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ABSTRACT We describe a new electrophysiological technique called nonequilibrium response spectroscopy, which in-
volves application of rapidly fluctuating (as high as 14 kHz) large-amplitude voltage clamp waveforms to ion channels. As a
consequence of the irreversible (in the sense of Carnot) exchange of energy between the fluctuating field and the channel
protein, the gating response is exquisitely sensitive to features of the kinetics that are difficult or impossible to adequately
resolve by means of traditional stepped potential protocols. Here we focus on the application of dichotomous (telegraph)
noise voltage fluctuations, a broadband Markovian colored noise that fluctuates between two values. Because Markov kinetic
models of channel gating can be embedded within higher-dimensional Markov models that take into account the effects of
the voltage fluctuations, many features of the response of the channels can be calculated algebraically. This makes
dichotomous noise and its generalizations uniquely suitable for model selection and kinetic analysis. Although we describe
its application to macroscopic ionic current measurements, the nonequilibrium response method can also be applied to
gating and single channel current recording techniques. We show how data from the human cardiac isoform (hH1a) of the Na1

channel expressed in mammalian cells can be acquired and analyzed, and how these data reveal hidden aspects of the
molecular kinetics that are not revealed by conventional methods.

INTRODUCTION

The voltage clamp technique, in which the voltage across a
cell membrane is controlled by a feedback circuit that
balances (and therefore measures) the net current, has been
the best biophysical tool for the study of ion channels for
almost half a century. Since its initial development (Mar-
mont, 1949; Cole, 1949; Hodgkin et al., 1949, 1952), a basic
set of voltage clamp protocols and the ideas behind them
have dominated electrophysiological studies of the proper-
ties of ion channels. These protocols are based on potential
stepping, the situation in which the voltage is stepped from
a holding potential to a test potential and the current tran-
sient recorded. Information about the electrophysiological
properties of the channel is then obtained from an analysis
of these relaxation transients. Although there are many
variations of the stepped potential technique, some involv-
ing multiple steps, nearly all involve changing the voltage a
small number of times only. The idea is so pervasive that it
can be difficult to do anything dramatically different with
some of the common commercial software packages and
programs that are the basic data gathering tools of most
electrophysiologists.

Stepped voltages are useful because one usually needs to
separate the capacitive currents that result from the charging
of the membrane from the ionic or gating currents one

would like to study. When the voltage is changed only at
discrete points in time, the capacitive transients of the
membrane are localized in time and can be subtracted from
the currents of interest by standard techniques (e.g., see
Armstrong and Bezanilla, 1977). Another advantage is that
when the voltage is held constant, the kinetic equations that
describe the behavior of the most commonly used types of
models take simple, linear homogeneous forms (Colquhoun
and Hawkes, 1995).

While they are the basis for much of electrophysiology,
stepped potentials also set some fundamental limitations on
the powerful experimental techniques developed in the last
40 years. These limitations are best discussed within the
framework of the principal goals of present day electrophys-
iology. One of the main tools for studying the electrophys-
iological properties of ion channels is the construction of
Markov models (Colquhoun and Hawkes, 1981; DeFelice,
1981) such as the one pictured in Fig. 1, which is equivalent
to the original Hodgkin-Huxley model for the Na1 current
(Hodgkin and Huxley, 1952) in which the states in the
reaction scheme represent kinetically distinct conformations
of the channel protein. As in the Hodgkin-Huxley model,
the states of kinetic models are often classified into closed
(C), open (O), and inactivated (I) conformations, where the
transition ratesai(V) and bi(V) between these states are
voltage-dependent.

Ultimately, if models such as the one shown in Fig. 1 are
good ones, the states and transition rates give information
about the gross molecular conformations and electrical
properties of the ion channel protein. Long practical expe-
rience, however, has led to a certain amount of justified
skepticism as to the complete viability of this goal since it
is generally recognized that very different kinetic models
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can lead to very similar current transients when the voltage
is held constant (e.g., Armstrong, 1981; Hille, 1992, pp.
489–90). As a result, kinetic models have historically
played a role in electrophysiology that fundamentally dif-
fers from the role they play in the study of the chemical
kinetics of simpler systems, and kinetic models have fre-
quently served more as a shorthand for summarizing and
integrating experimental results than as statements about
specific conformational motions of the ion channel protein.

The story of the last 40 years or so of electrophysiological
research has been of the development of progressively more
sophisticated ways of playing the same basic game, with a
focus on resolving the ambiguities that result from the
inability to directly or independently measure most of the
kinetic variables by measuringdifferentaspects of the chan-
nel gating. Single-channel recording is one such technique
(Sakmann and Neher, 1995; Wonderlin et al., 1990), but it
still cannot resolve very detailed information about closed
conformational states. The development of gating current
measurements (Armstrong and Bezanilla, 1973, 1974; Key-
nes and Rojas, 1974) allows for transitions between states to
be observed “directly,” but suffers from ambiguities related
to the mixing of signals from different transitions. Ambi-
guities such as these are the principal reasons for the con-
stant search for better (and even merely different) ways to
measure the kinetic properties of ion channels. Recent novel
experimental ideas include measurement of the voltage de-
pendent accessibility (Stu¨hmer et al., 1989; Yang and Horn,
1995; Yang et al., 1996, 1997; Starace and Bezanilla, 1997)
and fluorescence labeling (Mannuzzu et al., 1996; Cha and
Bezanilla, 1997) of selectively mutated residues of the S4
voltage sensor.

The limitations of the stepped potential technique are at
the root of at least some of these difficulties. It is suggested
here that the application of large-amplitude rapidly fluctu-
ating potentials in combination with the standard techniques
will be able to resolve some of these ambiguities, allowing
new kinetic information to be obtained from otherwise
standard electrophysiological techniques such as macro-
scopic ionic, gating, and single channel current recordings.
We call this methodnonequilibrium response spectroscopy.
While ordinary spectroscopy and nonequilibrium response
spectroscopy are rather different in practice, the motivations
behind them are analogous. The goal of ordinary spectros-
copy is to determine the properties (the frequencies of the

fundamental oscillations) of atoms and molecules by mea-
suring the linear response to an oscillating field. Likewise,
the goal of nonequilibrium response spectroscopy is to
determine the kinetic properties of ion channels by driving
them with large-amplitude, rapidly fluctuating fields, and
measuring the nonequilibrium response.

Strictly speaking, the transient response to a constant
voltage pulse is of course a nonequilibrium property. In this
case the response is a redistribution of the channel ensemble
as the ensemble relaxes toward new equilibrium. In con-
trast, an ensemble driven by a fluctuating potential is not
relaxing toward equilibrium, since in addition to energy
being dissipated into the environment, it is being continu-
ously pumped into the system by the fluctuating field. As a
consequence of the irreversible flow of energy through the
system, the free energy of the channel ensemble is not
minimized and can actually increase with time as the en-
semble is driven toward a nonequilibrium stationary distri-
bution. This is the notion of “nonequilibrium” we have in
mind here.

Some of these data have appeared in abstract form (Mil-
lonas and Hanck, 1997a).

MATERIALS AND METHODS

Experimental setup

The whole-cell ionic current measurements were fairly standard. In a
fluctuating voltage clamp experiment the primary novel consideration is to
increase the input bandwidth as much as possible. Noise is a secondary
concern since our analysis of the fluctuating voltage recordings involves
averaging over many traces.

Preparation

We studied the Na1 channel isoform from the human heart (hH1a, Hart-
mann et al., 1994; Sheets et al., 1996) expressed in a stable line of cultured
mammalian HEK293 cells. Cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) containing 10% fetal bovine serum, 200mg/ml
geneticin, and 1 ml/100 ml penicillin-streptomyocin at 37°C (5% CO2).
Cells were released from the dish with 2 ml trypsin1 EDTA, washed and
suspended in DMEM, and studied within 3 h (reagents from Gibco BRL,
Gaithersburg, MD).

Electrophysiology

We used thin-walled soft glass capillary pipettes (Drummond) pulled in a
Sutter 97 micropipette puller (Sutter Instrument Co., Navato, CA) to a
blunt taper and a large aperture (Fig. 2). Good seals could be obtained with
pipettes with resistances as low as 100 kV as measured with our standard
intracellular and extracellular solutions. Seal resistance of a set of five
cells, which met all of our criteria for voltage control, were in the range of
150–500 MV, which is equivalent to a “gigaohm” seal when the large
pipette bore circumference (10–203 larger than in the standard whole-cell
pipette) is taken into account. The pipette capacitance was not a primary
consideration here since the primary input bandwidth limiter is the series
resistance at the pipette/cell interface (typically 200–300 kV), and because
noise is not an issue since the analysis of most of the fluctuating protocols
involves averaging over as many as 500 realizations of the random voltage
fluctuations. The capacitance of the five cells in our sample varied between
23 and 72 pF.

FIGURE 1 Diagram of a kinetic scheme equivalent to the Hodgkin-
Huxley description (Hodgkin and Huxley, 1952) of the Na1 current in the
squid giant axon.
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Recordings of the ionic current from the expressed channels were made
using the whole-cell patch clamp technique. The data were acquired on a
Windows NT-based Gateway 200 MHz Pentium Pro computer using the
Pulsedata acquisition program (HEKA Electronik, Lambrecht, Germany)
and ITC-18 DA/AD board (Instrutech Corp., Great Neck, NJ).

In an attempt to maximize the intrinsic bandwidth of our electronics we
used a homemade headstage and amplifier originally designed for cardiac
Purkinje cell work that corners at a high frequency (.100 kHz) (Makielski
et al., 1987; Hanck and Sheets, 1992b). The input and output were digitized
at 200 kHz. The output of the current-to-voltage amplifier was filtered at
50 kHz through an 8-pole Bessel filter to avoid aliasing, and digitized data
were stored to disk at 16-bit precision. The temperature in the chamber was
controlled by a water cooling system (Fischer Scientific), and all experi-
ments were carried out at 9°C. Input RC time constants were typically in
the range 8–16ms corresponding to input corner frequencies in the 10–14
kHz range. Series resistance compensation was not used.

