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ABSTRACT Direct fitting of sedimentation velocity data with numerical solutions of the Lamm equations has been exploited
to obtain sedimentation coefficients for single solutes under conditions where solvent and solution plateaus are either not
available or are transient. The calculated evolution was initialized with the first experimental scan and nonlinear regression
was employed to obtain best-fit values for the sedimentation and diffusion coefficients. General properties of the Lamm
equations as data analysis tools were examined. This method was applied to study a set of small peptides containing
amphipathic heptad repeats with the general structure Ac-YS-(AKEAAKE)nGAR-NH2, n 5 2, 3, or 4. Sedimentation velocity
analysis indicated single sedimenting species with sedimentation coefficients (s20,w values) of 0.37, 0.45, and 0.52 S,
respectively, in good agreement with sedimentation coefficients predicted by hydrodynamic theory. The described approach
can be applied to synthetic boundary and conventional loading experiments, and can be extended to analyze sedimentation
data for both large and small macromolecules in order to define shape, heterogeneity, and state of association.

INTRODUCTION

The rate of migration of macromolecules in a centrifugal
field is determined by a number of factors including the
shape, density, and molar mass of the sedimenting species.
Sedimentation velocity measurements therefore permit ex-
amination of the gross conformation of proteins and pep-
tides and some of the changes which may be induced under
different solution conditions. Interpretation of sedimenta-
tion coefficients in terms of model structures has been
limited historically to rather simple shapes such as spheres,
ellipsoids, and cylindrical rods where a simple relationship
exists to describe the dependence of sedimentation velocity
on the frictional coefficients that measure the resistance to
movement. The ability to predict sedimentation coefficients
for multisphere assemblies (Bloomfield et al., 1967; Kirk-
wood, 1949, 1954) has led recently to the development of
new approaches to the interpretation of sedimentation ve-
locity behavior where known three-dimensional protein
structures are treated as equivalent bead models (Byron,
1997). This approach has been used to successfully predict
the hydrodynamic parameters for several multisubunit pro-
teins and has the potential to model the sedimentation
velocity behavior of a range of different macromolecules
including small peptides.

Recently, increasing attention has been paid to the devel-
opment of sedimentation methods for the analysis of small
proteins and peptides (Behlke and Ristau, 1997; Philo,
1997). This has been stimulated in part by the discovery of

a number of important small regulatory and immunologi-
cally active proteins (Philo, 1997), and the increased avail-
ability of isolated protein domains and synthetic peptides as
models for protein folding. Application of sedimentation
analysis techniques to the study of small peptides is rela-
tively straightforward in the case of sedimentation equilib-
rium experiments where the high rates of diffusion ensure
rapid attainment of equilibrium. Sedimentation velocity
analysis for small peptides is more difficult. Current anal-
ysis techniques are based on approximate analytical solu-
tions of the Lamm equation (Holladay, 1979; Behlke and
Ristau, 1997; Philo, 1997; Stafford, 1992) describing move-
ment of a sedimentation boundary under conditions where
accumulation of material at the bottom of the cell is small or
negligible. However, for small peptides, the sedimentation
rates are so small that clearly resolved and sedimenting
boundaries are not observed. Even using synthetic boundary
cells, the rate of boundary diffusion is sufficiently rapid that
solvent and solution plateaus defining the boundary are
quickly lost, and the influence of the finite length of the
solution column becomes dominant.

In the present study we have overcome this limitation of
traditional sedimentation velocity analyses and exploited
the increased computing power now available even on PCs
to utilize numerical integration of the Lamm equation for
data analysis. There are a number of advantages. First, the
influence of the meniscus and bottom on the sedimentation
profiles can be accurately taken into account. Second, due to
the generality of this approach, no assumptions about the
initial distribution of the solute at the start of centrifugation
are used. Instead, any experimentally measured distribution
can serve as an initial condition for calculation of its evo-
lution in the centrifugal field. Third, the approach taken is,
in principle, extendible to the analysis of heterogeneous and
interacting solutes at finite reaction rates, where analytical
solutions of the Lamm equation are not available.
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We use these techniques to analyze the sedimentation
behavior of several peptides, including a family of synthetic
peptides containing heptad repeat sequences (Mulhearn et
al., 1995) and interpret the data in terms of predicted sedi-
mentation parameters calculated for model structures.

