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Determination of Affected Genes. 
 
We identified genes affected by the following environmental and genetic inputs:  
 

1) carbon source change from raffinose to galactose, and  
2) deletion of known GAL genes (GAL1, GAL2, GAL3, GAL4, PGM2, LAP3, GAL7, 

and GAL10).  
 

We measured three types of high-throughput data:  
 

1) Gene expression levels at 1, 5, 10, 30, and 60 min, and 3, 6, and 9h after galactose 
addition using two-channel microarrays (1). (Six or more biological replicates 
were hybridized at each time point, and half of the arrays were dye-flipped to 
avoid bias toward a particular dye. 

2) Relative abundance of proteins in galactose to those in raffinose (2). 
3) Gene expression levels with deletions of the GAL genes to assess the role of GAL 

genes in galactose utilization and also in regulating other biological processes (2).  
 
Normalization of microarray data. 
 
Microarray experiments are subject to various sources of variability such as biological 
variability coming from heterogeneity in samples; and experimental variability occurring 
during sample preparation, PCR reaction, spotting, hybridization, and scanning. These 
kinds of variability may affect gene expression analyses such as identification of 
differentially expressed genes, correlation analysis and regression analysis.  We need to 
normalize microarray data to minimize these kinds of variability. 
 
Here, we used a modified version of the normalization method proposed in Yang et al. 
(3). Our method also adjusts intensities to remove intensity dependent bias using a 
nonparametric smoother (super-smoothing). Spatial variation is handled by treating each 
grid location individually using MA-plots (Eq. 1 below). A major departure from Yang et 
al. (3) is that our method removes variation across and within arrays at the same time. 
Also, we adjusted both cy3 and cy5 channel intensities together instead of adjusting each 
channel intensity individually. The normalization procedure is as follows. First, we 
generate a MA plot for each grid location: 

 
   ( ) ( ) 2log,log 22 jkjkjkjkjkjk YXAYXM == ,  [1] 
 

where Xjk represents a cy3 intensity for gene j of array k in grid i (this index is not shown 
for notational convenience, but note that all the computation is done for grid i hereafter).  
 
Second, we compute the median of Ajks in all arrays for all genes (i.e., med(med(Ajk)), and 
the deviation of the median of each gene j from the overall median is then defined as c1j= 
medk(Ajk)- medj(medk(Ajk)). Third, we apply super-smoothing to estimate the intensity 



dependent relation between Mjk and Ajks for all genes of all the arrays in grid i. Thus, c2jk 
is the super-smoothing fit to the MA plot for grid location i. Super-smoothing adaptively 
determines the kernel window size depending on the sample distribution instead of fixing 
it to a pre-defined value (e.g., 0.2) as done in Yang et al. (3). Fourth, we adjust Mjk and 
Ajks using c1j, c2jk, Xjk and Yjks accordingly. 
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Fifth, for scale normalization, we compute MADks (median absolute deviation) of Mjk and 
Ajks for all arrays, respectively, and their medians: MADk(M)= medj(abs(Mjk-medj(Mjk))), 
MADk(A)= medj(abs(Ajk-medj(Ajk))), MAD(M)= medk(MADk(M)), and MAD(A)= 
medk(MADk(A)). Then, the deviation of MADk(M) for each array k from the overall 
median MAD(M) is defined as: 

 
  sMk=  MAD(M)/ MADk(M) and sAk=  MAD(A)/ MADk(A).  
 

Sixth, we adjust Mjk
’ and Ajks’ using sMk and sAk: 
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Finally, the steps 1-6 are applied to X and Y intensities in all the 48 grid locations (i.e., 
i=1 to 48 in this study). These steps remove intensity dependent and spatial biases across 
and within the chips. This normalization procedure was applied to microarray data at 
each time point. Then, the final median values of all the spots for each time point were 
normalized to ensure that all the log2 ratio (i.e., log2( X / Y)) median values at each time 
point have the same value and MAD.  

 
Determination of P values for each data set using Gaussian kernel density 
estimation. 
 