Solutions

To increase solution conductivity, extracellular and intracellular solutions
had 600 mM total ionic strength. Extracellular solutions contained (in
mM): 100 Na1, 304 MES2, 200 Cs1, 2 Ca21, 10 HEPES (pH 7.4).
Intracellular solutions contained 10 Na1, 294 Cs1, 284 F2, 20 Cl2, 10
HEPES (pH 7.4). Liquid junction offset potentials were typically,3 mV.
The voltage was corrected so that the offset was zero in the bath before
sealing the pipette to a cell.

Data acquisition and analysis

Fluctuating input protocols for the voltage clamp were generated numeri-
cally by programs written inMatlab (The Mathworks, Inc., Nautick, MA)
or C, and stored to disk as files of floating point numbers that could be read
by thePulseprogram. A typical nonequilibrium response protocol involved
a series of dichotomous voltage pulses all specified by the same four
parameters, two voltagesV6, a bandwidthv0, and a temporal asymmetry
parametere (see Analysis Methods). Single pulses (up to 16K samples at
200 kHz) often included both the data collection pulse and the capacity
correction pulse to lower the acquisition time as much as possible. Holding
potentials between each pulse were at2150 mV for 300–500 ms. A typical
protocol contained 500 pulses of different realizations of dichotomous
noise to acquire good statistics. Capacity and leak current were corrected
by a p/3 method using potentials no more positive than2130 mV, and we
did not use nonlinear leak correction. One full protocol of this type (16 Mb
of data) took;4 min to acquire.

Standard current-voltage data were obtained before and after each
protocol to track the shift in kinetics known to occur in this experimental
system (Hanck and Sheets, 1992a), and we only made use of data when the
shift during a single protocol was,2 mV. Typical rates of shift in our
preparation were 0.25–0.5 mV/min in the five cells of the sample. The
half-point voltage of a Boltzmann distribution fit to the steady-state inac-
tivation was used as a yardstick to compute the potential shifts,Vs, relative
to the half-point potential upon first breaking into the cell (average295
mV). The shift for each protocol was then taken to be the average between
the half-points just before and just after the data were recorded.

Analysis methods

Choice of model

Because the principal purpose of this paper is to discuss the measurement
and use of nonequilibrium response data, and not to provide a comprehen-
sive interpretation of the new information thus obtained, we chose a model
from the literature and reoptimized the parameters of the model to fit our
data. The model (Vandenberg and Bezanilla, 1991b), which is illustrated in
Fig. 3, was originally proposed as a description of single-channel, whole-
cell ionic, and gating current measurements in the squid giant axon (Van-
denberg and Bezanilla, 1991a). As such it would at best be expected to
provide only an adequate description of another isoform of the Na1

channel. However, it admirably serves the main purpose here, which is to
summarize the kinetic information obtained from thesteppedpotential
series. The fit to the experimental data can be quantified, providing a
yardstick by which to measure the amount of new information obtained
(relative to the stepped series) from the measured nonequilibrium re-
sponses of the channels.

The rates shown in Fig. 3 were assumed to have exponential voltage
dependence

ai~V! 5 ai~0!exp~qieVdi/kT!, (1)

bi 5 bi~0!exp@2qi~1 2 di!eV/kT#,

whereai(0) andbi(0) are the activation rates at zero voltage,qi the gating
charge valences, 0, di , 1 dimensionless parameters representing frac-

FIGURE 2 Drawing shown approximately to scale of the tip of one of
our low-resistance (100–200 kV) pipettes sealed to a HEK293 cell;50 pF
in size. Pipettes were fabricated in three steps. The first step involved
pulling the capillaries in a programmable micropipette puller to have blunt
taper with an initial tip diameter of;50 mm. The end of the pipette was
then dipped in melted wax while being backfed air pressure to prevent wax
from being drawn into the pipette via capillary action. After allowing the
wax to harden for a few seconds the pipette tips were heat-polished
(Narashige Scientific Instruments, model 83, Tokyo, Japan) into the
rounded shape shown. This was done by the application of a few intense
bursts of heat applied very close to the tip until it flattened, and the opening
shrank to 4–9mm. The heat-polishing melted away all the wax from the
last 400mm of the tip that might otherwise interfere with obtaining a good
seal. We found that a soft glass with a low melting temperature yielded
optimally shaped pipettes. The angle of the pipette tip was nearly 180° at
the point of contact, effectively eliminating most of the contributions to the
resistance due to the pipette taper. The majority of the final resistance was
then determined by the thickness of the glass at the aperture opening (pore
length), and the opening diameter whose upper bound was more or less set
by the size cells one planned to use. The use of a harder glass, such as a
borosilicate glass, resulted in a tip with a less optimal taper, and the final
thickness of glass at the opening was also greater as a result of the longer
heat-polishing that was required. Useable pipettes made of this glass had
higher resistances (in the 400–600 KV range, as tested with our standard
solutions).

FIGURE 3 Nine-state kinetic scheme used to model the data. A similar
model was used by Vandenberg and Bezanilla (1991a,b) to model the Na1

channels of the squid giant axon.
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tional electrical distances,V the voltage in mV,e the fundamental electric
charge,k Boltzmann’s constant, andT the absolute temperature (here
kT/e 5 24.4 mV). The dimensionless parameteru is a “multimeric”
asymmetry parameter that is close to but not necessarily equal to unity. The
parameters that describe the model are thenai(0), bi(0), qi, di, andu, where
b4 5 a4b5/a5 is a constraint imposed by the principle of microscopic
reversibility. These parameters determine the transition matrixW̃ for the
Markov process that describes this nine-state channel model, where the
evolution of the probability distribution vectorP¢ (t) is given by the kinetic
(or master) equation (Van Kampen, 1981)

dP¢ ~t!/dt 5 W̃P¢ , (2)

which has the formal solution

dP¢ ~t!/dt 5 exp~W̃t!P¢ ~0!, (3)

whereP¢ (0) is the initial probability distribution. In this paper we will used
arrows to denote vector quantities and tildes to denote matricies.

Model optimization

The parameters of the model were selected using asimulated annealing
algorithm of our own development (MM). Simulated annealing algorithms
that make a random search of parameter space with an ever-decreasing
search radius can be efficient optimization routines when many suboptimal
locally stable error minima are likely to exist (Kirkpatrick et al., 1983).
Parameters are initially chosen at random, or according to some prelimi-
nary information. Then a number of random variations or “offspring” are
generated from this initial set. At the end of each generation the model with
the smallest total chi-squared error (xs) (Colquhoun and Sigworth, 1995) is
chosen to act as the new seed for the next generation. Thus there is a
survival of the “fittest,” hence the namegenetic algorithm (Goldberg,
1989).

The new parameterspi(k 1 1) at generationk 1 1 are “bred” from the
old parameterspi(k) at generationk via the following stochastic rule:

pi~k 1 1! 5 pi~k!@1 1 sikexp~2rak!#, (4)

wheresik are uniform random variables on the intervalsik [ [2D, D],
where 0, D , 1, andra is the annealing rate which sets the convergence
rate of the algorithm. New values for the random variables are chosen for
each parameter indexed byi, and for each new generation indexed byk.
The parameters converge in finite time to nearly fixed values, and the
program is terminated after a fixed number of generations. The final search
distancesDexp(2raNa) (whereNa is the total number of annealing gener-
ations) gives an idea of the final “uncertainty” in the parameters. Runs were
usually performed forN 5 2000 generations at an annealing rate ofra 5
0.0025 and an initial search parameter ofD 5 0.05. In this case the final
variation of the parameters (identified as the convergence error) was
0.037% of the parameter values. A typical run took;12 h to complete on
a PC running a 200 MHz Pentium Pro processor, but parameters usually
converged to within a few percent of their final values in;30 min.

Calculation of the ionic currents in response to
voltage steps

Ionic currents of the model in response to a step in voltage are given by

I~t! 5 g0g~V!~V 2 Vr!e¢6 z $exp~W̃~V 1 Vs!t!P¢ ~0!% (5)

whereP¢ (0) is the initial distribution vector of the channel at the beginning
of the step,t is the time from the beginning of the step,V is the voltage of
the step,Vs is the voltage shift in kinetics (determined experimentally at the
time the data were recorded) from the baseline value,Vr is the reversal
potential, ande¢6 is the “projection” vector (used to extract the probability
of the open state from the state vector) with componentsdi,6 for the model

shown in Fig. 3, wheredij is the Kroneker delta function, andz represents
the operation of taking the scalar product (thei 5 6 state is the open state
in this model). The dimensionless functiong(V) is a scaling function,
which takes into account all nonlinearities in the instantaneous conduc-
tance including GHK rectification and block by divalents at hyperpolarized
potentials, andg0 is a constant that depends on the number of channels in
the cell. The reversal potential andg(V) can be measured experimentally
and used to account for that part of the voltage dependence that is not
accounted for in the model by gating. The exponential of the matrix was
calculated using matrix subroutines fromMatlab andMathematica.

Dichotomous noise

The homogeneity with respect to time that makes the temporal evolution of
the probability distribution simple when the voltage is held constant is
generally broken when the voltage is allowed to fluctuate. However, this
property can be preserved at the expense of allowing the voltage itself to
fluctuate in a random but Markovian way. The simplest example of this
type of random voltage noise is know asdichotomous noise(Horsthemke
and Lefever, 1984).