MATERIALS AND METHODS

Experimental

Peptide synthesis and purification

Peptide C, (ApoC-II19–39 Ac-KESL SSYWESAKTAAQDLYEK-NH2;
Mr 5 2475) corresponding to an amino acid sequence from mature human
apolipoprotein C-II (Jackson et al., 1977), was synthesized using standard
procedures for solid-phase peptide synthesis on a Rink resin, using an
Applied Biosystems model 431A peptide synthesizer. Crude peptide C was
purified on a Brownlee 103 250 mm semi-preparative Aquapore RP-18
reversed phase column. A linear gradient of 0.5% min21 from 20% to 40%
acetonitrile containing 0.1% TFA at 4 ml/min was used to elute the peptide.
Desired fractions were detected by MALDI-TOF mass spectrometry,
pooled, and lyophilized three times from pure water. Three peptides
Ac-YS(AKEAAKE)nGAR-NH2; n 5 2, 3, or 4 (referred to in the following
as H2, H3, and H4, respectively) were kindly provided by Dr. R. Anders
(Walter and Eliza Hall Institute of Medical Research, Melbourne). These
peptides were synthesized by solid-phase peptide synthesis using proce-
dures similar to those described previously (Mulhearn et al., 1995). Peptide
purity was assessed by HPLC on a Brownlee 2.63 220 mm analytical
RP-18 HPLC column and by MALDI-TOF mass spectrometry.

Circular dichroism spectroscopy

Circular dichroism (CD) spectra were recorded at 20°C on an AVIV 62DS
spectrometer, using a 1 mmpathlength quartz cuvette. The instrument was
routinely calibrated with an aqueous solution ofd-10-camphorsulfuric acid.
Ellipticities are reported as mean residue ellipticity (MRE) in deg cm2

dmol21. The a-helicity of peptide H3 in 30% (v/v) 2,2,2-trifluoroethanol
(TFE; obtained from Sigma, St. Louis, MO) was calculated using the mean
residue ellipticity at 222 nm. The maximum ellipticity at 222 nm for
peptide H3 when in the fullya-helical form was calculated to be 35,596
deg cm2 dmol21 using the peptide length-dependent equation described by
Chen et al. (1974).

Sedimentation velocity

Sedimentation velocity experiments were conducted using a Beckman
XL-A analytical ultracentrifuge equipped with absorption optics, using an
An60-Ti rotor with cells containing quartz windows and either conven-
tional or synthetic boundary double-sector charcoal-filled epon center-
pieces. The peptides were redissolved in 0.1 M phosphate buffer, pH 7.4,
to a final concentration of 0.5 mg/ml. Synthetic boundary cells were loaded
with 150 ml solute with the reference sector filled with 400ml buffer.
Samples were initially centrifuged at 3000 rpm to allow determination of
the appropriate wavelength for data acquisition. Samples were then cen-
trifuged at 40,000 rpm and scans were taken across the length of the
solution column at predetermined intervals. Absorbance data were obtained
at the wavelengths indicated and at radial increments of 0.003 cm, each
data point being an average of three measurements. Data were acquired at
intervals over a period of 24 h, by which time the system had attained
equilibrium. Equilibrium distributions were acquired at 0.001 cm radial
increments, each data point being the average of five measurements.
Equilibrium distributions were fitted for the molar mass of the solute by
standard numerical analysis using the program SEDEQ1B (kindly provided
by Dr. Allen Minton, National Institutes of Health, Bethesda).

Analysis of centrifugation data acquired in the presence of TFE requires
knowledge of the variation in density and viscosity of the solvent mixtures.
Density measurements of aqueous mixtures of TFE and water were per-
formed at 20°C using an Anton Paar DMA 02C density meter. The
variation in density with increasing TFE content was found to be described
by:

r 5 0.99821 0.502423 v 2 0.10963 v2 (1)

wherer denotes the solution density, andv denotes the volume fraction of
TFE per total volume of added TFE and water (C. MacPhee, M. Perugini,
W. Sawyer, and G. Howlett, submitted for publication). The variation in
solvent viscosityh with TFE content was found to be described by the
fourth-order polynomial:

h 5 0.93551 2.043 v 1 1.3553 v2

2 7.5323 v3 1 4.4643 v4 (2)

Calculation of theoretical sedimentation coefficients

Peptide structures were modeled using the program HYPERCHEM. Values
for f, w, andv angles of 180°, 180°, and 180°, respectively, were used to
compute the spatial coordinates of extended structures, and values of258°,
247°, and 180° were used to compute the correspondinga-helical con-
formations. Two methods were used to generate the corresponding bead
models for these structures. The first was based on the algorithm AtoB
(Byron, 1997) using a resolution of 3 Å and the option to create equally
sized beads. The second method, referred to as thea-carbon method,
involved taking the coordinates of thea carbons and placing equally sized
beads at these locations so that the weight and density of the resulting
model equaled that calculated from the amino acid composition of the
peptide. These bead models were used to calculate a theoretical value for
the sedimentation and translational diffusion coefficients of the peptides
using the method described by Garcı´a de la Torre et al. (1994) and the
program HYDRO. Values used for the molar mass, partial specific volume,
and hydration of the peptides were calculated as described by Laue et al.,
1992.