For a data set E (called an evidence type hereafter) and a collection G of elements 
(genes/proteins), we define a global set of observations GEO ××ℜ⊆ , where ℜ is the 
real number space. An observation ( ) Ogey ∈,,  means that evidence type e was observed 
for element g, and the value y resulted.  
 
First, we defined a measure (y) for each evidence type. For example, we defined the 
following measures for three types of evidence (E = {e1, e2, e3}) that were used to 
determine genes (H) affected by environmental and genetic perturbations. 

  



1) For time-course array data, integrated log10 ratios of gene expression at each time 

point, to expression in raffinose: ( )∫=
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and represent expressions of each gene (g) in galactose and raffinose, 
respectively, at time = t. Fig. 5A shows how each GAL gene varies over 9 hrs (see 
the shaded area in Fig. 5A for GAL10). Trapezoidal method was used for the 
numerical integration. 
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2) For deletion array data, maximum log10 ratios of gene expression levels in wild 

type to those in GAL deletion mutants: ( )
kgalwtk

ggMaxy ∆= 102 log , where 

 and represent the expression of each gene when GAL gene k is deleted, 
and in wild type, respectively. 

kgalg∆ wtg

3) For proteomic data, log10 ratios of protein expression levels in galactose to those 
in raffinose (see Fig. 5B): ( )rafgal ggy 103 log= , where ggal and graf represent 
expression levels of each protein (g) in galactose and raffinose, respectively. 

 
Second, we applied a Gaussian kernel density estimator to each of these measures (y) of 
all genes (g) to estimate a nonparametric density function De(y) for each evidence type. 

 for all types of evidence e∈E. We assume that De(y) represents the 

distribution of genes not affected given perturbations, which is true when only a small 
fraction of measured genes are affected in an experiment (generally the case in high-
throughput experiments). Fig. 5B shows the estimated density function for each measure.  
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Third, we performed a two-tailed hypothesis test using the estimated distribution to 
determine the empirical probability (P value or significance Se(y)) that observe a 
particular measure (y) by chance when the corresponding gene (g) is actually not affected 
(i.e., when the null hypothesis, H0: g∉A where A is the set of true affected genes, is true). 
This P value is then defined by ( ) ( ) ( ) ( )( )ySySMinAgySyS eeee

'' 1,2 −=∉= , where S’
e is 

defined as  (see also Eq. 10 for one tailed test). Note that we used the symbol 

“S” (representing significance) for P value to differentiate it from probability used in 
Bayesian methods. For example, given the time-course data (e1), the statistical measure 
(y1) for GAL10 is 5.53, and the corresponding P value 
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( )1ySe  is defined by 2 times the 
area under the distribution curve from 5.53 to positive infinite (4). 
 
These steps were also applied to the other two measures to calculate P values for deletion 
array data (e2) and proteomic data (e3) (see Fig. 5B) when the null hypothesis is true.  
 
 
Estimation of PP and PD interaction maps. 
 
To better understand the interactions among the affected genes, we estimated reliable PP 
and PD interaction maps by integrating various types of evidence that can help infer the 



presence of PP and PD interactions for a PP and PD pair. Sections 2.1 and 2.2 present 
mainly the types of evidence used and the estimation of a probability (P value) of a PP or 
PD pair not interacting with each other given each type of evidence. In addition to 
experimental data, we used computational methods to predict both PD and PP 
interactions. To improve prediction accuracy (or not to bias selection of PP and PD 
interactions toward predictions from a relatively large number of computational methods), 
we first integrated the computational predictions and then integrated the overall P values 
from the computational predictions with P values from several types of experimental data 
(see Fig. 1 in the text). Thus our PP and PD interaction result are based on a nested set of 
integrations, as describe din Sections 2.1.1, 2.1.5, and 2.2.3. Note, however, that we used 
the same procedure (identical to that used for identifying the affected genes) to perform 
each PP and PD evidence integration. 
 
Estimation of the PP interaction map. 
 