Dichotomous noise is a stochastic processVt with two states,Vt [ { V1,
V2}. The state of the noise is itself described by the kinetic diagram shown
in Fig. 4 A, where the ratesr6 are the transition rates into theV6 voltage
levels. Dichotomous noise is characterized by the kinetic equation

dP¢ ~t!

dt
5 R̃p~t!, R̃ 5 S2r2

r2

r1

2r1
D, p¢ 5 Sp1

p2
D, (6)

wherep¢ 5 (p1, p2) wherep6 are the probabilities of theV6 states. The
evolution of the probability distribution over the two states is given
formally by

p¢~t! 5 exp~R̃t!p¢~0!. (7)

FIGURE 4 Examples of kinetics schemes. (A) State diagram for dichot-
omous noise. In our caser6 5 v0(1 6 e)/2, wheree is called the temporal
asymmetry, andv0 the fluctuation bandwidth. (B) Typical kinetic diagram
for a channel. (C) Extended kinetic diagram for channel [shown in (B)]
driven by dichotomous voltage fluctuations from the scheme shown in (A).
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Here we parameterize the transition rates by thev0 and e, wherer6 5
v0(1 6 e)/2 and 0# e , 1. Some examples of dichotomous noise are
shown in Fig. 5. This dichotomous noise has the correlation function

C~t! 5 ^V~t!V~0!& 2 ^V~t!&2

5
1 2 e2

4
~V1 2 V2!2exp~2v0utu!. (8)

Dichotomous noise is known as colored noise because it has a nonwhite
spectral density

S~v! 5 E
2`

`

dt C~t!exp~ivt! 5
~1 2 e2!~V1 2 V2!2

4pv0@1 1 ~v/v0!
2#

.

(9)

The parameterv0 is known as the bandwidth because it sets the cutoff
frequency for the spectral density of the noise. When the bandwidth of the
voltage fluctuations is on the order of the kinetic rates of the channel, the
dynamical response of the channel can become quite complex, and this is
the effect that we are interested in. The parametere, known as the temporal
asymmetry (Millonas and Chialvo, 1995), controls the relative amount of
time spent in each voltage state. Whene . 0 the voltage spends more time
on average in theV1 state (e.g., Fig. 5C), and whene , 0 it spends more
time in theV2 state (e.g., Fig. 5D). A detailed discussion of the mathe-
matics of dichotomous noise as well as its application to the Hodgkin-
Huxley model can be found in Horsthemke and Lefever (1984, Chap. 9).
Discussions of the effect of the bandwidthv0 and temporal asymmetrye in
some simple model systems have been published previously (Millonas and
Chialvo, 1995, 1996b; Dykman et al., 1997).

Calculation of mean ionic currents in response-
dichotomous voltage fluctuations from the model

We have assumed an exponential dependence of the activation rates on
voltage and temperature in accordance with Eyring rate theory (Eyring,
1935) and Kramers’ microscopic activation theory (Kramers, 1940). We

are interested in the validity at high frequencies of the (adiabatic) assump-
tion that we can simply replace the rates in the Markov process with
time-dependent rates. We express the transition rates as time-dependent
exponentialsai(t) 5 ai(0)exp(qidieV(t)/kT) and bi(t) 5 bi(0)exp(qi(1 2
di)eV(t)/kT). In this case we can replace the homogeneous equationP¢ 5
W̃[V]P¢ by an inhomogenous equationP¢ 5 W̃[V(t)]P¢ . The fundamental
assumption that leads to the exponential form of the transition rates are that
the potential barriers are large relative tokT, and that the probability
distributions equilibrate within the potential wells on time scales that are
short in comparison to the mean activation times over the barriers (Kram-
ers, 1940). The determining time scales for the latter assumption are the
intraconformational relaxation times (the times it takes for the protein to
relax within the separate conformational states). If these times are much
shorter than the correlation time (1/v0) of the voltage fluctuations, the
system can always be considered adiabatically in quasi-thermal equilib-
rium at the potentialV(t) within the well of a given conformational state.

This “intra-well” relaxation time is clearly in most cases much shorter
than the shortest correlation time of voltage fluctuation reached in the
experiments described here (70–100ms). Recently, Stefani and Bezanilla
(1997) reported apparent intraconformational relaxation times on the order
of 2 ms in the earliest activation state of theShakerK1 channel. This does
not necessarily totally preclude the possibility that one or more slow
diffusion steps (steps modeled by a continuum of microconformational
states) may be needed to model the high frequency response, and the
methods discussed here may provide a more sensitive test of just this. Such
treatments are known as composite Markov models (Van Kampen, 1981).
Barring this eventuality, the discrete Markovianframeworkshould remain
valid for all the frequencies currently reachable with this technique. This is
not to say thatspecificMarkov models will remain valid at these frequen-
cies, and it is likely that specific models will have to be refined, even
within the transition state framework, in order to provide a full description
of the high frequency response behavior.

An n-state channel described by a kinetic scheme such as pictured in
Fig. 4 B (heren is 4) and driven by the dichotomous voltage fluctuations
is then described by a scheme such as pictured in Fig. 4C. The evolution
of the conditional probabilities can be described by the joint set of
equations

dṖi
1

dt
5 O

j51

n

Wij@V1#Pj
1 2 r2Pi

1 1 r1Pi
2 , (10)

dṖi
2

dt
5 O

j51

n

Wij@V2#Pj
2 1 r2Pi

1 2 r1Pi
2 , (11)

wherePi
6 is the conditional probability that the channel is in theith state

given thatthe voltage is in theV6 state. The first terms on the right-hand
side of each equation describe the kinetics of the channel at theV1 andV2

voltages respectively. The last two terms in each equation describe the
random transitions of the voltage state, and couple the equations together.

If we think of each state of the system—including both the channel (Fig.
4 B) and the voltage (Fig. 4A)—as the discrete states of an extended
Markov model (e.g., Fig. 4C), then we can write Eqs. 10 and 11 as a
homogeneous Markov model in 2n dimensions, (in Fig. 4, 2n 5 8) with
2n-dimensional conditional probability distribution vectorẀ . The evolution
of Ẁ is then described by the 2n-dimensional homogeneous kinetic
equation

dẀ

dt
5 0̃ Ẁ ,

0̃ 5 SW̃@V1# 2 r21
r21

r11
W̃@V2# 2 r11D, Ẁ 5 SP¢ 1,

P¢ 2D,
(12)

FIGURE 5 Examples of dichotomous noise with different temporal
asymmetries and bandwidths. (A) e 5 0 andv0 5 14 kHz, (B) e 5 0 and
v0 5 7 kHz, (C) e 5 1/2 andv0 5 14 kHz, and (D) e 5 21/2 andv0 5
14 kHz.
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where in formal terms we have taken the product space of the two systems
(for channel and voltage) and have formed a 2n-dimensional Markovian
description of their joint behavior. The formal solution for a single channel
driven by dichotomous noise is then

Ẁ ~t! 5 exp~0̃t! Ẁ ~0! , (13)

where Ẁ (0) is determined by the initial state of the channel and the initial
state of the voltage. In all the experiments done here the initial state of the
voltage was set to the depolarized valueV1, so Ẁ (0) 5 (P¢ (0), 0¢). In
principle this situation is not required, and one could start with a random
initial state of the voltage. In such a case the initial conditions is given by
Ẁ (0) 5 { p1(0)P¢ (0), [1 2 p1(0)]P¢ (0)}, wherep1(0) is the probability that
the initial state of the voltage isV1, and is controlled by the experimenter.

Equation 12 describes the behavior of single channels in response to
dichotomous voltage fluctuations. When we record from whole cells we
average over many channels, each of which experiences the same fluctu-
ation of the voltage. A simple way to use Eq. 13 to analyze whole-cell
recordings is to average over many different realizations of the voltage
fluctuations. This method provides a straightforward way of analyzing the
data and making comparisons with kinetic models since it requires the
same type of mathematical apparatus as used to describe the gating for
stepped potential protocols.

The average macroscopic ionic current is then given by a calculation
analogous to the computation for the ionic currents in response to voltage
steps. The whole-cell current (in the open state) during theV6 phases of the
voltage waveform isI6 5 g0g(V6)(V 2 V6)P6

6, whereP6
6 are the condi-

tional probabilities that the channel is openand the voltage is in theV6

state. In terms of the 2n dimensional conditional probability vector̀W (t) we
haveP6

6(t) 5 e¢6
6 z Ẁ (t), wheree¢6

1 5 (e¢6, 0¢) and e¢6
2 5 (0¢, e¢6). Thus the

average macroscopic ionic current in response to dichotomous voltage
fluctuations is given by

^I& 5 g0$g~V1!~V 2 V1!e¢6
1 1 g~V2!~V 2 V2!e¢6

2%

z ~exp~0̃t! Ẁ ~0!!.
(14)

RESULTS

Several common stepped protocols were used to establish
some of the basic properties of the channels we worked with
and to provide a yardstick for comparison of the result from
the nonequilibrium response protocols.

Instantaneous voltage dependence

Tail currents (see Fig. 8) were recorded for 10 ms by first
activating the channel for 1 ms pulse at130 mV, and then
changing to a range of potentials between2150 and 30 mV.
Data were capacity- and leak-corrected as described in
Methods. Typical resulting current transients near the time
of the voltage change are shown in Fig. 6A, inset. For cells
with good voltage control, current typically settled to its
new value in 30–50ms. The currents at 50ms are plotted as
a function of the voltage in Fig. 6A (instantaneous current-
voltage relationship, IIV). The magnitudes of the currents in
such open channel current-voltage relationships represent
the product of the number of channels in the cell, the
probability of being open immediately before the step (de-
gree of activation), and the single channel current. The
largest source of variation between experiments is of course
the number of channels in the cell. However, there are also

two well understood nonlinear features that affect current
magnitude: at hyperpolarized voltages there is a significant
block by divalent cations (here the extracellular Ca21 is 2
mM) and near and positive to reversal potential there is
GHK rectification of the Na (and Cs) conductance. In order
to “normalize” for these features, we calculated the instan-
taneous conductance [g(V)] as shown in Fig. 6B and in-
cluded a constant multiplying factor in the modeling (g0) as
one of the parameters to be optimized, although in principle
g0 could be experimentally determined by single channel
analysis. In the cell we used here we report here the major
source of variability arose from different numbers of chan-
nels in the cells, but this normalization procedure can allow
comparison of data obtained under differing experimental
conditions. Precedent for similar normalization is common
in the literature (e.g., Stimers et al., 1987).

