 2 3 38 38 2 2 40 38 1 0 39 39 1 1

120 34 31 6 9 27 37 13 3 32 32 8 8 39 40 1 0 37 34 3 6

16.0 29 30 11 10 33 34 7 6 38 32 2 8 39 38 1 2 37 36 3 4

5 05 40 39 0 1 38 37 2 3 40 40 0 O 40 40 0 O 40 40 0 O
50 35 35 5 5 37 36 3 4 36 37 4 3 39 38 1 2 39 37 1 3

10.0 30 32 10 8 33 34 7 6 33 36 7 4 39 38 1 2 40 36 0 4

150 32 27 8 13 31 38 9 2 37 3% 3 7 38 38 2 2 37 32 3 8

200 31 29 9 11 28 32 12 8 38 34 2 6 37 36 3 4 37 34 3 6
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APPENDIX D

Correct red (CR) and green (CG) and incorrect red (ER) and green (EG) responses, for
each pigeon, summed over the last 10 sessions in the conditions where only Set 5 was con-
ducted with arithmetic and logarithmic distributions.

B1 B2

Distribution  Delay (s) CR CG ER EG CR CG ER EG
Arithmetic 0.5 51 55 13 13 78 73 2 7
5.0 49 40 27 28 64 70 16 10

10.0 46 40 24 29 67 65 13 15

15.0 37 45 31 22 62 69 18 11

20.0 39 48 35 24 58 73 22 7

Logarithmic 0.5 77 77 1 2 77 79 3 1
2.5 70 71 10 9 73 74 7 6

5.0 56 67 24 12 76 72 4 8

10.0 65 65 14 15 70 75 10 5

20.0 57 66 23 14 59 77 21 3
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APPENDIX D
(Extended)
B3 B4 B5
CR CG ER EG CR CG ER EG CR CG ER EG
65 68 12 10 79 78 1 2 79 75 1 5
54 58 25 20 77 76 3 4 78 76 2 4
57 56 21 22 77 77 3 3 77 76 3 4
52 57 26 21 73 78 7 2 75 76 5 4
55 60 24 18 73 72 7 8 73 71 7 9
79 77 1 3 80 79 0 1 79 78 1 2
70 76 10 4 80 80 0 0 80 75 0 5
72 75 8 5 79 79 1 1 78 77 2 3
66 75 14 5 78 80 2 0 74 74 6 6
65 61 15 19 73 76 7 4 76 72 4 8