Numerical Methods

Calculation of solutions to the Lamm equation

With the following description of the diffusional fluxesjD(r) and the
sedimentation fluxesjS(r) from a volume element atr into a neighboring
volume element atr 1 dr

jD~r! 5 2D
dc

dr (3)

jS~r! 5 2sv2rc~r!

whereD denotes the diffusion coefficient,s the sedimentation coefficient,
v the angular velocity of the rotor, and taking into account the radial
dilution of the concentration distribution as it moves in the sector-shaped
solution column in the analytical ultracentrifuge, the well-known Lamm
equation can be derived:

dc

dt
5

1

r

d

drFrD dc

dr
2 sv2r 2cG (4)

(Lamm, 1929; Fujita, 1962). Given any initial distributionc(r, t0), this
partial differential equation describes in a general way the evolution of the
concentration distributionc(r, t . t0) between the meniscusm and the
bottomb of the solution column in the centrifugal field.

Finite difference (Cox, 1965; Dishon et al., 1966; Sartory et al., 1976)
and finite element approaches (Claverie et al., 1975) have been described
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for numerical solution of the Lamm equations, and both types have been
used in the present study (implemented in a Windows program called
sedfit, which is available from the authors on request). They have in
common the approximation of the concentration distributionc(r) using a
grid of equidistant radial pointsr1, . . . , rN. In the case of the finite
difference method,c(r) is expressed as a vector of concentrations,c, in a
series of compartments of uniform concentrations; in the case of the finite
element approach it is approximated by a superposition of geometric
elements with amplitudesc. It can be shown that in the finite difference
approach, a discretized analog of Eq. 3 leads to a matrix equation describ-
ing the propagation ofc(t) during the time intervalDt

c~t 1 Dt! 2 c~t! 5 DtEc~t! (5a)

whereE denotes a tridiagonal matrix with

Ei,i21 5
1

r iDr Fv2sri21~r i 2 0.5Dr! 1 D
~r i 2 0.5Dr!

Dr G
Ei,i 5 2

1

r iDr Fv2sri~r i 1 0.5Dr! 2 D
2r i

DrG
Ei,i11 5

1

r iDr FD ~r i 1 0.5Dr!

Dr G
E1,1 5 2

1

r1DrFv2sr1~r1 1 0.5Dr! 1 D
~r1 1 0.5Dr!

Dr G,
EN,N 5 2

1

rNDr FD ~rN 2 0.5Dr!

Dr G
(5b)

An equation of similar tridiagonal structure has been derived by Claverie
et al. (1975) for the finite element approach, using hat functions as
elements of first order

B[c~t 1 Dt! 2 c~t!] 5 Dt@v2sA~2! 2 DA~1!#c~t! (5c)

where the matricesA and B denote integrals over the elements, as de-
scribed in Eq. 11 in Claverie et al. (1975). These tridiagonal systems can
be very efficiently solved (Press et al., 1992).

To increase the stability of Eq. 5 for larger time steps, which is essential
for the rapid simulations needed for the fitting of experimental data, it can
be used in a Crank-Nicholson scheme (Crank and Nicholson, 1947). This
is accomplished by evaluating concentrations in the right-hand side of Eq.
5a or Eq. 5c in the middle during the time stepDt, approximated as (c(t) 1
c(t 1 Dt))/2. Insertion of this into Eq. 5a leads, for the finite difference
method, to

c~t 1 Dt! 5 ~2I 2 DtE!21~2I 1 DtE!c~t!, (6)

or, for the finite element method, to

c~t 1 Dt! 5 @2B 2 Dt~v2sA~2! 2 DA~1!!#21

z @2B 1 Dt~v2sA~2! 2 DA~1!!#c~t!. (7)

Both the finite difference (Eq. 6) and finite element approach (Eq. 7) have
been implemented, using the evaluations of the integralsA andB given by
Cox and Dale (1981). For a given spatial grid sizeN, the finite difference
simulations introduce an error that can be empirically described as an
artificially increased diffusion coefficient; it can be shown that it is larger
than the true diffusion coefficient by a term of the order of;v2 sDr, where
Dr is the size of a single compartment. However, for small sedimentation
coefficients, this error is small, and can be additionally reduced by fitting
the data with an adaptive grid size (see below).

The initial conditionc(r, t0) is obtained from the first of a series of
experimental concentration profiles selected for the analysis. In order to
prevent the noise in this scan from propagating into errors of the subse-
quent calculated concentration distributions, the simulation is started with
a number of small time stepsDt. This is followed by an adaptive step size
Dt, which keeps the maximum relative change max(dci/ci) of all compart-
ments within an adjustable, predefined range. This procedure has the
advantage of using a smallDt value when fluxes are high, while making
use of the high stability of Eqs. 6 and 7 in using largerDt values with
approach to equilibrium. (SmallerDt’s are used, if necessary, to reportc (ti)
at the timesti of the experimental scans.)