Inactivation

To follow (and account for) the negative shift in kinetics
with time that is well known to occur (Hanck & Sheets,
1992a), we obtained steady-state inactivation data (SSI) at
several intervals during an experiment. Conditioning volt-
ages were presented for 1 s and then the membrane depo-
larized to230 mV for 10 ms. A recovery interval of 2 s at

FIGURE 6 Instantaneous current-voltage relationship described in the
text. (A, inset) Current transients for the first 100ms after a change in the
voltage. The currents settled to their new instantaneous values in,50 ms.
(A) Instantaneous current-voltage relation. (B) Instantaneous conductance.
The instantaneous conductance has been fit to a third-order polynomial in
V (V in mV) where g(V) 5 g0 1 g1V 1 g2V

2 1 g3V
3 with g0 5 0.0169,

g1 5 28.21 1024, g2 5 24.72 1026, andg3 5 1.49 1028. Values obtained
from the fit were used in the model to account for the instantaneous voltage
dependence of the channel conductance.
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2150 mV separated each conditioning step. Data were
capacity- and leak-corrected, and peak currents plotted as a
function of conditioning potentials. Data were fit with a
Boltzmann distribution

I

Imax
5 @1 1 exp~V 2 V1/2!/s#

21, (15)

whereV1/2 is the voltage at half maximum, ands is a slope
factor in mV. Based on data from more than 30 cells a best
estimate ofV1/2 upon first breaking into the cells is295
mV. This voltage was used as our reference point in deter-
mining the shifts.

Activation and tail current kinetics

Current-voltage relationships (activation) were recorded for
30 ms after steps to a range of potentials between2130 and
144 mV from a holding potential of2150 mV (Fig. 7A).
Fig. 7 B shows the corresponding peak current versus volt-
age relationship (IVP). Fig. 7C shows the conductance
transform of the peak current where Fig. 7D is the conduc-
tance proper, taking into account the measured instanta-
neous voltage dependence and shift. The tail current proto-
col is described in the Instantaneous voltage dependence
section. The activation and tail current transients (Fig. 8)
were the data we used to fit the model parameters. The
primary kinetic features observed here were consistent with
previously published data (Sheets et al., 1996).

Raw data and average responses

Raw data in the form of current responses to pulses of
fluctuating voltage together with “capacity templates” (lin-

ear capacitive current responses to an identically shaped
scaled waveform applied over a potential range no more
positive than2130 mV) were recorded as rapidly as pos-
sible while still ensuring that the channels achieved full
recovery between pulses. The capacity and linear leak cor-
rected fluctuating current traces were then the raw data,
which we further analyzed. Fig. 9A–H shows examples of
unfiltered raw data traces from a typical cell in our repre-
sentative set for varying bandwidths of the voltage fluctu-
ations. Fig. 9I–L show examples of capacity and leak
corrected data from the same protocols for an untransfected
HEK293 control cell. As expected, in the untransfected cell
there were no uncorrected contributions from the capacity
transients (typically on the order of more than 100 nA peak
current) or noticeable endogenous conductances. It should
be noted that a small endogenous current can be observed in

FIGURE 7 Activation data. (A) Activation current transients for pulse
from a holding potential of2130 mV to a range of potentials between
2130 to144 mV in 6-mV increments. (B) Peak current as a function of
voltage. Conductance as a function of voltage (C) before taking into
account the instantaneous current voltage relations, and (D) scaled to take
account of the voltage dependence of the conductance, and shifted to take
account of the potential shift, and normalized to the maximum value. The
line is a Boltzmann fit to the curve withV1/2 5 233.6, ands 5 9.4 mV.

FIGURE 8 Tail current traces taken after an initial activation pulse of the
voltage was changed to voltages from2150 to 30 mV in 6-mV increments.

FIGURE 9 Capacity and linear leak-corrected raw data traces for dichot-
omous noise voltage fluctuations (A–H) using hH1a, and (I–L) in an
untransfected HEK293 cell. The temporal asymmetrye 5 0 in each case,
and voltage fluctuation bandwidthsv0 (in kHz) are (A) 14, (B) 10, (C) 5,
(D) 3, (E) 2, (F) 1, (G) 0.7, and (H) 0.1, (I) 14, (J) 5, (K) 2, and (L) 0.7.
This cell had a capacitance of 47 pF and an input RC time of 16ms.
Nonlinear leak correction was not used here since the nonlinear leak (see
fluctuations inI–J) was very small relative to the whole-cell currents.
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some of these cells (Ukomadu et al., 1992). In;10% of the
untransfected cells we observed smallINa of ,150 pA.

When computing the average responses, the number of
pulses required to eliminate fluctuation in the average cur-
rent records depends upon the frequency of the voltage
noise. More pulses are required for lower frequencies since
the correlation time of the voltage fluctuations is longer. For
very high frequencies the approximate shape of the response
can be determined with only a few tens of pulses. However,
to produce similar averaging for all voltages and frequen-
cies we typically chose to average a large enough number
(200–500 pulses) to ensure an appropriately smoothed av-
eraged response for the lowest frequency in a particular
series. In this way the averaged responses can reasonably be
compared to each other across a frequency range.

Analysis

Fitting the stepped data with a kinetic model

At the voltages and on the time scales considered here the
important processes that determined the nonequilibrium re-
sponse are activation, deactivation, and inactivation. Con-
sequently, we used the activation and tail current traces
(Figs. 7A and 8) to estimate the parameters of our chosen
model.

The parameters were optimized via the method described
in Materials and Methods. The caption for Fig. 10 provides
a list of the final optimized parameters for the model. The
final fit of the model to the data set chosen is shown in Fig.
10,A andB. The errorxs 5 0.107 nA was reasonably small,
although not negligible.

Comparing model predictions to the observed
nonequilibrium response

Earlier we argued that no new information (relative to that
obtained from stepped potentials) can be obtained from
experiments in which the driving frequency is slow relative
to the kinetics of the channel, and only at higher frequencies
we would expect to obtain new kinetic information. The
results (Fig. 11,A–H) obtained by comparing the predic-
tions of the model optimized on stepped potential data
confirm this conclusion. At low frequencies (Fig. 11,F–H)
the model predictions agree very well with the observed
nonequilibrium responses. Thus, the model parameters de-
termined from stepped potential data are sufficient to de-
scribe the response at these low frequencies, and no new
information can be obtained from an analysis of these
responses. However, there is a clear mismatch between the
model and the data in both the short- and long-term behav-
ior for the highest frequencies (Fig. 11,A–C) indicating new
kinetic information about both the activation-deactivation
pathway and inactivation.

Of particular practical interest is frequency range (cross-
over frequency) where the mismatch begins to occur, be-
cause one would like to operate at or above this frequency

in order to learn something new. The model derived above
is helpful in evaluating this question. The shape of the
crossover region depends on the kinetics of the channel in
question. The mismatch of the model from the experimental
data occurs at frequencies of;1–2 kHz. Not coincidentally,
this is also the region of most rapid change in the peak
inward current of the average response, which nearly dou-
bles when the frequency is lowered from 3 kHz to 1 kHz.
Over much higher and lower frequencies the peak inward
currents change very little.

Fig. 10J provides a rough quantitative estimation of the
new information contained in the nonequilibrium response
by calculating the chi-squared error (xd) of the model pre-
dictions with the corresponding experimental data from the
nonequilibrium response. The error at each frequency is
normalized by the error of the model with respect to the data
from the stepped potential protocols. Thus, a normalized
errorxd(v0)/xs much greater than unity would indicate that
the error of the model with respect to the nonequilibrium
response data was significantly greater than the error with

FIGURE 10 (A) Activation data for pulses to (dark lines) (B) Deactiva-
tion (tail) current data (dark line) together with the predictions of the final
model (see Fig. 3). The error between the model and the data, as defined
in the text, isxs 5 0.107 nA. Rates take the formai 5 ai(0) exp(eqidiV/kT),
and bi 5 bi(0) exp(2eqi(1 2 di)V/kT). Optimal model parameters are
given in the following table, whereu 5 1.2:

i ai(0) (s21) bi(0) (s21) qi di

1 4779 10.3 2.83 0.053
2 5045 12.1 3.16 0.5
3 1684 2360 0.077 0.78
4 19.8 p p 0.12
5 800 59.8 0.16 0.33

*The rateb4(V) 5 a4b5/a5 was determined by the constraint of micro-
scopic reversibility. The total gating charge of the model is 11.8e.
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respect to the stepped potential data. This difference in the
error at least grossly quantifies or indicates the new infor-
mation contained in the nonequilibrium response. When
considered from this perspective the crossover is also near

1–2 kHz, and the normalized error is well above unity for
frequencies higher than this.