 We determined PP interactions by integrating the following five types of data (see 
Fig. 1B):  i) the full set of PP interactions in DIP and BIND, including data from yeast 
two hybrid and TAP-tag assays, as well as paralog interaction analysis; ii) the combined 
sub-cellular localization data from SGD (GO cellular components) and GFP database (5); 
iii) gene expression correlations estimated from ~1300 gene expression profiles from 
ExpressDB with additions from our time-course, and deletion gene expression profiles; 
iv) changes in gene expression level due to gene deletions, and v) domain-domain (DD) 
interactions computationally predicted by Multiprospector and InterDom. 

 
P value for PP interaction detection methods. 
 
We used single high-throughput experiments (H), small-scale experiments (S), multiple 
high throughput experiments (M), and paralogous interactions to verify protein 
interactions (R). Deane et al. (6) analyzed PP interactions in DIP and assessed the 
reliability of individual detection methods based on an expression profile reliability index 
as summarized in Fig. 7. We developed a scheme for estimating the P value for PP 
interactions detected by multiple kinds of methods using the reliability measures in 
Deane et al. (6). For instance, for the PP interactions detected by both multiple high 
throughput experiments (M), and paralogous interaction method (R), the P value 
( RMHPPS ,∉ )  can be estimated (assuming that the P value can approximate as the 

probability of the detection methods (discrete variable) identifying the interactions for 
protein pairs when the null hypothesis HPP∉  is true): 
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where K={k1, k2, …, kL} is the set of detection methods (either S, H, M, or R), and 
( lkHPPP ∉ )  is the P values for a detection method kl, as reported in Deane et al. (6): for 

example, ( MHPPP ∉ ) =0.22 and ( )RHPPP ∉  = 0.135 (see Fig. 7). The prior 
probabilities are estimated as the numbers of PP interactions in DIP detected by the 
corresponding methods: Ni represents the number PP interactions detected by method i. 
Also, the total number of noninteracting proteins is estimated by 

( )[ ]221 pppp NtNN −+× , following Deng et al. (7), where Np is the number of proteins 
being considered (6307 in this study), and tp represents an estimated number of 
interactions per protein (50 in this study). For instance, ( )HPPRMS ∉,  = 3,350 × 1,922 
× 0.22 × 0.135 / (6,308 × 6,307 / 2 – 50 × 6,307 / 2) = 4.910 × 10-10. 
 
We summarized the probabilities ( )kHPPP ∉  derived from Deane et al. (6) in Fig. 7, 
and also summarized the P values for all the combinations of detection methods in Table 
1A. They were assigned to all 15118 PP interactions in DIP (December 20, 2003). BIND 
(August, 2003) includes 763 yeast two hybrid data not found in DIP. For these data, we 
assigned a P value of 2.921×10-4 (corresponding to the detection method H in Table 1A). 
For the rest of PP combinations, we assigned a conservative P value of 1. This issue is 
further addressed below (see the second paragraph in P value for expression changes in 
deletion experiments).    

 
P value for cellular compartments. 

 
Cellular compartments of the interacting proteins were used as the second source of 
evidence in determining PP interactions. This is based on the assumption that interacting 
proteins should be in the same cellular compartment. We estimated the P value for this 
evidence based on the Minimum Number of Transport Processes (MNTP) required for 
the interacting proteins to be in the same compartment: ( )HPPMNTPS CC ∉  for any pair 
of cellular compartments. First, we grouped all the annotated cellular compartments into 
26 groups: ER, ER-Goli, Golgi, Golgi membrane, bud, cell, cell cortex, cell fraction, cell 
wall, cytoplasm, cytosol, endosome, extracellular, intracellular, membrane, 
mitochondrion, nucleoplasm, nucleus, periplasmic space, peroxisomal membrane, 
peroxisome, plasma membrane, septum, unknown, unlocalized, vacuolar membrane, 
vacuole. Then, the MNTPs were rationalized for all the pairs of these 26 components.  