The accuracy of the simulation was tested against existing simulation
software using the program Svedberg (Philo, 1994), and it was tested to
produce correct sedimentation equilibrium profiles. The accuracy and
convergence of the simulated concentration profiles with respect to the grid
size N and the maximal relative change max(dci/ci) controlling the time
steps was verified. For example, finite element simulations for a small
solute under synthetic boundary conditions (similar to those in Fig. 1) with
a grid sizeN 5 1000 and max(dci/ci) # 0.1 were equal, within an rms
deviation of ,0.0007 OD, to either finite difference or finite element
simulations withN 5 200. Under these conditions, the value of max(dci/ci)
governing the time step did not affect the results significantly for all
max(dci/ci) , 10. (However, for calculations at highersv2, N had to be
increased and max(dci/ci) values had to be reduced.) Calculating with
several hundred compartments, one simulation for smalls spanning 20000
s of real time generally could be performed on a 75 MHz PC in,1 s.

FIGURE 1 Simulated solutions of the Lamm equation showing the de-
cay of noise in the initial conditions. Calculated concentration distributions
for a small peptide (s 5 0.5 S,D 5 2 3 1027 cm2/s), starting from a
simulated initial distribution with 0.01 OD Gaussian noise, under synthetic
boundary conditions (A) and conventional loading conditions (B). Finite
element simulations for concentration distributions with a solution column
from 6.5 cm to 7.2 cm, at a rotor speed of 40,000 rpm, from a simulated
sedimentation time of 200 s in 1000 s intervals to 15,200 s.
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Fitting of experimental distributions

In our implementation, the values for the meniscus and bottom of the
solution column can either be numerically entered, graphically determined,
or can be treated as fitting parameters. To avoid fitting of data in the region
of optical artifacts near the bottom and meniscus, the radial range of the
data to be fitted was set separately. This point requires special attention for
the initial scan, since the concentration distributionc(r, t0) has to be known
over the entire solution column in order to calculate its time evolution.
However, as long as the initial distribution does not contain high gradients,
this problem can be solved by using polynomial extrapolation. In the
implementation used, the order of the polynomial can be preset and the
assumptions made by this extrapolation can be controlled and varied. A
constant baseline offset absorbance can be added to the theoretical curves
and optionally treated as unknown fitting parameter.

Starting values forD ands are optimized by using the Simplex algo-
rithm, minimizing the sum of squared differences of all experimentally
measured absorbance distributionsAexp(r, ti) and the theoretical absorbance
distributionsAcalc(r, ti). Optionally, the optimization cycle can be repeat-
edly restarted, doublingN each time, until the changes of the derived
parameters values are within the desired tolerance. This adaptive grid is
especially useful in conjunction with the finite difference calculations,
compensating for its lower accuracy and reducing its error below the
experimental error in data acquisition.

It can be useful to map the parameter space ins and D using the
Svedberg equation

M 5
RTs

D~1 2 n#r!
(8)

(where M denotes the solute molar mass,R the gas constant,T the
temperature,n# the partial specific volume of the solute, andr the solvent
density) into a space ofsandM as independent parameters to be optimized.
The buoyant molar mass M(12 n#r) is available from analysis of sedi-
mentation equilibrium profiles or from amino acid composition (Laue et
al., 1992). This can be used to constrain the buoyant molar mass (i.e.,
effectively the ratios/D) to an independently determined value.

RESULTS

Characterization of the data analysis

To examine the reliability of the fitting procedure and the
conditioning of the inverse problem to obtain accurate sed-
imentation and diffusion coefficients, we have first gener-
ated and then re-analyzed sets of theoretical concentration
distributions for solutes of different size. To mimic the
analysis of experimental data, Gaussian distributed noise of
0.01 OD was added to the theoretical curves, and data points
within 0.02 cm from meniscus, 0.03 cm within the bottom, as
well as points with concentrations higher than 1.5 OD were
excluded from analysis. This simulates the presence of optical
artifacts in real data near the ends of the solution column.

In order to avoid assumptions on the initial concentration
distribution (such asc(r, 0) be a stepfunction in synthetic
boundary loading experiments) the data analysis was started
by taking the calculated distribution at 200 s as the initial
condition (Fig. 1A). A first-order polynomial extrapolation
was used to estimate the initial distribution in the regions of
optical artifacts. As is obvious from Fig. 1, the noise in the
data sets used as the initial conditions for both synthetic

boundary and for conventional loading is not propagated
into the subsequent calculated distributions. Since the ex-
perimental noise corresponds to relatively steep local con-
centration gradients, this noise rapidly vanishes in the cal-
culated evolution within a few small time steps due to the
simulated diffusional fluxes between neighboring compart-
ments. Over the time interval considered (4.2 h) theresults
in Fig. 1 show a more rapid approach to equilibrium for
synthetic boundary loading than for conventional loading.

Table 1 presents best-fit values and error estimates for a
range of solutes. The best-fit parameter values were always
found to closely resemble the values generating the simula-
tions, with small estimates for the statistical errors, low corre-
lation betweensandD, and nearly symmetrical error surfaces.
This demonstrates that the information abouts, D, and M
included in such sedimentation profiles can be extracted in a
well-conditioned analysis. It should be noted that this is true
also for conditions where virtually no moving boundary is
formed, and no solution or meniscus plateau is exhibited.