Although the nonequilibrium response transients bear a
resemblance to the responses to stepped potentials, they

FIGURE 11 Nonequilibrium response as a function of the voltage bandwidth. (A–H) Mean transient ionic currents in response to dichotomous noise
voltage fluctuations (dark lines), and the predictions of the model based on stepped potential data only (thin lines). The temporal asymmetrye 5 0 in each
case, where parameters are give in the following table:

v0 (kHz) V1 (mV) V1 (mV) Vs (mV)

A 14 230 2120 22.0
B 10 232 2122 23.0
C 5 234 2124 23.5
D 3 236 2126 23.9
E 2 238 2128 24.4
F 1 240 2130 24.7
G 0.7 242 2132 25.0
H 0.1 244 2134 25.3

Each trace is the average of 500 raw data traces. At high frequencies the model does not provide an adequate description of the response, indicating that
new aspects of the kinetics are being probed at high frequencies. (I) Mean current transients forv0 5 0.7, 1, 2, 3, 5, 10, and 14 kHz. Peak mean currents
decrease as the frequency is increased. Inset is a blowup of the transients that shows the pronounced decrease in the initial rise rate as the frequencyis
increased. (J) Comparison of the fit of the model to data from dichotomous voltage fluctuations with the fit of the model to stepped voltages as described
in the text. The dashed line shows the approximate line above which extra kinetic information is being obtained from the nonequilibrium response. (K)
Divergence of the data (dark lines) from the model predictions (thin lines) for the nonequilibrium response atv0 5 10 and 14 kHz.

218 Biophysical Journal Volume 74 January 1998



contain different information. As the bandwidth is varied,
different kinds of cooperative effects come into play which
are impossible to bring about in simple stepped potential
protocols. For example, the peak current of the nonequilib-
rium response reflects the interplay between the net opening
rates in theV1 state and the deactivation rates in theV2

state. For temporally symmetric noise (e 5 0) the voltage
spends the same time (on average) in theV6 states. Since
the deactivation rates during theV2 phase are faster than the
net activation rates in theV1 phase, the peak current de-
creases as the bandwidth is increased. The shape of the
decrease (crossover) thus gives very sensitive information
about the early activation kinetics (as well as other features),
particularly the relative rates of activation and deactivation
at the two voltages of the dichotomous noise. Further infor-
mation about the voltage dependence and relative rates is
obtained by varying the voltagesV6 and the statistics
(throughe) of the voltage fluctuations, as is illustrated in
Figs. 13 and 14.

Saturation of the response at high and low frequencies

There appears to be a saturation of the response that occurs
at ;6–10 kHz, as is best seen by superimposing the re-
sponse at 10 kHz and 14 kHz, as shown in Fig. 11K. The
existence of a high-frequency saturation can be understood
quite easily if the fluctuating voltageV(t) has a correlation
time that is much less that the shortest time constant of the
kinetics (in the voltage range considered). In that case we
can replace the inhomogenous kinetic equation dP¢ (t)/dt 5
W̃[V(t)]P¢ with the equation

dP¢ ~t!

dt
5 ^W̃&P¢ , (16)

where^W̃& is the mean kinetic matrix

^W̃& 5 EdV r0~V!W̃@V#, (17)

and wherer0(V) is the stationary probability distribution of
the voltage fluctuations. Equation 16 has the formal solution

P¢ ~t! 5 exp~^W̃&t!P¢ ~0!. (18)

Thus, the response is independent of the initial state of the
noise and the frequency of the noise (as well as its other
statistical properties) in this limit, and only depends on the
probability density of the fluctuations.

Equation 16, in fact, holds true for any noise with a
correlation function that vanishes on a time scale that is
short compared with the shortest relaxation time of the
channel. This situation may prove to be of great use exper-
imentally if high enough frequencies can consistently be
reached. For instance, more complicated types of explora-
tion of the kinetics can be performed and analyzed by using
noise with a continuous spectrum of voltage states by de-
signing a high-frequency noise with a specified probability

distribution. For dichotomous noise we haver0
6 5 (1 6 e)/2

so that

^W̃& 5 1⁄2$W̃@V1# 1 W̃@V2# 1 e~W̃@V1# 2 W̃@V2#!%. (19)

Although the model appears to have a higher saturation
frequency than the channel, the high-frequency response
will rapidly approach this limit. Higher frequencies than this
will not tend to provide more information until frequencies
approach the frequency of intraconformation fluctuations.
As already mentioned, this is possibly as high as 80 kHz.

In the limit of extremely slow driving frequencies (small
v0) the response also has a simple formP¢ (t) 5
exp(W̃[V1])P¢ (0) for our initial conditions (most generally
P¢ (t) 5 r1 exp(W̃[V1])P¢ (0) 1 (1 2 r1) exp(W̃[V2])P¢ (0)).
This limit holds for short times because the voltage does not
change during the pulse fort ,, 1/v0.

A better model for the stepped voltage series

Because the Vandenberg and Bezanilla model (Fig. 3) does
not provide a perfect fit to the stepped voltage series, one
might wonder whether the high frequency deviations be-
tween the model predictions and the observed NRS re-
sponse might be somehow related to the underlying errors
of the model. Although the analysis of the relative errors of
the model predictions with respect to the data set was
incorporated to allay any reservation in this regard, we also
studied a modified version of the Vandenberg and Bezanilla
model with additional open and inactivated states, as shown
in Fig. 12A. This model provided a better fit to the data than
the original scheme (Fig. 12,A andB). On the other hand,
the high-frequency divergence of the model predictions
from the NRS transients is the same, that is, there is no
improvement at all in the fits of the model to the data in the
high-frequency regime as would be indicative of the reso-
lution of kinetic features, or the opening of new kinetic
pathways. If anything, the high-frequency fit is now worse.
This belies the possibility that the discrepancies are due to
errors in the model that could have been somehow discerned
by the stepped potential series.

Monte Carlo simulation of the finite bandwidth and
sampling effect

Although our peak current could be rather large (;8 nA),
the low resistance of our pipettes (200–300 kV) ensured
good voltage control. In general, however, there will always
arise a DC voltage drop across the access resistance, the size
of which is determined by the relative magnitudes of the
current and the series resistance. This is a source of error in
stepped protocols as well as the NRS series and, as such,
limits modeling efforts based on both types of data. It
should be noted that the series resistance errors in our
experimental systems are equivalent or less than other high-
quality recordings where although ionic current may be
smaller, but series resistance is usually larger.
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A more serious concern in applying this technique to
channels lies in the interaction of the finite input bandwidth
with the input cornering of the voltage waveform, as illus-
trated in Fig. 13A, where at the highest frequencies the
voltage may not completely settle before it changes. Such
voltage errors might accumulate and could adversely affect
the modeling. In addition, since there is a finite sampling
rate of 200 kHz, the noise will not be perfect dichotomous
noise because the voltage will only be allowed to change at
discrete times. Both of these could potentially lead to a
divergence between the model predictions and the experi-
mental measurements at high frequencies. Since we have
taken care to keep the bandwidth of the voltage fluctuations
within the range of the input bandwidth, it is reasonable to
expect that both must be relatively unimportant sources of
error for the data presented. However, the model provides a
useful way to test for such errors in a more general way.

Monte Carlo simulations of the model were performed
under conditions identical to experimental ones in order to
test for the effect of systematic sampling or input cornering
errors inherent in the method. The voltage waveforms were
generated by the same random subroutine that was used to
generate the protocol files, and they were digitized at the
experimental sampling rate of 200 kHz.

The cornering of the voltage waveform will have the
more profound effect on the response. However, we also
included the effects of the voltage drop across the resistance
of the pipette. Although this increased the difficulty of the
numerical simulations in the case where the potential drop
was modeled by a finite resistance, it allowed us to assess
the relative contributions of both the cornering and voltage
error due to the pipette bandlimiting bottleneck.

The cornered voltage wave formsVf(t) were computed
from the original input waveformsV(t) by integrating the
equation

V̇f~t! 5 2~Vf 2 I~t!rs 2 V~t!!/t, (20)

where t is the experimentally determined inputRC time,
andRs the series resistance of the pipette-to-cell connection.
This equation has to be integrated simultaneously with the
equations for the evolution of the current when the resis-
tance is nonzero.

Equation 20 can be expected to provide a fairly good
estimation of the cornering effect. However, an even more
accurate method, which might prove useful when the pre-
cise voltage needs to be determined, would be to integrate
the measured capacity currentsIc(t), where Vf(t) 5 C21

FIGURE 12 Response of the modified version of
the model. A modification of the model shown in Fig.
3, the one shown in (A), was also fit to the stepped
potential series. It provides an improvement (B, C)
over the fit of the original model (see Fig. 10,A and
B), particularly over the longer time scales. (D–K)
NRS transients for varying frequencies. While this
model fits the low-frequency NRS transients better, as
would be expected (D–F), the fit of the high-fre-
quency NRS transients is just as poor, and perhaps
even worse. Since the improvement of the fits to the
stepped potential series did not improve the high-
frequency response (I–K), we can confidently con-
clude that the discrepancies are due to new kinetics
information that could not be discerned from the
stepped potential series.
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*0
t dtIc(t), and whereC is the measured capacitance of the

cell. Equation 20 was integrated by means of the Euler
method with an integration step of 0.5ms (1/10 of the
sampling time). This was;303 smaller thatt. The re-
sponse of the channel to both the cornered and uncornered
voltage waveforms was then integrated at the sampling rate
(Dt 5 5 ms) by usingP¢ (t 1 Dt) 5 exp(W̃[V(t)]Dt)P¢ (t). We
averaged the response of 500 different realizations of di-
chotomous noise with the given properties. This corre-
sponded to the 500 experimental traces that were averaged
to produce each response in Fig. 13C.