 
Second, we derived the P value for each of these MNTPs: 
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where Na and kMNTPCC
N =  represent the number of annotated proteins and the number of 

protein pairs that requires a k MNTP to be in the same cellular compartment, respectively.
As an estimate for NMNTP (when MNTP>0), we counted the number of proteins localized 
in MNTP compartments (see Eq. 6 for the definition of tp). This is the one-sided (left-
sided) test of a discrete statistical measure (MNTP): it should be left-sided because PP∈H 
should be at the same compartment (MNTP=0). For the pairs of cellular components with 
MNTP=0 (e.g., nucleus and nucleoplasm), we assigned the P value of 0.05 to allow for 
annotation errors. See Table 2 for the actual P values used. Note that proteins in the 
membrane interface with two cellular com

 

partments, and thus require no transport to 
teract with proteins in either of the two compartments (e.g., MNTP = 0 for proteins in in

vacuole membrane and cytoplasm).  
 
The P value ( )HPPMNTPS CC ∉  reflects just the chance that two noninteracting proteins 
can be in a p nt, not the chance that we observe a specific pair of 
cellular compartments when two proteins do not interact, i.e., 

articular compartme
( )HPPCCS ∉ . We used 

the P value ( )HPPMNTPS ∉  for the variable MNTP, derived from GO cellular 
components (GOCC) and Huh et al. (5), because it is a more appropriate measure for our 
assumption that two interacting proteins should be in the same compartments. The latter 
P value 

CC

(CCS )HPP∉  does not reflect how easy two protein pairs can be colocalized in 
the same compartments for several reasons (e.g., incompleteness in cellular component 

h includes ≈ 1300 arrays. We then combined all the replicate 

lations of all the possible interacting protein pairs (i.e., 
,308 × 6,307 / 2 for the total 6,307 proteins). Third, we calculated the t statistic for the 

correlation of each protein pair: 

annotations). 
 
 

P value for expression correlations. 
 
It has been suggested that the expression levels of interacting proteins tend to correlate 
with each other (6). This motivated us to use the correlation between gene expressions as 
the third type of evidence in inferring PP interactions. First, we transformed all the 
expression data obtained from Affymetrix and two-channel cDNA or oligoarrays into the 
log10 ratio format (conditions of interest versus controls) and, then, these log10 ratios for 
each chip was normalized to ensure that their median and MAD (median absolute 
deviation; see above) is the same as the overall median and MAD of all the arrays in the 
data set  respectively, whic,
arrays into one representative array by taking the medians of all the same genes in 
multiple replicate arrays.  

 
Second, we computed the corre
6

 

( ) 212 rNrt −−= ,    [8] 
 



where r is the correlation, and N is the number of samples used to compute the 
correlation. This t statistic theoretically follows tN-2, but the actual data does not meet the 
underlying assumption, thus causing the estimated P values to be often underestimated. 
We therefore applied kernel density estimation to directly estimate the distribution from 
all the actual t statistic values. Fourth, the P values for each protein pair was determined 

y a two-tailed test (assuming that all possible PP pairs represent the characteristics of 
teracting proteins). This is the 

robability of observing an expression correlation by chance when the corresponding 

P value for expression changes in deletion experiments. 
 
Following Deane et al. (6) and Zhang et al. (8), we used expression change after the 

eletion of one of two genes as the fourth type of evidence: 

b
noninteracting proteins due to the small fraction of in
p
protein pair does not interact (i.e., when the null hypothesis is true). 
 

d
 

( )wtgMaxy kk
/log10 ∆= ,    [9] 

irst, we calculated the measures (Eq. 9) for gene pairs for which there are knock-out 
gene expression data available (deletion data for 294 genes were used in this study; 

 applied Gaussian kernel density estimation to o on 
easure, and P value was then estimated by a one-tailed test:  

 
where ∆gk and wt represent the expression of each gene after the deletion of gene k and in 
wild type, respectively.  
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d vary depending on data availability, thus the estimation of the 
 value involving the change in the degree of freedom for each data element based on 

ent. In this study, we avoid this complexity by assuming the 
P value of 1 for nonavailable data. However, Pointillist allows any value (e.g., 0.5) to be 

 

where S’
e is defined as '' )( dyyD
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 for the empirically estimated distribution De(y) of y.  