Under the simulated conditions, the estimated error for
the sedimentation coefficient was constant at 0.01–0.02 S
over a wide range ofs values. In contrast, for the diffusion
coefficient, the relative error remained approximately con-
stant at;2–3%. The use of the buoyant molar mass of the
solute as prior knowledge in the analysis slightly improved
the accuracy of the determination ofs. If, on the other hand,
the buoyant molar mass of the solute was treated as un-
known, it could be determined with an accuracy of between
2% and 5% (Table 1). Under improved experimental con-
ditions, such as a longer solution column and higher loading
concentrations, the error in the determination ofs could be
as low as 0.01 S for a solute of 11 S (Table 1). This is
comparable to the accuracy of 0.1% experimentally
achieved with difference sedimentation velocity experi-
ments with aspartate transcarbamylase using Schlieren op-
tics (Howlett and Schachman, 1977).

Small deviations of the best-fit value from the true gen-
erating value ofs can be introduced by the extrapolation of
the initial distribution near the meniscus and bottom. How-
ever, if later scans that did not show a high curvature in these
regions were taken as initial distributions, or if the assumption
of constant distribution att 5 0 s was used, the accuracy
improved significantly. Overall, the simulations demonstrate
that the influence of the artifacts at meniscus and bottom
regions on the initial conditions is small. Unlike the parameters
sandD, an unknown baseline offset was found to be correlated
with s, leading to slightly higher errors ins if the baseline offset
was treated as an additional unknown.

It should be noted that sets of concentration distributions
obtained during the approach to equilibrium in conventional
low-speed experiments with proteins and other macromol-
ecules of high molar mass can be used to extracts values
(Table 1). Such experiments have sedimentation profiles
which are similar in shape to those for the sedimentation of
small peptides at high rotor speeds (results not shown).
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Analysis of experimental sedimentation
velocity data

A series of small peptides of different length and confor-
mation was investigated in sedimentation velocity experi-
ments in order to test the analytical procedures. Sedimen-
tation equilibrium analysis indicated that under the
conditions used, these peptides were primarily monomeric.
Fig. 2 shows sequential concentration distributions obtained
with peptide C in a synthetic boundary experiment, well
described by a direct fit of the Lamm equation. In the
sedimentation velocity data analysis, a small unknown base-
line offset was taken into account, and the buoyant molar
mass from the equilibrium data was taken as prior knowl-
edge. The residuals are small and randomly distributed in all
scans at all times ranging from shortly after the start of the
experiment until equilibrium was attained. The fitted sedi-
mentation coefficient of 0.46 S falls between the values for
two structural extremes calculated from hydrodynamic the-
ory for the peptide in completely extended and ina-helical
structure (Table 2). As a test to determine the statistical
accuracy of the derived sedimentation coefficient of 0.46 S,
this experiment was performed in triplicate, with a standard
deviation of below 0.01 S, confirming the high statistical
accuracy predicted by the analysis of theoretical data (Ta-
ble 1).

The sedimentation coefficients obtained for the series of
heptad repeats using synthetic boundary loading conditions
were 0.36, 0.45, and 0.52 S for the H2, H3, and H4 peptide,
respectively (Table 2). These results were obtained by con-
straining the buoyant molecular mass of the peptides to the
values calculated from their composition. Essentially iden-
tical values for the sedimentation coefficients were obtained
by assigning buoyant molecular mass values derived from
sedimentation equilibrium analysis. The reproducibility of
the derived sedimentation coefficients for each peptide of
the heptad family was verified in a conventional loading
experiment (Fig. 3) immediately following the synthetic
boundary experiment after mixing the contents of the cen-
trifuge cell. The difference in thes values obtained in these
experiments was smaller than 0.02 S for all heptads (Ta-
ble 2).

The sedimentation coefficients obtained for the three
heptad-containing peptides (Table 2) clearly reflect the in-
creasing size of the molecules. The values lie between the
limits of s-values calculated from hydrodynamic theory for
these peptides in completely extended and ina-helical
structure. The presence of a structure in between these
extremes is confirmed by CD spectroscopy. Fig. 4 shows
the CD spectrum for peptide H3 in aqueous solution (solid
line). The strong minimum at 200 nm, and the lack of a

TABLE 1 Best-fit values and calculated error estimates of for direct analysis of sedimentation distribution

True s
(S)

True D
(1027 cm2/s)

Best-Fits
(S)

ss

(S)
Best-FitD

(1027 cm2/s)
sD (1027

cm2/s)

ss With Prior
Knowledge ofM

(S)
sM/M
(%)

Synthetic boundary 0 20 0.000 0.010 19.69 0.5 — —
pure diffusion

Synthetic boundary 0.5 20 0.504 0.016 19.65 0.6 0.013 1.7
(v 5 40,000 rpm)

Conventional loading 0.5 20 0.504 0.008 19.93 1.1 0.008 4.0
(v 5 40,000 rpm)

Conventional loading 1 15 1.013 0.01 15.27 0.35 0.009 2.1
(v 5 40,000 rpm)

