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ABSTRACT The presence of compliance in the lattice of filaments in muscle raises a number of concerns about how one
accounts for force generation in the context of the cross-bridge cycle—binding site motions and coupling between
cross-bridges confound more traditional analyses. To explore these issues, we developed a spatially explicit, mechano-
chemical model of skeletal muscle contraction. With a simple three-state model of the cross-bridge cycle, we used a Monte
Carlo simulation to compute the instantaneous balance of forces throughout the filament lattice, accounting for both thin and
thick filament distortions in response to cross-bridge forces. This approach is compared to more traditional mass action
kinetic models (in the form of coupled partial differential equations) that assume filament inextensibility. We also monitored
instantaneous force generation, ATP utilization, and the dynamics of the cross-bridge cycle in simulations of step changes
in length and variations in shortening velocity. Three critical results emerge from our analyses: 1) there is a significant
realignment of actin-binding sites in response to cross-bridge forces, 2) this realignment recruits additional cross-bridge
binding, and 3) we predict mechanical behaviors that are consistent with experimental results for velocity and length
transients. Binding site realignment depends on the relative compliance of the filament lattice and cross-bridges, and within
the measured range of these parameters, gives rise to a sharply tuned peak for force generation. Such mechanical tuning at
the molecular level is the result of mechanical coupling between individual cross-bridges, mediated by thick filament
deformations, and the resultant realignment of binding sites on the thin filament.

INTRODUCTION

Until quite recently, experimental and theoretical analyses
of muscle contraction have assumed that both thick and thin
filaments are inextensible (e.g. Ford et al., 1981; Bagni et
al., 1990). Thus, even though tens to hundreds of motor
molecules (myosin) produce forces on each thin filament, an
assumption of filament inextensibility suggests that mass
action kinetics could form a reasonable model of the cross-
bridge cycle. Such approaches are appropriate as long as
each cross-bridge behaves independently. By this scheme,
therefore, force generation can be calculated by summing
the average state (e.g., bound versus unbound) of indepen-
dently acting cross-bridges. However, as has recently been
shown (Huxley et al., 1994; Wakabayashi et al., 1994;
Goldman and Huxley, 1994), both thick and thin filaments
are indeed compliant, with as much as 70% of the total
compliance of the sarcomere residing in the filaments per se
rather than in the cross-bridges. Accordingly, current inter-
pretations of the cross-bridge cycle, as well as possible
mechanical coupling between cross-bridges, needs reexam-
ination, because cross-bridge distortions, binding site avail-

ability to cross-bridges, and the kinetics of force generation
are all likely tied to the presence of compliance within
filament lattice.

Recent experimental approaches aimed at unraveling the
role of compliance in the dynamics of force generation have
emphasized the relationship between muscle fiber stiffness
and cross-bridge attachment (Higuchi et al., 1995). These
experiments, combined with both direct and indirect mea-
sures of filament compliance and distortions in muscle
fibers (Huxley et al., 1994; Wakabayashi et al., 1994;
Kojima et al., 1994), all point to an important role for
filament compliance in modulating cross-bridge dynamics.
Indeed, the strongly nonlinear relationship between muscle
fiber stiffness and sarcomere length (Higuchi et al., 1995)
provides a compelling case for a need to probe more deeply
into the mechanics of force generation in a compliant lattice
of filaments and to reexamine the theoretical approaches
that have formed the underpinnings of our analyses of the
cross-bridge cycle.

The more traditional theoretical analyses that have used
mass action kinetics are hampered by several limitations
that arise in the presence of filament compliance. First,
cross-bridge state transitions are no longer independent of
cross-bridge force generation and history of cross-bridge
attachment and detachment. The notion that cross-bridges
are independent actuators, therefore, may be violated. For
example, even in isometric conditions, binding sites on
compliant thin filaments could move in response to cross-
bridge forces. Such cross-bridge-induced motions can, in
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turn, change the likelihood of cross-bridge attachment and
detachment. Accordingly, any theoretical analysis must ac-
count for both temporal (kinetic) and spatial (motion) dy-
namics of the cross-bridge cycle.