  
We used a P value of 1 for pairs for which no knockout expression data was available for 
one of the interaction partners. Thus, in effect, if data is not available, we assumed the 
interaction is not supported by this assay, making a conservative decision about network 
membership. However, we could instead decide not to estimate the P value for these PP 
interactions and then integrate the other four types of evidences only. If so, the types of 
evidences being integrate
P
data availability for that elem

used for missing values. 
 
P value for DD interactions. 

 



Computational predictions for DD interactions were used as the fifth type of evidence. 
We have two sets of predictions for DD interactions, which were generated by InterDom 
and Multiprospector, respectively. These two types of evidence were integrated together 
first (in a nested manner; see Fig. 1) to estimate the overall P values for computational 
predictions. We used this nested approach because there are often many more 

increasing the number of

computational predictors available than experimental sources of data, which leading data 
integration to being biased toward the computational methods. Although this issue may 
not seem serious with two sources of computational predictions, it can be serious with 

 types of predictions as described below.  
 

To determine the representative P value value for each DD interaction, we first applied 
kernel density estimation to the prediction scores from each method: InterDom (eDD1), 
and Multiprospector (eDD2: interfacial energy). We then estimated a P value 

( ) ( )DDDDe HDDeSyS
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∉=  for each of the two types of prediction scores using the 
corresponding es tribution (one-sided test) utimated dis sing Eq. 10 (assuming that a 

jority of domain pairs do not interact). Finally, the two types of P values were 
bove. The trustworthiness weights for the InterDom

Multprospector prediction scores were 0.491 and 0.509, respectively. Then, the overall P 
alue for two data sets was calculated by applying the one-sided test using the empirical 
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where EDD={eDD1, eDD2}, and the symbols sub-indexed by DD represent their 
orresponding parts described above for the case of DD interactions. Finally, we c

estimated the overall P value ( )HPPES DDe ∉  for PP interactions by taking the minimum 
value if there are multiple DD interactions for a single PP pair: 

( ) ( ) ( )( )ySHPPESyS
DDEDDee min=∉ for ≡ PPDD∈∀ .   

of P values estimated from P value for PP 
interaction detection methods to P value for DD interactions, as shown in Fig. 1B (see

i) ChIP-chip data for 113 transcription factors in YPD media reported in 
Lee et al. (9), supplemented with Gal4p and Mth1p ChIP-chips in galactose media (1); 

 
Finally, Pointillist integrated the five types 

 
text).  
 
 
2.1.1 Estimation of PD interaction map. 

 
We determined protein-DNA (PD) interactions by integrating the following five types of 
data (Fig. 1C): (

(ii) sub-cellular localization data from SGD and GFP database; (iii) gene expression 
correlation between TFs and their target genes; (iv) expression changes after deletion of 
23 transcription factors; (v) the overall P values of five computational TFBS prediction 
tools (Fig. 1F). 

 



In this study, we only considered 135 transcription factors, which is a combined set of 
 from Lee et al. (9) and known transcription factor binding 

tes in Table 6. Also, we included several reported transcription factor binding sites for 

data obtained from Lee et al. (9) were used as the first type of evidence. To 
udy Gal4p-DNA binding in galactose, we carried out additional ChIP-chip for Gal4p in 

 
le cell extracts were computed as 

 statistical measure. We then applied kernel density estimation to estimate the 
d then calculated the P v

values 

transcription factors obtained
si
Adr1p, and Pip2p. Here, we explain the statistical measures used to estimate P values for 
the five types of evidence (see text for other information). 
 
P value for ChIP-chip data. 
 
ChIP-chip 
st
galactose and replaced the overlapping portion of ChIP-chip data in YPD with galactose-
specific data. Later, to validate our model predictions, we performed additional ChIP 
experiments for Mth1p in galactose to validate the Mth1p binding to the promoter region 
of HXT7.  

The log10 ratios of intensities of IP enriched versus who
a
distribution of the ratios an alue for each ratio using the estimated 
distribution (one-sided test) as shown in Eq. 10. 