Conventional loading 3 10 3.04 0.02 10.20 0.1 0.012 1.7
(v 5 40,000 rpm)

Conventional loading 5 7 5.07 0.02 7.14 0.09 0.02 3
(v 5 40,000 rpm)

Conventional loading 13 3 13.34 0.05 2.96 0.05 0.05 5.4
(v 5 40,000 rpm) (12.99)* (3.04)*

Conventional loading 11 3 10.995 0.01 2.969 0.11 0.01 8.0
longer solution column#

(v 5 40,000 rpm)
Conventional loading 3 2.71 2.99 0.03 2.66 0.25 0.02 2.0

equilibrium experiment§

(v 5 8000 rpm)

Finite element simulations of solute distribution in a solution column of 6.5 cm to 7.2 cm, with data points saved at radial increments of 0.003 cm. The
loading concentration was 0.75 OD. All calculated curves had 0.01 OD normally distributed noise added. Data were analyzed from 6.52 cm to 7.17 cm,
with absorbancies,1.5 OD. The simulated data at 200 s were taken as an initial condition, with linear extrapolation outside the analysis range to the
meniscus and bottom. The simulated data were fit from 1200 to 15,200 s in 1000-s intervals. The error estimate was based onF-statistics (Bevington et
al., 1992).
*Initial data at 1200 s.
#Solution column from 6.2 cm to 7.2 cm, loading concentration 1 OD, noise 0.01 OD, scans from 100 s in 500-s intervals up to 8100 s.
§Experimental conditions similar to sedimentation equilibrium run of solute with molar mass 100,000 at 8000 rpm, solution column 6.7 cm to 7.2 cm, with
20 scans taken at intervals of 1 h.
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maximum at 190 nm, are typical of a random coil confor-
mation. Data obtained for peptides H2 and H4 were essen-
tially identical. The CD spectrum for peptide C (Fig. 4) also
indicates a predominantly random coil structure in aqueous
solution.

The accuracy of the sedimentation coefficients achieved
in the experiments suggests the possibility of detecting
shape differences in small peptides. Therefore, as an exem-
plary potential application of this method, preliminary ex-
periments were performed with peptide H3 in the presence
of TFE. This solvent has been widely used to examine the
helical propensity of peptides. Titration with TFE showed
that 30% (v/v) TFE was sufficient to induce the maximum
change in the CD spectra. The mean residue ellipticity at
222 nm of the peptide in this concentration of TFE (Fig. 4)
indicated a helical content of;80%. To avoid assumptions
regarding the partial specific volume of peptide H3 in 30%
TFE, the sedimentation velocity data were analyzed with an
unconstrained buoyant molar mass and sedimentation coef-
ficient. The value obtained for the reduced molecular mass
M(1 2 n#r) of 478 compares with a value of 444 calculated
from the peptide composition and solution density. The
sedimentation coefficient of the peptide in 30% (v/v) TFE in
synthetic boundary experiments was 0.20 S, which gives a

value, corrected for the density and viscosity of the TFE
solution, of 0.52 S. Constraining the analysis to a reduced
molecular mass of 444 (calculated from peptide composi-
tion and solution density) yielded a corrected value for the
sedimentation coefficient of 0.49 S. Although due to the
large correction factors these values are subject to a higher
error than reported above, they are consistent with the
higher sedimentation coefficient predicted by hydrody-
namic theory for a more compact helical peptide (Table 2).

DISCUSSION

Direct fitting of the Lamm equation allows, in principle, the
determination of sedimentation or flotation coefficients
from any set of nonequilibrium analytical ultracentrifuga-
tion data. This eliminates the traditional requirement of
measuring boundary movement, instead only relying on
measurable sedimentation of the solute. The validity of this
approach has been verified in the present paper using both
computer simulations and experimental data. The principal
intentions to develop this technique were, on the one hand,
to obtain the ability to measure sedimentation coefficients
and hydrodynamic shapes of small peptides which do not

FIGURE 2 Experimental sedimentation distribution
of peptide C and the best-fit finite element solution of
the Lamm equation.Upper panel:Measured concen-
tration distributions in the analytical ultracentrifuge at
different times in a synthetic boundary experiment
(symbols) and best-fit (solid line) using the buoyant
molar mass from the sedimentation equilibrium as prior
knowledge, while fitting fors (0.46 S) and a small
constant baseline offset (0.012 OD). The first scan
(1932 s) was taken as an initial condition. The lower
panel shows the residuals at different times.
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exhibit sedimentation boundaries, and on the other hand, to
explore the properties and potential of the Lamm equation
when used as a general analytical tool.

