
Protocol S1: MPA Robustness - Partial and Noisy

Data

When applying MPA to biological systems, often not all multi-perturbation
experiments are available. In such cases, the predicted MPA variant is used (as
described in the main text). To demonstrate the stability of the MPA predicted
Shapley value under partial and noisy data we performed two types of analysis;
The first examines the experimental neural laser ablation data described in the
main text and the second uses simulated data. Analyzing the simulated data
has the advantage that we can compare the predicted contributions to the real
contributions (whose knowledge we lack in the neural data).

To test the stability of the predicted contributions in the neural ablation
analysis, we repeated the process of calculating the predicted contributions using
different subsets of the data, according to the leave-one-out scheme, where in
each repetition one experiment is left out from the available experimental set.
The result of this procedure provides 31 sets of predicted contributions (the
dataset includes 31 experiments, and each time we apply the analysis to 30 of
them). Figure 1 shows the results of the leave-one-out procedure. Evidently,
the predicted contributions are similar to those calculated using all the data,
and exhibit stability across the different repeats as noted by the relatively small
standard deviations.

In order to rigorously examine the stability and robustness of the MPA
under noisy and partial data we used simulated data. In the simulation we
assume a system with 8 elements (a,b,c,d,e,f,g,h) that perform a given function
F , F = 0.35a − 0.1(a ∗ e ∗ d) + 0.15(a ∗ e) + 0.05d + 0.15(a ∗ d) + 0.25b −

0.15c+0.1g+0.1h+0.1(g∗h) (8 elements corresponds to the number of neuron
pairs in the laser ablation experiments). The performance F is calculated by
assigning one of two states to each of the elements (one if intact and zero if
perturbed). Note that F is not a simple linear function, in which case a simple
single-perturbation analysis would not be sufficient. Examining F shows that a

is the most important element, c has a negative influence on the performance,
f has no role at all and g and h are totally symmetric.

Since we have 8 elements in the system there are 256 possible perturbation
configurations. Performing these 256 experiments “in-silico” allows us to calcu-
late the exact contribution of each element, which is further used as a bench-
mark to compare with the MPA outcome of partial and noisy experiments. To
examine how sensitive our analysis is to noise, two types of noise were studied.

1. Measurement Noise: in each experiment i, the measured performance
is F (i) + whitenoise, adding noise at the level of 20% (percentage of the
performance level when all elements are intact, F = 1).

2. Perturbation Noise: reflecting the chance that due to technical is-
sues, we did not manage to perturb the elements we planned to, or per-
turbed elements we did not mean to. To emulate such noise, the state
of each element is stochastically perturbed, by randomly flipping its per-
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Figure 1: Leave-one-out contributions: Predicted contributions of the 8
neuron pairs to the different chemotaxis attractant tasks, portrayed by the gray
bars. The black lines describe the mean and standard deviation across different
repetitions of the leave-one-out procedure.
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turbed/intact state, with a probability of 2.5%. That is, in each experi-
ment there is a chance to actually measure the performance arising from
a “wrong” perturbation configuration.

The following figures describe the MPA simulation results, each includes
1000 repeats of adding random noise to the original data and applying MPA
to the noisy data. Each MPA repeat returns for each element its contribution,
based on two scenarios: 1) All 256 experiments are available, but with noise. 2)
Only 31 randomly chosen noisy experiments are available, (out of the 256), to
simulate the partial and noisy data scenario. Figures 2 and 3 present the results
obtained with the two types of noise. In each of the figures the left pane(a)
compares the exact contributions (gray bars) to the contributions found when
all 256 experiments are accessible, but with noise added to them (black lines).
The right pane(b) shows the predicted contributions (these are based on only
31 randomly chosen experiments with noise), with comparison to the exact
contributions. The cross validation score of the two partial datasets show they
explain 80.47% of the data variance in the measurement noise case and 92.98%
in the perturbation noise case.

To summarize the results, one can see that the main properties of the system
are revealed, even under noisy conditions and partial information:

• The predicted contributions are similar to those calculated with full infor-
mation (all 256 experiments).

• Element a definitely stands out as the most important element and element
c as an element with a negative contribution.

• Element g and h show an identical contribution.

• As to element f (the dummy element), while it is not obvious that it has
no contribution, a statistical significance test shows that its contribution
is not significantly different from zero.

The results show that the predicted contributions are very close to the real
ones, even for the small numbers of perturbation configurations used for training
(31 out of 256), and exhibits stability across the different runs, as noted by the
small standard deviations. The stability of the contributions is explained by
the fact that the Shapley value is obtained via averaging over a large number of
predictions. Assuming that the predictor is unbiased, prediction errors tend to
cancel each other out, resulting in an unbiased predicted Shapley value which
is very similar to the real one1. These results show that even when the data is
noisy and partial the MPA outcome is fairly accurate.
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Figure 2: Measurement noise: the contributions obtained after adding white
noise of 20% to the value of F measured at each multi-perturbation experiment.
The left pane(a) shows MPA results on full, noisy data. The right pane (b)
shows the MPA results on partial and noisy data. The gray bars describe
the real contributions of the 8 elements, the black lines show the mean and
standard deviation of the MPA results, repeated 1000 times with random noise.
On average, the 31 randomly chosen experiments explain 80.47% of the data
variance.
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Figure 3: Perturbation noise: Each of the eight elements has a chance of 2.5%
to be in a different state than expected. The left pane(a) shows MPA results on
full, noisy data. The right pane (b) shows the MPA results on partial and noisy
data. The gray bars describe the real contributions of the 8 elements, the black
lines show the mean and standard deviation of the MPA results, repeated 1000
times with random perturbation noise. On average, the 31 randomly chosen
experiments explain 92.98% of the data variance.
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