 
P value for transcription factor cellular compartments. 
 

e assigned P ( ) ( )HPDTFSyS CCe ∉≡W =0.05 for proteins annotated with 
and 0.95 for those annotated with the other cellular 

ompartments. This is different from how cellular compartments were used above. For 

e computed P values Se(y) for all TF-target pairs as described above using Eqs. 8 and 
 that above is that the distribution estimated by kernel 

ensity estimation is constructed by only the pairs of transcription factors being 

nsidered the effect of the deletion of transcription factors 
(23 transcription factor deletion experiments) on downstream genes, while all available 

“nucleus” as their cellular location, 
c
PD interactions, it only matters whether transcription factors exist in nucleus for their 
binding to DNA.  
 
P value for expression correlations. 
 
W
10. The only difference from
d
investigated and all DNA targets (i.e., 135 × 6,307, which is different from all possible 
protein pairs, 6,308 × 6,307 / 2). 
 
P values for deletion effects. 
 
For PD interactions, we only co

294 deletion data were used above. The P values were computed in the same way as 
described above using Eqs. 9 and 10. 
 
P value for Mogul predictions. 

 



We used our in-house software package Mogul for computational predictions of TFBSs 
(htt l includes more 
than
algorith Ace, MEME, Sampler, and MotifSampler) for this study. First, 
Mo
(i.e., co

1) 
2) 

3) 

-wise 
ean vector (1×l) of the score matrix (r×l) of each algorithm represents the 

thm. The mean vector along the intergenic coordinate reveals the 
ensity of predicted binding sites (see the heights of the shaded region in Figs. 8A 

 standard deviation of the mean vector 
 below). 

Next, Mogul was run on upstream sequences of putative coregulated genes determined 
from

2) 
3) 

4) 

5) 

p://labs.systemsbiology.net/bolouri/software/Mogul). Although Mogu
 30 algorithms for TFBS predictions, we used only five relevant, representative 

ms (fuzznuc, Alig
gul was run on sets of randomized sequences to generate the basis for statistical tests 

mputation of P values for the outputs of each algorithm) as follows: 
 
Run MEME with four different window sizes (5, 10, 15, and 20). 
Run AlignAce, MotifSampler, and Motsa 10 times for each of four window sizes 
as MEME above. 
Determine the average and the standard deviation of scores from each algorithm 
for the random sequences. Once the Mogul run is completed, the outputs from 
each algorithm for each gene were summarized to a null r×l score matrix where r 
and l represent the number of runs (i.e., 4 for MEME, and 10 for the other 
coregulated algorithms) and the length of the intergenic region, respectively. Once 
the i-th run of each algorithm is done, the score values of all the predicted binding 
sites for each coregulated gene were normalized between 0 and 1. Then, we added 
the result to the i-th row of the score matrix of the gene. For example, if MEME 
predicted the TGAAACAATA in the coordinate [412,422] of the intergenic 
region of the coregulated gene p in the second run, the normalized score 0.62 of 
the predicted binding site was added to the elements from 412 to 422 in the 
second row of the MEME score matrix for the gene p. Then, the column
m
averaged importance of each base-pair being a part of the binding sites predicted 
by each algori
d
and 8B). Finally, the average and the
elements for each algoritm were computed for a statistical test (see
 

 ChIP-chip data. 
 

1) Scan for known TFBSs using fuzznuc. 
Run MEME with four different window sizes (5, 10, 15, and 20). 
Run AlignACE, MotifSampler, and Motsa 10 times for each of four window sizes 
as MEME above. 
Compute the mean vector from each algorithm for a coregulated gene as 
described in step 4 above. 
Test whether each element (i.e., each base-pair) of the mean vector against the 
average and standard deviations for randomized sequences (see Step 4 above; 
denoted by MASR in Fig. 8A) using a one-tailed t test. The resulting P values 
indicate the probability ( ) ( )BneSyS MeM

⊄≡  of observing a mean score for each 
base pair (n) by chance, when the null hypothesis (n ⊄ B, where B represent a set 
of binding sites) is true (note that each set of randomized sequences are not 
coregulated genes, and the distribution used in one-tailed t test was determined by 
these sets of randomized sequences). Fig. 8B shows that the intergenic region of 