The analysis procedure presented is well-conditioned and
yields sedimentation coefficients with high statistical accu-
racy. In part, this appears to be due to the large number of
data points that can be included in the direct analysis. The
application to the heptad repeat peptides and to peptide C
revealeds values with high reproducibility, increasing with
peptide size, and centered between those calculated by
hydrodynamic theory for fully extended and compacta-

helical structure. That these peptides indeed assume a struc-
ture well in between those extremes in aqueous solutions
appears reasonable from the CD spectra, which indicate the
presence of a random coil. These findings demonstrate that
the obtaineds-values can be interpreted in the context of the
size and the shape of peptides. This conclusion is consistent
with the result from preliminary experiments in TFE, which
suggests that the stabilization ofa-helical structure in this
solvent, as observed by CD, is accompanied by an increased
s-value. The increase of the sedimentation coefficients of
peptides in TFE solutions as a result of self-association will
be described in MacPhee, C., M. Perugini, W. Sawyer, and
G. Howlett (submitted for publication).

Analysis of the data in Table 2 assumed a single sedi-
mentation coefficient for the peptides. Given the expected
heterogeneity of conformations represented by the random
coil state, the excellent fit to the data (Figs. 2 and 3) is
noteworthy, suggesting a narrow range of sedimentation
coefficients with the best-fit value representing a weight-
average estimate. The observation that the values obtained
fall within the limits calculated for a completely extended
conformation and for a compact helical conformation raises
the prospect of using the measurements to estimate the
fraction of helical or compact structure. There appear to be
two limitations to this approach. The first is the variation in
the predicted values of the sedimentation coefficients using
the stacked cube approach (Byron, 1997) compared to the
a-carbon method (Table 2). These differences may reflect
the dependence of the calculated values on the dimensions
of the cube lattice (Byron, 1997). The second limitation is
the uncertainty in treating hydration effects. The strategy
used in the present work was to calculate hydration based on
amino acid composition (Laue et al., 1992) and to swell the
beads uniformly to give the correct expansion according to
the volume occupied by the water of hydration. This method
assumes that all of the amino acids are exposed to the
solvent, which seems reasonable for the small peptides
considered. Extension to the case of solutions containing

FIGURE 3 Concentration distributions of peptide H2 at different times
in a conventional loading experiment (symbols). Best-fit distributions
(solid line) calculated using finite element solutions of the Lamm equation
based on the scan at 482 s as an initial condition. For results see Table 2.

FIGURE 4 CD spectra of peptide H3 (—) and peptide C (– –) in aqueous
solution (0.1 M phosphate buffer, pH 7.4); and peptide H3 (–z –) in 30%
(v/v) TFE containing 0.1 M phosphate buffer, pH 7.4.

TABLE 2 Theoretical and experimental sedimentation
coefficients for the heptad family peptides and peptide C

H2 H3 H4 Peptide C

Calculated hydration (g/g) 0.61 0.64 0.65 0.51
Molar mass 2049 2777 3505 2475
Calculateds (Byron, 1997)*

s Extended 0.32 0.351 0.375 0.366
s a-Helix 0.455 0.521 0.571 0.512

Calculateds (a-carbon method)
s Extended 0.327 0.353 0.374 0.381
s a-Helix 0.48 0.540 0.603 0.567

Experimental results#

Synthetic boundary 0.36 0.45 0.52 —
Conventional loading 0.38 0.45 0.51 0.46
30% TFE§ — 0.52 (0.49) —

*Sedimentation coefficients are given in Svedberg units (10213 s21).
#Sedimentation coefficients were determined from fits of the experimental
data taking into account a possible small unknown baseline offset and
using the known buoyant molar mass as prior knowledge. The solution
conditions were 0.1 M potassium phosphate buffer, pH 7.4 and 20°C. The
results are corrected for the effects of solution density and viscosity (s20,w).
§Synthetic boundary data for peptide H3 in 0.1 M potassium phosphate
buffer, pH 7.4 containing 30% TFE (v/v) and fitted with an unconstrained
buoyant molar mass. The value in parenthesis is the fitted value using a
constrained buoyant molar mass (444) calculated from the peptide com-
position and solution density.
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TFE introduces the additional problems of contributions of
TFE to the solvent shell and higher statistical errors in the
experimentally obtained sedimentation coefficients due to
larger correction factors. This may require the combined use
of other hydration-dependent techniques such as nuclear
magnetic resonance and fluorescence anisotropy (Garcı´a de
la Torre et al., 1997).

Comparing the two experimental procedures employed,
conventional and synthetic boundary loading, we found
similar results with both techniques (Table 2). For equiva-
lent column lengths, the synthetic boundary design reaches
equilibrium more rapidly. This facilitates the independent
determination of the buoyant molar mass for use as a
constraint in the fitting procedure. Conversely, the conven-
tional uniform loading experiment has the advantage of a
greater choice of column lengths given the current restricted
choice of synthetic boundary cells. The ability to observe
initially a solute-free baseline near the meniscus in synthetic
boundary experiments may be an advantage for detecting
small baseline offsets, caused, for example, by imperfec-
tions in the absorbance optical data acquisition system.
While not yet implemented in the present version of the
program, the effects of such optical imperfections using
either absorbance or interference optics could be minimized
by fitting dc/dtversust data obtained by subtracting sequen-
tial scans in a manner similar to that described by Stafford
(1994). A further feature of the synthetic boundary design,
important in the case of interference optics, is the capacity
to directly measure the initial solute concentration in the
appropriate refractometric units.