Fig. 13B shows the model predictions, the Monte Carlo
simulations with and without the input cornering of the
voltage when the voltage error is neglected (R5 0), and the
experimental data for the highest frequency used (14 kHz),
and an inputRC time of 16ms, corresponding to the input
RC time of the cell from which the data in Fig. 11 were
taken. The model predictions and the simulations without
cornering agree, indicating that, in the limit of high-input
bandwidth the sampling error has no effect, as expected.
The simulation for the cornered voltage differed from the
model predictions by a small amount—the mean inward

current was slightly larger in the cornered case. We used a
value slightly above the input corner frequency ofv [
1/2pRC ; 10 kHz, so a small deviation is to be expected.
However, the error is quite small when compared with the
divergence of the response from the actual data, which are
experimentally substantial. Also, as expected, the error al-
most completely disappears when voltage bandwidth is
lower than the input bandwidth (Fig. 13D).

The response to the cornered voltage is greater than the
response to the uncornered voltage for the same reason that
the response increases as the bandwidth is decreased (Fig.
11, A–H). The peak responses depend on the interplay
between the rates of opening during the depolarized phase,
V1, and the rates of deactivation during the hyperpolarized
phase,V2. Because the voltage spends (on average) the
same amount of time in theV6 states for temporally sym-
metry fluctuations (e 5 0), and since the rates of deactiva-
tion are faster than the rates of activation, the increase in the
response when the voltage is cornered (or alternatively,
when the bandwidth of the fluctuation is decreased), is a
consequence of the increased amount of time the voltage
stays at a given voltage. This increase in the correlation time
makes the biggest difference for the average rate of opening,
since these transition rates are slower than the deactivation
rates. The precise details of the crossover of the peak
currents at high frequencies (Fig. 11,A–H) in fact gives
very sensitive information about the relative rates of open-
ing and deactivation of early events in the activation pathway.

The simulations shown in Fig. 13 took several hours on a
200 MHz PC to compute. This is the approximate length of
time it would take to compute (via Monte Carlo methods) a
single nonequilibrium response transient of such a model,
and this serves as a reminder of the importance of analytical
methods presented here. By making use of the mathematical
solution of the problem many such transients can be calcu-
lated in a few seconds, making optimization schemes such
as the one discussed in Materials and Methods possible.

Fig. 13D shows the simulated current of the model for a
resistance of 300 kV together with the theoretical predic-
tions and the experimental data. From this we see that the
deviations from the theoretical calculation are nearly the
same as in the case where there was only cornering. Our
general findings with regard to errors that arise as a result of
both cornering of the voltage and the series resistance errors
are as follows. 1) As long as the voltage drop across the
access resistance is sufficiently small to ensure good voltage
control the error is negligible. 2) The deviations in the
response to dichotomous noise voltage fluctuations of a
given bandwidth with respect to the theoretical predictions
is negligible so long as theRCcorner frequency of access is
greater than or equal to the noise bandwidth (in Fig. 11 the
RC corner frequency is;100 kHz). While these results
show that we can interpret the data from our NRS experi-
ments with confidence, they illustrate an important point
and one that must be taken into account to by those attempt-
ing to make use of these methods, that is, adequate high-
frequency voltage control is a very important prerequisite

FIGURE 13 Monte Carlo simulations of nonequilibrium response pro-
tocols. (A) Typical voltage waveforms before and after cornering, and (B)
the single trace current responses to these waveforms. The input RC time
is 16ms. (C) Plot showing mean response before (UC), after (C), cornering,
the model prediction (M), and the experimental data (D), forv0 5 14 kHz,
ande 5 0. Simulations are the average of 500 pulses. (D) whenv0 5 5 the
mean responses are almost identical, as expected. The same is true up to the
input corner frequency as was verified by simulation. (E) Same as in (C)
except RC indicates the simulation whereR 5 300kV. This simulation
shows the average of 160 pulses.
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for doing these types of experiments. Experimentalists
should not only keep this in mind as they apply such
techniques, but should constantly check to ensure voltage
control at the appropriate frequencies.

Effects of varying voltages

The results and discussion above lead to the conclusion that
new kinetic information is obtained only by driving the
channels at frequencies that are at or above the crossover
frequency. Furthermore, the response tends to saturate
above this point. The closer we get to the saturation point,
the more new information can be obtained. Our goal then
should be to drive the channel either to the saturation point
or the input cornering frequency when the saturation fre-
quency cannot be reached.

Thus, a logical series of nonequilibrium response proto-
cols is one in which all the protocols involve driving the
channels near the maximum frequency, while varying some
other parameters like the values of the two voltage levels.
Fig. 14, A–E shows an example of such a series, where
v0 5 10 kHz andV2 5 2120 mV throughout the series,
while V1 takes the values270, 245, 220, 5, and 30 mV.
The model predictions are also shown.

Effects of varying the temporal asymmetry e of the noise

Fig. 15, A–E shows the effect of varying the temporal
asymmetry parametere. As e is increased from negative
values to positive values, the peak mean inward current
increases. In each casev0 5 8 kHz,V1 5 230 mV, andV2

5 2120 mV, wheree took the values60.5,60.25, and 0.
The predictions of the model are shown with the data. Once
again in each case we are driving the channels at high
frequencies, and the model predictions show a mismatch
with the experimental data. The data in Fig. 15 are from a
different cell that the rest of the data in the paper. We scaled
g0 to take account of the differences in the number of
channels in the cell in such away that that the scaled model
predictions fit the stepped potential data from this cell.

DISCUSSION

We have shown that models that are sufficient to reproduce
the behavior of channels when constant potentials are ap-

FIGURE 14 Effect of varying the voltage. In each caseV2 5 2120 mV,
v0 5 10 kHz,e 5 0, andVs 5 25.5, where (A) V1 5 270 mV, (B) V1 5
245 mV, (C) V1 5 220 mV, (D) V1 5 5 mV, and (E) V1 5 30 mV.
Response transients show the average of 200 raw traces. Thin lines show
predictions of model based on stepped potential data. Data are from the
same cell as in Fig. 11.

FIGURE 15 Effect of varying the temporal asymmetry parameter. These
data are from a different cell from the rest of the data exhibited in the paper.
This cell has a capacitance of 45 pF, and an input RC time of 15ms. In each
caseV1 5 230 mV andV2 5 2120 mV, where parameters are shown in
the following table:

e Vs (mV)

A 20.5 7.9
B 20.25 9.5
C 0 11.0
D 0.25 12.1
E 0.5 12.7

Response transients show the average of 500 raw traces. Thin lines show
predictions of models based on stepped potential data.
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plied are not sufficient to reproduce the response when
rapidly fluctuating potentials are applied. This is true even
though the discrete Markovian framework is expected to
remain valid at the frequencies reachable in the laboratory.
We have argued that these discrepancies arise from the
ambiguity of kinetic experiments: there are potentially
many such models able to reproduce the data. While these
ambiguities fundamentally arise from an inability to mea-
sure the rate constants directly, or even to know how many
gross conformational states to model, they are also related to
the nature of stepped potential protocols. Below we discuss
in more detail how these ambiguities arise in stepped po-
tential experiments, be they macroscopic ionic, gating, or
single channel recordings, and why nonequilibrium re-
sponse methods can provide new, complementary kinetic
information even from well studied channels.

Comparison of stepped potential and
nonequilibrium response methods

An example of the sensitivity of gating current measure-
ments over conductance measurements was provided by
Armstrong (1981), which we reproduce here in a slightly
modified form. Consider the two models shown in Fig. 16
A. Scheme 3:2:1 is somewhat analogous to the Hodgkin-
Huxley model, while 1:2:3 represents an entirely different
scheme. For our purpose we assume that for both models
each transition involves the motion of a gating charge of 4e,
such that the voltage dependence of the rates is given by
a 5 a0 exp(2eV/kT) andb 5 b0 exp(22eV/kT), where we
seta0 5 3 andb0 5 0.1. As pointed out by Armstrong, Fig.
16 B shows that the conductance time courses of the two
models are almost identical, although the gating current
time courses for the two models (Fig. 16C) differ dramat-
ically. The sensitivity of gating current measurements arises
from the fact that gating current gives more direct informa-
tion about the kinetic transitions between the closed con-
formational states.

The two models can also be compared in a different way
by measuring the nonequilibrium response. Fig. 16D andE
show the mean conductance time courses in response to a
voltage that fluctuates randomly between240 mV and 0
mV, with different mean frequenciesv0. Fig. 16 F illus-
trates the conductance time course for steps to 0 mV and
240 mV, showing that the two models are nearly indistin-
guishable at these voltages. In Fig. 16D the voltage fluc-
tuates at a rate (10 kHz) which is high relative to the natural
kinetic rates of the channel. The mean conductance time
courses can be used to distinguish between the models at
this frequency. However, as shown in Fig. 16E, when the
frequency is low with respect to the kinetic rates of the
channels (0.1 kHz), the mean conductance time courses
converge.

The examples of Fig. 16 illustrate three important things
about driving channels with fluctuating voltages. First, as
already discussed, they must be driven at frequencies equiv-

alent to or higher than their natural kinetic rates to obtain
information about the channel that cannot be obtained from
stepped potential experiments. Second, the advantage of
fluctuating voltage clamp experiments over stepped voltage
clamp experiments is similar (compare Fig. 16,C andD) to
the advantage gating current measurements have over ionic
current measurements, and lastly, this difference cannot be
reduced (as in the case of Fig. 16C) to the blanket statement
that this advantage is a consequence of measuring the ki-
netics more directly, since Fig. 16B, D, andF measure the
same thing—the conductance time course.