Several of these issues have recently been examined with
a partial differential equation analysis of a two-state model
by Mijailovich et al. (1996). Their analysis shows that local
deformations of thin filaments (and their binding sites) as
well as mechanical coupling between cross-bridges can,
indeed, play crucial roles in the dynamics of force genera-
tion and the determinants of fiber stiffness. Here we develop
a parallel theoretical framework that accounts for compli-
ance in the context of the mechanical coupling between
cross-bridges. Our approach differs, however, from that of
Mijailovich et al. (1996) in several regards. Here we are
interested in probing how compliance affects the time his-
tory of force generation in response to a variety of transient
conditions, including length transients. We are also inter-
ested in understanding how the geometry of the filament
lattice determines force generation in the context of filament
compliance. As such, we also develop a spatially explicit
model that accounts for the locations of all binding sites and
cross-bridges in a two-filament (one thick and one thin)
system. It is important to note that although a two-filament
model does not represent the complete three-dimensional
structure of thin and thick filaments in a muscle, it provides
a simple system for asking whether compliance plays any
role in the dynamics of force generation, as well as a method
by which we can directly compare a spatially explicit model
with previous mass action models that investigate two-
filament interactions.

Our analyses, therefore, are divided into two portions: 1)
a system of partial differential equations that describes
cross-bridge interactions with rigid filaments and forms a
reference behavior, against which we compare 2) predic-
tions of a spatially explicit model in which the filament
compliance is not zero and can be varied. The spatially
explicit model is developed as a Monte Carlo process. By
this scheme, we examine stochastic (thermally driven) fluc-
tuations of every cross-bridge to compute state transitions.
Although computationally time consuming, this approach
lends itself to a simple mathematical framework that is
easily adapted to a variety of scenarios, including arbitrary
motions, temporal transients, and geometric (sarcomere
length) variations. Indeed, Monte Carlo methods have
proved quite useful in modeling a variety of molecular
events (Fichthorn and Weinber, 1991), including those as-
sociated with motor molecules (Cordova et al., 1992). Here
we use both the partial differential and Monte Carlo type
models to examine the dynamics of force generation for a
three-state cross-bridge cycle to ask: 1) How does filament
compliance alter our interpretation of cross-bridge attach-
ment and detachment, and 2) How does the total force
generated by muscle depend upon the mechanical properties
of both the filaments and motor proteins?

MODEL DEVELOPMENT

We develop here two models based on a three-state cross-
bridge cycle. The first and central model is a spatially
explicit system of equations that accounts for filament com-
pliance and mechanical coupling between cross-bridges. It
includes both temporal and spatial transients that can be
imposed on muscle fibers. The second model is a modest
revision of current mass action kinetic models that accounts
for simultaneous temporal and mechanical transients in the
form of a system of partial differential equations. This
model not only serves as a comparison for the spatially
explicit mode; it also sheds light on how compliance may
alter the dynamics of cross-bridge cycling.

A spatially explicit model

Our analysis is based on a model of a half-sarcomere (Fig.
1) composed of just two filaments with a geometry that is
consistent with the average spacings measured in vertebrate
striated muscle (Higuchi et al., 1995). Thus, for a half-
sarcomere, we construct a thick filament with 20 myosin
heads (42.9 nm apart under zero load) that face a single thin
filament. The thick filament has an undecorated zone of 80
nm (half the M-line), giving a total rest length of 1.79mm

