




Supplemental Figure S1. (A) Mapping the minimal binding domain of Pak1 for p41-Arc using a series of GST fusion proteins expressing different Pak1 domains. GST-Pak1 fusion proteins were incubated with *in vitro* translated p41-Arc, and binding was analyzed by GST pull-down assay. Pak1 kinase domain did not interact with p41-Arc, while N-terminal 1-132 amino acid interacted strongly with p41-Arc. Further analysis of this region suggested the presence of a p41-Arc binding region in the N-terminal 1-75 amino acids. However, the observed low-affinity of binding of N-terminal amino acids 1-75 fragment suggest that the CRIB domain may indirectly contribute to the noticed high-affinity interaction of p41-Arc binding with the N terminal amino acids 1-132 region. (B) To identify the minimal region of p41-Arc required for its interaction with Pak1, we also serially deleted the WD repeats of p41-Arc. GST-p41-Arc fusion proteins were incubated with *in vitro* translated Pak1, and binding was analyzed by GST pull-down assay. Results suggested that amino acids 283-372 of p41-Arc, which contain the seventh WD domain, constitute the minimal binding region for binding to Pak1.

Supplementary Figure S2. Pak1 regulation of p41-Arc interaction with Arp2/3 complex in vivo. (A) MCF-7 cells were transfected with T7-tagged p41-Arc and either myc-tagged wild-type Pak1 or Pak1 T423E (DA-Pak1, then serum starved prior to treatment with 10% fetal calf serum for 30 min and processing for immunofluorescence (green, anti-T7; red, anti-myc; blue, DNA) and confocal microscopy. Diffuse and specific co localization of transfected proteins were counted and graphed as a percentage of total cells counted (n=250 for each Pak1 construct and treatment condition). Data are means +/- S.D. of 3 experiments. (B) Representative examples of diffused and colocalization of p41-Arc and Pak1 are shown. To explore the functional significance of Pak1 and p41-Arc interactions, we examined the effects of myc-tagged wild-type Pak1, a catalytically active Pak1 T423E mutant (DA-Pak1) (Vadlamudi et al., 2002), on the localization of T7-tagged p41-Arc at the cell membrane and/or in intracellular nucleation spots. Stimulation of wild type Pak1 expressing cells with serum increased the colocalization of Pak1 with P41-Arc. Similarly expression of kinase-active Pak1 (T423E) increased the percentage of cells with p41-Arc and Pak1 colocalization under serum starved conditions compared to wild type expressing serum starved cells. These results suggest that signals, which induce actin reorganization/polymerization signals, induce colocalization of p41-Arc and Pak1 and activation of Pak1 may have a role in its colocalization with p41-Arc.

Supplementary Figure S3. Localization of Pak1 binding and phosphorylation sites in the Arp 2/3 complex. **A**. Crystal structure of the Arp 2/3 complex (PDB 1K8K) with the p41 subunit outlined. **B**. View of the beta-propeller-like structure of p41-Arc, with the high affinity Pak1 binding region outlined and the Thr21 phosphorylation site is indicated. Figures were created using SWISS Prot PDB Viewer Software.

Supplemental Figure S4. MCF7 breast cancer cells were transiently transfected with T7-tagged p41-Arc, then 24 hours later transfected with Pak1-specific siRNA (Qiagen) as previously described (Wang et al., EMBO J., 21, 5437-5447, 2002 and Barnes et al., NSB, 10, 662-628, 2003). Cells were grown in serum-free media for forty-eight hours then treated with epidermal growth factor for 30 minutes. Pak1-specific siRNA severely attenuated endogenous Pak1 protein expression (green) and reduced transfected p41-Arc (red) colocalization with phalloidin-stained F-actin (blue).