The difference between the responses shown in Fig. 16,B
and D is the protocol. For this reason this method can be
expected to yield new kinetic information even from chan-
nels that have already been well studied using the standard
stepped potential techniques. Since it is a paradigm about
howexperiments can be done, and notwhatis measured, the
nonequilibrium response method seems very likely to be
useful across the spectrum of electrophysiological tech-
niques. The application of this technique to gating currents

FIGURE 16 Two different kinetic models of the activation pathway of
an ion channel. (A) Conductance time courses and (B) gating current time
courses comparing the 3:2:1 model (Fig. 1A) and the 1:2:3 model (Fig. 1
B), as pointed out by Armstrong (1981). Mean conductance time course in
response to temporally symmetric dichotomous voltage fluctuations be-
tween 0 and240 mV, for (A) v0 5 10 kHz, and (B) v0 5 0.1 kHz. (C)
Shows the conductance time course in response to constant steps to 0 mV
and240 mV.
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in our experimental setup is nearly as simple as changing
the solutions. Although it would involve using different
electronics and perhaps a more limited input bandwidth,
these techniques can also be applied to single channel
analysis. In fact, nonequilibrium response techniques are
likely to prove applicable to any observational paradigm
that involves application of electric fields.

Abstract analysis of limitations inherent in
kinetic experiments

Above we have demonstrated both experimentally and nu-
merically the ambiguities that arise from stepped potential
protocols, and how some of these ambiguities are resolved
by the nonequilibrium response method. In this section we
present a logical analysis of these ambiguities and their
resolution. A better abstract understanding of the limitations
inherent in stepped potential experiments, and why the
nonlinear response method overcomes some of these limi-
tations, can be obtained by analyzing the typical voltage
clamp experiment in formal terms (Millonas and Hanck,
1997b). We assume thatn gross conformational states are
required to adequately describe the kinetics. We wish to
determine the elementary rates of transition between these
states and their voltage dependencies, which by definition
requires ensemble measurements. The state of an ensemble
of channels is described by a probability distribution vector
P¢ over thesen states, that is, a point in then-dimensional
space, which we will call thekinetic manifoldof the channel
(the kinetic manifold itself hasn 2 1 dimensions because of
the normalization constraint(iPi 5 1). The kinetic manifold
is just the space of all possible conformational distributions
of the channel ensemble. Ideally we would like to be able to
measure the individual transition rates (a’s and b’s) be-
tween any two states independently. If this were possible
then there would be no problem in reconstructing the correct
kinetic model. Since this situation is impossible, we are
faced with the problem of resolving the kinetics of the
individual transitions from transients containing informa-
tion from all the transitions. The maximum amount of
information can be extracted from a particular type of
measurement (gating current, ionic current,single channel
current, etc.) by measuring the quantity on allpossible
ensemble statesP¢ (that is, over the whole kinetic manifold)
and the way the quantity changes at all voltages. If this were
possible then we could determine all the eigenvalues and
eigenvectors of the system for all voltages, and we could
completely reconstruct the correct kinetic model. This situ-
ation is also impossible since we cannot prepare an arbitrary
ensemble stateP¢ (0).

The easiest distributions to prepare lie on the one-dimen-
sionalequilibrium submanifold(parameterized by the hold-
ing potentialV) of equilibrium states,P¢eq(V). These states
are prepared by applying a holding potential for a time that
is long relative to the longest relaxation time of the channel,
and are calculated from kinetic models by solving

W̃[V]P¢eq(V) 5 0¢. In a stepped potential experiment we
prepare the channel in an initial stateP¢eq(V0) on the equi-
librium submanifold at the point parameterized byV0. At
t 5 0 the voltage is stepped toV1, and the system executes
a brief excursion away from the line of equilibrium states
before returning to this line at the new pointP¢eq(V1). While
this excursion is taking place the channel explores a one-
dimensional subset (trajectory) of points in then-dimen-
sional kinetic spaceP¢1(V0, V1, t) where P¢1(V0, V1, t) 5
exp(W̃[V1]t) P¢eq(V0). Since the points reached by stepped
potential experiments are parameterized by the three (or
fewer) parametersV0, V1, and t, the set of all possible
distributions reachable by stepped potential experiments has
three dimensions. This set is theone-step submanifold.
When n is much larger than 3, as is usually the case, the
one-step submanifold is a set of very large codimension
relative to the whole kinetic manifold. In other words,
one-step experiments hardly explore the kinetic state space
at all—the source of a great deal of ambiguity. By way of
analogy, a subset of codimension 1 would be a cross-
section. An example is a plane in a 3-dimensional space. A
subset of codimension 3 in the 3-dimension space is a point
in this space. Thus, a high codimension represents a very
negligible exploration of the total possible space—the situ-
ation we find in nearly every case where stepped potential
protocols are used. To make things worse the one-step
submanifold is “squeezed” onto the one-dimensional equi-
librium submanifold for times that are much longer than the
slowest relaxation time of the gating kinetics, so the excur-
sions are not only small, but brief.

Since one-step experiments leave us trapped within a
very incomplete subset of the whole kinetic manifold, the
information that can be obtained from them is correspond-
ingly incomplete. This is a very different source of limita-
tion from that inherent in ionic current measurements rela-
tive to gating current measurements. Ionic current
measurements are a kind of projection of a slice through the
one-step submanifold (we observe only the open state),
while gating currents are in a sense a projection of the whole
submanifold (we observe the rate of change ofP¢ (t)
weighted by the gating charges). While this projection can
be distorted (the charge is distributed very unevenly), it
contains more and different information from ionic current
measurements. On the other hand, the analysis in the pre-
vious paragraph holds for both ionic and gating currents. It
is an analysis of the underlying limitations of the protocols
themselves, not the way the information is embedded in the
measurements. While a great deal of work over the last half
century has gone into obtaining more information bymea-
suringnew quantities such as gating currents, or in extract-
ing new information from standard techniques in novel
ways, little work has been done that focuses on the limita-
tions of the stepped voltage protocols themselves.

Because the ambiguities arise from our limited ability to
explore all points in the kinetic phase space, we should
consider the problem of enlarging the region of kinetic
phase space that can be explored by driving the channels off
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the one-step submanifold. For instance, we could change the
voltage at two or more times. If the changes are rapid
enough the two-step manifold will have a dimensionality of
no more than 5 (parameterized byV0, V1, V2, t1, andt2), and
so on. The logical extension of this idea is then to change
the voltage rapidly, and at a large number of points in time.
This will allow us not only to jump off the one-step mani-
fold, but to increase exploration of the kinetic space to as
great a degree as is possible, and thus to acquire the max-
imum amount of potentially new information about the
kinetics. This is nonequilibrium response spectroscopy. It
was shown recently in a model of theShakerK1 channel
that given high enough frequencies virtually any ensemble
state can be prepared via this technique (Millonas and
Chialvo, 1996a). It is also possible to demonstrate that if
high enough frequencies can be reached, essentially all
kinetic information can be uniquely extracted from standard
experimental measurements by application of shaped volt-
age pulses (Millonas, unpublished). In practice what we can
actually do is considerably limited by the finite input band-
width of the experiment, but we will still be able to acquire
significant new information.

The Markovian schemes describing the
nonequilibrium response are not
microscopically reversible

Although models like Fig. 4C can be treated formally in
exactly the same way as models like Fig. 4B, there is one
important difference, which again reflects on the great sen-
sitivity of the nonequilibrium response method. When the
voltage is held constant, microscopic reversibility dictates
that the product of the transition rates in any direction
around a closed loop must be equal to the product of the
transition rates in the opposite direction around the same
loop (e.g., La¨uger et al., 1980). For instance, in Fig. 4B we
have the constraining equationa2a3b4 5 b2b3a4. When
there are loops in the kinetics diagram this ensures that the
system will evolve to a stationary distribution in which the
flow of probability vanishes—this is detailed balance. In the
case of models like Fig. 4C, this condition does not have to
be obeyed for loops that cross over the transition between
different voltage states (e.g., going between the upper and
lower levels in Fig. 4C) and as a consequence the flow of
probability will generally not vanish between any of the
states even when the distribution becomes stationary. This
lack of microscopic reversibility is a consequence of the
irreversible (in the sense of Carnot) exchange of energy
between the fluctuating field and the channel when passing
around a loop between voltage states.

A very simple example of this is provided in Fig. 17. Fig.
17 A shows a “loop” of states. The transition rates are
arranged in such a way that the ratio of the forward and
reverse reaction rates remains fixed as the parameterk is
varied. By varyingk we change the kinetic properties of the
model without changing the fluxes around the loop. When

g 5 1 microscopic reversibility is maintained, and the
stationary (in this case equilibrium) distribution is com-
pletely insensitive to the kinetic details. The transition rates
between the open and the closed states can be varied by
varyingk. Wheng 5 0.1 (starred probabilities) microscopic
reversibility is broken, and the stationary (nonequilibrium)
distribution depends in a complex way on the specific
kinetic details of the system, as illustrated by the change of
the starred curves ase is varied. The symmetry of micro-
scopic reversibility is very constraining. Consequently, the
breaking of this symmetry, made possible by the steady
flow of energy from the fluctuating field into the channel,
typically leads to novel nonequilibrium phenomena (Millo-
nas, 1996) that when analyzed can reveal new, previously
hidden information about the kinetics.

In some very simple but general arguments, Landauer
(1988 and references therein) has illustrated a similar point.
In terms that are relevant to the present problem this point
has the interpretation that the response of systems lacking
microscopic reversibility depends on the details of the ki-
netics that have little or no importance in determining the
behavior of systems that possess this symmetry. As far as
we know the method presented in this paper is the first time
this idea has been turned around and used as a tool for a
more sensitive measurement of the kinetics themselves.