FIGURE 1 A schematic diagram of the geometric and mechanical ar-
rangement of interacting cross-bridges. Dimensions of thin and thick
filaments for vertebrate striated muscle (Higuchi et al., 1995) were used in
the computations, along with estimates of the spacing of cross-bridges and
binding sites that are colinear (those cross-bridges and binding sites that
face two adjacent filaments). Therefore, the node locations (yi andxj) are,
respectively, 43 and 37 nm apart when no forces act on either filament. The
spring constants for the thick filament (km), thin filament (ka), and cross-
bridges (kxb) were derived from recent experimental observations (see
text). The stiffness of the undecorated zone of the thick filament is assumed
to be the same as that with cross-bridges extending. Thez-disk compliance
is treated as one additional thin-filament spring in series with those be-
tween binding sites. In the model, the entire thick filament consists of 20
such units, whereas the thin filament consists of 30 repeated units.
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for the full thick filament. The thin filament has a length of
1.1 mm, with 30 colinear binding sites, with a separation of
37.3 nm between sites, forming a set of binding locations
that face a single thick filament. This measure of binding
site spacing is also consistent with experimental values
observed by Molloy et al. (1995b). Thin filaments, thick
filaments, and cross-bridges are all represented as linear
springs. Because inertia and viscosity are presumed negli-
gible, this simple arrangement of linear springs is amenable
to a force balance in the form of a linear system of simul-
taneous equations. Thus an instantaneous force balance for
N cross-bridges andM actin-binding sites can be formed for
every binding site and every cross-bridge. For example,
with the ith bound cross-bridge and thejth binding site (see
Fig. 1), we set the sum of forces (each force is the product
of the spring constant and the local distortion) to be zero
about any point:

km~yi11 2 yi 2 ms! 1 kxb,i~xj 2 yi! 2 km~yi 2 yi21 2 ms! 5 0

ka~xj11 2 xj 2 as! 2 kxb,i~xj 2 yi! 2 ka~xj 2 xj21 2 as! 5 0.
(1)

wherekm, ka, andkxb are, respectively, the spring constants
for thick filaments, thin filaments, and cross-bridges;xj is
the location of thejth binding site on thin filaments;yi is the
location of theith cross-bridge point of attachment to the
thick filament (i 5 1. . . N; j 5 1. . . M); andms andas are,
respectively, the spacings between adjacent myosin heads
and actin binding sites for an unloaded filament. This force
balance leads to a system ofN 1 M linear equations with
N 1 M unknowns (the locations of all nodesxj and yi).
Solving such a system requires that we formulate and solve
the matrix equation

K
#

z Z 5 A (2)

where
#
K is a matrix of spring constants,Z is the vector of

locations {x1, x2, . . . xM, y1, y2 . . . yN}, and A is a vector
that contains rest lengths and directions for end motions of
the system.

Values for the above spring constants are derived from
several recent studies. We use the estimate of 65 pN/nm for
a 1-mm-long thin filament (Kojima et al., 1994). With 37.3
nm between thin filament binding sites, therefore, we scale
this to a local spring constant (ka) of 1743 pN/nm. Simi-
larly, because Wakabayashi et al. (1994) suggest that the
stiffness of thick filaments is;150% that of thin filaments,
we scaled the thick filament stiffness accordingly to yield a
value of 2020 pN/nm for the spring constant of the thick
filament (km). Whereas estimates of cross-bridge stiffness
vary in the range of 0.1 to;10 pN/nm, we chose a conser-
vative estimate of 1 pN/nm (Finer et al., 1994; Molloy et al.,
1995a). For unbound cross-bridges, the spring constantkxb

is set to 0.
In addition to estimates of the spring constants, Eq. 1 also

requires kinetic rules for cross-bridge binding to determine
force generation. We are concerned here with how compli-

ance affects the dynamics of force generation and thus
choose to focus on a model with only three states (Fig. 2).
More complex models are certainly available (e.g., Piazzesi
and Lombardi, 1995), but for understanding the conse-
quences of variation in filament compliance, we seek to use
the fewest number of states for mechanical calculations.
Although two-state models are more attractive mathemati-
cally, many recent studies (Dantzig et al., 1992; Homsher
and Lacktis, 1988; as well as the discussion in Huxley and
Simmons, 1971) point to strong evidence for including a
minimum of three states in the cross-bridge cycle. As such,
rather than posing a large number of states to recover rich
dynamics, we ask whether a few coupled states can achieve
the same goal.