The advantage of using numerical versus approximate
analytical solutions of the Lamm equation include the
greater flexibility in the experimental design such as choice
of rotor speed, length of the solution column, and the nature
of the initial concentration distribution. The numerical ap-
proach avoids empirical correction factors (Philo, 1997;
Behlke, 1997) or assumptions of an infinite solution column
(Stafford, 1992). Additionally, since it accurately takes into
account the end effects of the solution column, it allows the
use of a lower rotor speed, diminishing the potential prob-
lems of the finite time necessary to take a scan with the
current commercial absorbance optical system. Even for
conventional low-speed sedimentation equilibrium experi-
ments, estimates fors and D can be derived if the time
course of approach to equilibrium is analyzed. The infor-
mation contained in this part of the experiment so far has
been neglected. On the other hand, the costs of the numer-
ical approach are, first, the explicit need to specify meniscus
and bottom position of the solution column, and second, the
need for a concentration distributionc(r, t0) over the entire
solution column initializing the analysis. It should be noted,
however, that some of the more recent and advanced ana-
lytical methods (Philo, 1997; Behlke, 1997) also need me-
niscus and bottom position; and most techniques make
assumptionsc(r, 0) 5 const over the entire solution column.

With respect to the above limitations, the meniscus can
usually be determined experimentally with sufficient accu-

racy in the absorbance optical scans. The position of the
bottom is not as easy to define. It may be extracted from an
intensity scan observing the drop in the incident light in the
reference sector when the detector reaches the shadow of
the bottom of the cell, or it may be determined optically
with the use of a synthetic bottom (e.g., using a fluorocar-
bon oil). On the other hand, since the Lamm equation
implies mass conservation, the position of meniscus and
bottom can be treated as additional unknowns to be deter-
mined. We observed that the exact bottom position can be
slightly correlated with the sedimentation coefficient in the
case of small solutes. Although this was not critical, the
experimental determination seems advantageous.

The initialization of the analysis with a concentration
distribution c(r, t0) becomes important if the analysis is
started with an experimental scan att0 . 0 s, as is advan-
tageous, for example, in synthetic boundary experiments to
avoid transient mixing disturbances impairing the accuracy
of the analysis. The concentration distribution within the
regions of optical artifacts can be extrapolated with a first-
or second-order polynomial. We found in computer simu-
lations that the best-fit parameters fors and D are robust
with respect to different extrapolations, as long as the cur-
vature inc(r, t0) in the regions of the extrapolation is small.
This suggests that the best data for initialization are ob-
tained either from scans taken early in the experiment, or
from those where the meniscus already has cleared to some
visible extent, and accumulation of material at the bottom of
the cell is visible. Another important feature of the initial-
ization with an experimental concentration distribution,
c(r,t0), is the ability to analyze sequential sets of concen-
tration profiles during centrifugation. This feature has po-
tential applications in the analysis of time-dependent con-
formational changes and corresponding time-dependent
sedimentation coefficients, which might be expected, for
instance, in protein refolding studies.

The careful study of the specific properties and problems
of directly fitting the Lamm equation for a single compo-
nent is an essential first step, and it is also unique with
respect to its ease of application to a wide variety of starting
conditions, justifying its separate examination. The numer-
ical approach has potential extensions to a wide variety of
experimental systems and to analyses where the concentra-
tion dependence of the sedimentation coefficient and radial
variation in the solution density and viscosity are significant
factors. However, from a practical viewpoint, the main
limitation of the present approach is the limitation to a
single component. Extensions of this method for noninter-
acting multicomponent systems are currently in progress,
and are, in principle, straightforward by simple superposi-
tion of the independent sedimentation of components. Mul-
tiple components require independent concentration distri-
butions as initial conditions. Except for the conventional
loading technique at the start of the centrifuge, where all
species can be assumed to be homogeneously distributed,
these initial conditions might be difficult to obtain. This
problem might be overcome, however, using chromophore
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labels and multiwavelength techniques. Different methods
of calculating solutions of the Lamm equation for multiple
interacting species have been described (Claverie et al.,
1975; Cohen and Claverie, 1975; Cox, 1971), for example
via weight average sedimentation and gradient average dif-
fusion coefficients assuming infinite reaction rates. Using
the increased computational power recently available, they
should be useful also when implemented as analytical tools.
At present, it is not clear up to what level of complexity of
interactions the inverse problem of extracting the sedimen-
tation and diffusion coefficients, and equilibrium constants,
from experimental data remains well-conditioned. We have
shown here that the numerical approach to sedimentation
velocity data analysis is not only feasible, but gives accurate
values, and it has the potential to accurately take into
account the reaction/diffusion processes of mixtures of sol-
utes in the centrifugal field.
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