A comparison of our method to the
Wiener method

The superficial resemblance of our method to what is
known as the Wiener method (Wiener, 1958) requires some

FIGURE 17 Difference in sensitivity between systems with and without
detailed balance in stationary state to specific kinetic details. (A) Model
three-state systems. (B) Stationary probabilities of the three states (C, O, I)
remain unchanged ask is varied when microscopic reversibility is main-
tained (g 5 1). When microscopic reversibility symmetry is broken (g 5
0.1) the probabilities (C*, O*, I*) depend on the kinetic parameterk.
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comment. The Wiener method involves application of white
noise to systems in order to determine a mathematical
description of its response to any waveform. In this sense
the Wiener method and our method can be said to be
similar, although we apply colored noise (see Eq. 9), not
white noise. A reasonable description of the effectiveness of
both techniques is as follows: A noise source of any kind
will eventually sample if not all, then an appreciable frac-
tion of the waveform possibilities. By sampling all possi-
bilities (as per the previous abstract discussion of a voltage
clamp experiment) we obtain all possible information about
the kinetics of the channel, where “all possible” now refers
to all possible distributions reachable via experimentally
applied waveforms, as opposed to the more abstract notion
of all conceivable distributions of the channel ensemble
(i.e., the whole kinetic manifold in our previous terminology).

Different noise sources will sample the possible wave-
form in different ways, and thus each will tend to emphasize
different aspects or time scales of the kinetics. White noise
has the advantage that all frequencies are equally repre-
sented. For example, the Wiener method has been compared
to model descriptions based on steps and sine waves for the
response of the retinal neural systems of the catfish (Mar-
marelis and Naka, 1974). The Wiener approach reproduced
the response better than the model that only reproduced
steps and sines, the waveforms it was designed to repro-
duce. This is analogous to the inability (Figs. 11 and 12) of
models based on stepped potential series data to reproduce
the high-frequency NRS response. In both cases the appli-
cation of noise succeeds in getting at more details of the
dynamics/kinetics.

The major difference in our methods is that while our
approach leads to a description in the form of a discrete
Markov model, the Wiener method produces a description
in the form of a Voltera functional integral,

y~t! 5 h0 1 E
0

`

h1~t!x~t 2 t!dt

1 E
0

`E
0

`

h2~t1, t2!x~t 2 t1!x~t 2 t2!dt1dt2

1 E
0

`E
0

`E
0

`

h3~t1, t2, t3!x~t 2 t1!

z x~t 2 t2!x~t 2 t3!dt1dt2dt3 1 · · · (21)

wherex(t) is the input of the systems,y(t) is the output, and
the sequence of functionshi(t1, . . . , ti) are the Wiener
kernels of the system that are determined experimentally by
application of white noise (Marmarelis and Naka, 1972,
1974).

This method has many disadvantages relative to our
approach. These disadvantages may explain why the
method is so seldom used. First, as mentioned above, a

Voltera functional series would not provide any insight into
the underlying kinetics. It is mostly valuable for studying
the way information in transferred through complex systems
where we are uninterested in specific mechanisms. It has
been suggested (Marmarelis and Naka, 1974) that when the
specific mechanisms are of primary interest (as is the case
here) there would be some advantage in describing the
systems with the Wiener method first, and then attempting
to model the response with a more realistic mechanisms that
tried to reproduce the response of the functional series. Our
approach is able to incorporate such advantages, but more
directly, in a single step.

Second, a very practical limitation of the Wiener method
is that the effort required to calculate the higher-order
Wiener kernals increases exponentially, and there are no
convergence criteria for the series. As a consequence, the
method has been typically employed only when an adequate
description can be obtained from the first two kernels, the
first term being the linear response term. Thus the practical
effectiveness of the Wiener method is constrained to the
regime of rapid convergence of the series, that is, reason-
ably close to the linear regime. Our method, in contrast, is
exact in the sense that there is an exact expression for the
average transient NRS response that is valid for all regimes.

Lastly, in terms of the goal of the present work, no
advantage can possibly be gained by replacing a description
that involves a finite number of terms by one that involves
whole functions, that is, effectively an infinite number of
parameters.

Applications of the nonequilibrium response
method to the study of ion channels

It would be feasible and possibly useful to apply other types
of voltage fluctuations since our capacity correction method
will work for an arbitrary voltage waveform. Fohlmeister
and Adelman (1985a,b, 1986, 1987) in a series of papers
considered the generation of higher harmonics in the gating
current response in Na1 channels to large amplitude sine
wave voltage waveforms: a situation which is very much in
the same spirit as our method. The reason we have focused
on dichotomous noise is that it is the simplest type of
high-frequency voltage fluctuation for which an algebraic
solution is easily obtainable. Algebraic solutions prove to be
very useful when one seeks to use the data to do model
optimization because they allow for a rapid search through
parameter space for better solutions. The search for other
types of mathematically tractable noise, as well as useful
ways to get information from experimental data with less
tractable (but perhaps more interesting) types of voltage
fluctuations, is an interesting question that is opened up at
this point. An immediate generalization can be made to
multistate (possibly a continuum of states) Markovian jump
processes (Kangaroo processes). These are processes where
the voltage changes randomly between an initial voltageV
to a new voltageV9 at the ratev(V9uV), were the transition
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rates factorizev(V9uV) 5 a(V9)b(V). Further simplifications
are possible whena(V9) is constant, the Kubo-Anderson
process (Kubo, 1954; Anderson, 1954) of which dichoto-
mous noise is just the simplest example (Van Kampen,
1981) with

w~V9uV!

5
v0

2
$d~V9 2 V1!d~V 2 V2! 1 d~V9 2 V2!d~V 2 V1!.%

(22)

Obviously, efforts in such directions should depend strongly
on whether they are likely to result in new information
about the channel of interest.

Another possibility is to analyze the fluctuational char-
acteristics of single-pulse whole-cell recordings such as
those shown in Fig. 9,A–H. There is clearly information
contained in the current fluctuations. Since the underlying
state space in this case is the continuous space of probability
densities, the mathematical apparatus required to describe
the evolution of the probability distributions of the current
fluctuations is that of partial differential equations. This is to
be contrasted with the ordinary differential equations re-
quired to solve the Markov process description of the av-
erage behavior.

A theoretical analysis of the stationary conductance fluc-
tuations of the activation pathway of the Hodgkin-Huxley
model in response to dichotomous noise voltage fluctua-
tions has been made by Horsthemke and Lefever (1980),
who pointed out that the nonequilibrium stationary fluctu-
ations might provide a sensitive tool for model selection and
analysis. However, the model considered by Horsthemke
and Lefever is one-dimensional and can be solved exactly in
the stationary limit. Since real channels are poorly described
by models with one degree of freedom, and the required
dimensionality is usually rather large, this method of anal-
ysis presents some serious mathematical difficulties that
prevent it from being used with ease to do model selection
and kinetic analysis. In addition, only stationary distribu-
tions of the conductance fluctuation were considered,
thereby ignoring a good deal of kinetic information. The
transient behavior of the current (or alternatively the con-
ductance) fluctuations is not something that can be easily
calculated analytically, even in a one-dimensional model.

Kinetic models of the type shown in Fig. 4C can also be
used to analyze the fluctuational properties of single-chan-
nel single-pulse recordings in response to voltage fluctua-
tions by straightforward generalizations of techniques used
to analyze single channel data (Horn and Korn, 1989;
Colquhoun and Sigworth, 1995, and references therein),
since we can treat the fluctuational properties of single
traces if we observe just one channel experiencing a random
voltage. The statistics of a single trace are then determined
by an extended Markovian model such as the one pictured
in Fig. 4 C.

Lastly, nonequilibrium response spectroscopy should not
be confused with linear response type studies (Takashima,
1978; Taylor and Bezanilla, 1979, 1983; Fernandez et al.,
1982), which also sometimes involve the application of
noise (of small amplitude), or with fluctuation analysis
(Katz and Miledi, 1970, 1972; Conti and Wanke, 1975;
DeFelice, 1981; Conti et al., 1984). The fluctuations of the
ionic or gating current in principle contain the same kinetic
information that is contained in the current transients from
stepped potentials. In the case where we are measuring the
steady-state linear response or the equilibrium current fluc-
tuations this is a straightforward consequence of the fluctu-
ation-dissipation theorem (Landau and Lifshitz, 1980). Both
linear response methods and fluctuation analysis involve
roughly the same limitations as the stepped potential
method, since the probabilities of observing the channel in
a given state remain the same. In contrast, the nonequilib-
rium response method drives the channel ensemble into new
regions of kinetic phase space.

The primary purpose of this paper is to make an argument
for the use of nonequilibrium response methods as a tool for
gaining a better understanding of voltage gated ion chan-
nels. We have, therefore, focused only on the most general
aspects of the nonequilibrium response methods: protocols,
analysis of the data, and mathematical methods of model-
ing. We wished to show in a concise way how these meth-
ods fit together into a coherent whole. In separate publica-
tions we will consider more detailed analysis of specific
channels and specific kinetic models, as well as applications
to gating and single-channel current recordings. These
methods are not intended to replace more traditional meth-
ods, but to complement them. In order to construct better
kinetic models they must concur with all the data. The
particular advantage of the nonequilibrium response is its
sensitivity to subtle details of the underlying kinetics not
picked up by standard techniques, and should provide a
greater constraint on the model building process. When the
nonequilibrium response is used with more sensitive tech-
niques like gating currents, and when combined with data
from stepped potential protocols with these more sensitive
techniques, we can expect to obtain a fuller understanding
of the kinetics of any channel than has been achieved to
date. The nonequilibrium response may also prove useful in
studying the gating kinetics of channels in which gating
current cannot be obtained, or for which the presence of
permeant ions has a direct effect on the kinetics.

Obviously, when studying any system as fundamentally
complex as a protein, we are likely to find a nearly endless
array of new details the closer we look. One of the addi-
tional advantages in looking at the high-frequency response
is that it allows us to explore in more detail the validity of
the modeling approach itself. As we have shown, even a
model as complicated as the one shown in Fig. 3 is not able
to qualitatively reproduce the channel’s behavior. As we are
forced to add more and more states to a model to fit the data,
at some point we may want to ask the question “at what
point is another type of description more useful and mean-
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ingful”? In order to answer this question we will have to
perform more sensitive types of experiments such as the
ones introduced here.
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