Supporting Text: Polymerase Error Rates and the Accuracy of \$\$\phi29\$ Cloning

A problem in estimating the sequence accuracy of DNA cloned by ϕ 29 polymerase rolling-circle amplification (RCA) is that there are not good measurements of the overall error rate for the enzyme. The work of Esteban *et al.* (1) on the fidelity of the enzyme is the most often quoted. However, that paper measures the misinsertion rate for incorrect nucleotides using an exonuclease-deficient mutant. Therefore the proofreading activity of the ϕ 29 polymerase 3' exonuclease is deliberately not included in these measurements. This appears to be ignored in later work (2) that cites Esteban *et al.* as reporting an error rate of 5×10^{-6} . Also, this later work calculates the error rate (*ER*) as

$$ER = mf/(bp \times d),$$

where *mf* is the mutation frequency, *bp* is the size of the mutational target in base pairs, and *d* is the number of template doublings. Using this equation the error rate was estimated at 3×10^{-6} . But, because the $\phi 29$ RCA reaction is not a doubling process, this analysis is inappropriate.

We believe that the true error rate for $\phi 29$ polymerase must be $\sim 1 \times 10^{-6}$ or lower, as it is for other replicative DNA polymerases with proofreading (1, 3). We have made a number of simplified models of the RCA reaction. For example, consider a four-stage reaction in which 1,000 copies are made from the original input molecule. Three consecutive rounds that each gives 100-fold amplification, yielding a total amplification of 10^9 -fold, follow this initial stage. Assuming an error rate of 1×10^{-6} and a 5-kb circular DNA we get:

		<u>Total</u>	New	Propagated	<u>Total</u>	
<u>Step</u>	<u>Copies</u>	<u>bp</u>	<u>Errors</u>	Errors	<u>Errors</u>	fraction mutant
0	1	5x10 ³	0	0	0	0%
1	10 ³	5x10 ⁶	5	0	5	0.5%
2	10 ⁵	5x10 ⁸	500	500	1000	1%
3	10 ⁷	5x10 ¹⁰	5x10 ⁴	1x10 ⁵	1.5x10⁵	1.5%
4	10 ⁹	5x10 ¹²	5x10 ⁶	1.5×10^{7}	$2x10^{7}$	2%

By this type of reasoning, we predict that the majority of the molecules resulting from 10^{9} -fold amplification by the $\phi 29$ RCA reaction will be identical to the starting molecule even if the error rate is as high as 10^{-5} and the amplification in secondary rounds is as low as 10-fold.

Esteban, J. A., Salas, M. & Blanco, L. (1993) *J. Biol. Chem.* 268, 2719–2726.
Nelson, J. R., Cai, Y. C., Giesler, T. L., Farchaus, J. W., Sundaram, S. T., Ortiz-Rivera, M., Hosta, L. P., Hewitt, P. L., Mamone, J. A., Palaniappan, C. & Fuller, C. W. (2002) *BioTechniques* 32, Suppl., 44–47.
Kunkel, T. A. (2004) *J. Biol. Chem.* 279, 16895–16898.