AGA1 has a sequence corresponding to the known binding site for Ste12 (marked 
by an arrow in the bottom panel) between coordinates [412,418]. For Fuzznuc, we 
assigned the P value of 0.05 to predicted binding motifs. 

inally, these P values were integrated as described in Section 2.1.5. We formed the 
init
least o entified the 
fina

Also, w
 

2) ividual upstream sequences, we generated random 
sequences with the GC content (35.1%) as the noncoding region of the yeast 

ome2.htm). 
3) We ran three coregulated algorithms (AlignACE, MotifSampler, and Motsa) 10 

times each to ensure the estimation of consistent prediction scores for Gibb’s-
d algorithms.  

 connectivity status, we used the ratio of the number of connected 
clusters of the affected genes to the total number of proteins in the sub-network. The 
recursive iteration was terminated at depth=1 when this measure reached and remained 
below the cutoff value of 0.01 (see Fig. 9C). The resulting sub-network is shown in Fig. 
10A and compared with the one constructed using the interaction maps composed of the 
PP interactions in DIP and BIND and the PD interactions identified by ChIP-chip data 
(see Fig. 10C).   

 
F

ial set H by selecting base-pair coordinates whose P values were less than 0.05 for at 
ne of the algorithms. The overall P values are computed once we id

l value of H (see above). 
 

e used the following parameters to run Mogul algorithms: 

1) For the large sets of coregulated genes (>40), only MEME with four window 
sizes (5, 10, 15, and 20) was run due to the heavy computational load. 
Instead of randomizing ind

genome (see http://biochemie.web.med.uni-muenchen.de/Yeast_Biology/052_ 
Gen

sampling base
 
Finally, we applied Pointillist to integrate the P values for the five types of evidences (see 
Fig. 1C).  
 
 
Network Analysis  
 
We developed a recursive algorithm that can build a parsimonious sub-network model by 
extracting only relevant interactions to the selected genes rather than including all PP and 
PD interactions in the interaction maps. The algorithm permits the resulting sub-network 
to include only the interactions branches connecting the affected genes via a certain 
number of intermediate proteins as follows (see Fig. 9A): (i) add the 69 affected genes to 
the source and sink and then select the interactions (called the interactions at depth=0) 
between the nodes in the source and sink (see Figs. 9B); (ii) identify the first neighbors of 
the genes in the source and sink from the PP and PD interaction maps; (iii) add these 
neighbors to the source and sink, and then select new interactions (called the interactions 
at depth=1) between the nodes in the source and sink recursively updated; and (iv) repeat 
steps 2 and 3 until the new interactions identified by adding the first neighbors does not 
significantly improve the connectivity status of the affected genes among them. As a 
measure for such



References 
 
1. Weston, A. D., Baliga, N. S., Bonneau, R. & Hood, L. (2003) Cold Spring Harb 

Symp. Quant. Biol. 68, 345-357. 
2. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., 

Bumgarner, R., Goodlett, D. R., Aebersold, R. & Hood, L. (2001) Science 292, 
929-934. 

3. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. & Speed, T. P. 
(2002) Nucleic Acids Res. 30, e15. 

4. Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-
Gould, A., Strober, S., Cannella, B., Allard, J. et al. (2002) Nat. Med. 8, 500-508. 

5. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, 
J. S. & O'Shea, E. K. (2003) Nature 425, 686-691. 

6. Deane, C. M., Salwinski, L., Xenarios, I. & Eisenberg, D. (2002) Mol. Cell. 
Proteomics 1, 349-356. 

7. Deng, M., Mehta, S., Sun, F. & Chen, T. (2002) Genome Res. 12, 1540-1548. 
8. Zhang, L. V., Wong, S. L., King, O. D. & Roth, F. P. (2004) BMC Bioinformatics 

5, 38. 
9. Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., 

Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I. et al. (2002) Science 
298, 799-804. 

10. Ostergaard, S., Olsson, L. & Nielsen, J. (2001) Biotechnol. Bioeng. 73, 412-425. 
 
 
 
 
 