Following previous analyses (Pate and Cooke, 1989), we
established functions for the free energy of each of the three
states. Using a reference energy of 0 for the unbound state,
the remaining two states have energy functions (inRTs) that
are parabolic with cross-bridge distortion:

G1 5 0; (3a)

G2 5 24.32 k9xb~x 2 xo!
2; (3b)

G3 5 24.32 k9xb~x!2 1 log~1.89 1024@Pi#! (3c)

whereG is the energy level of each state,k9xb is the cross-
bridge spring constant (inRT/nm2), x is the distance to a
binding site,xo is the distortion of a cross-bridge induced by
ATP hydrolysis, and [Pi] is the intracellular free phosphate
concentration (2 mM; Kushmerick et al., 1992; Dantzig et
al., 1992; Pate and Cooke, 1989). The strain energy of the
cross-bridge with a 7-nm extension corresponds to;50% of
the free energy of ATP hydrolysis. The 7-nm offset in rest
length is removed upon Pi release in the transition from state

FIGURE 2 The three-state model for the cross-bridge cycle is shown
diagrammatically. State 1: Detached myosin (M) cross-bridge with ADP1
Pi, with the hydrolysis of the phosphate leading to a positive (to the right
in this figure) strain in the cross-bridge of 7 nm. State 2: Myosin weakly
bound to an actin-binding site. State 3: The phosphate is released from the
cross-bridge to create a strongly bound state with the 7-nm offset removed.
The set of biochemical states leading to the substitution of ATP with ADP
and its subsequent hydrolysis are lumped into the transition from state 3 to
state 1.

Daniel et al. Compliance and Cross-Bridges 1613



2 to state 3, favoring force generation in the forward reac-
tion (Fig. 2).

With the above estimates of the total free energy, we
calculate the forward rate functions to complete the analy-
sis, with reverse rates calculated from equilibrium thermo-
dynamics:r ij /r ji 5 exp[(Gi 2 Gj)/RT]. Each rate calculation
is described below, with the notion that state 2 corresponds
to a weakly bound state and state 3 is strongly bound.

The rate function associated with attachment of cross-
bridges to actin (r12) is derived from a thermal forcing
calculation (Kramers, 1940; Papoulis, 1991; Hunt et al.,
1994). By this scheme, an instantaneous force balance for a
myosin head subject to thermal fluctuations provides the
basis for the analysis. At any instant in time, the myosin
head is subject to thermal forcing. This force is balanced,
instantaneously, by a restoring spring force (kxb[z 2 zo]), a
viscous force retarding the motion of the myosin head
(f dz/dt), and an inertial force (m d2z/dt2):

m d2z/dt2 1 f dz/dt 1 kxb~z2 zo! 5 F~t! (4)

wherem is the mass of the sphere,z is the location of the
sphere (zo is its rest location),f is the viscous drag (f 5
6prm; r is the radius of a cross-bridge (5 5 nm); m is the
viscosity of water), andF(t) is the thermal forcing function,
whose power spectrum is 2RTf. From the power spectra of
each side of Eq. 4, the probability density function for a
myosin head being in any distortion (z) is computed as a
function of the spring constant (kxb) for the tether (after
analyses by Kramers, 1940; Papoulis, 1991; Hunt et al.,
1994):

P~x! 5 @k9xb/2pRT#1/2exp@2k9xb~z2 zo!
2/~2RT!# (5)

This probability density function is multiplied by 1000 nm
s21 to obtain attachment rates that yield physiological force-
velocity behavior and net ATP hydrolysis rate (;1 ATP/
cross-bridge/s; Glynn and Sleep, 1985; Chase and Kush-
merick, 1995). This formulation of attachment provides a
direct connection between the cross-bridge spring constant,
force generation, and the likelihood for attachment. The
remaining two transition rates (r23 and r31) followed from
earlier analyses (Pate and Cooke, 1989) and depend on
cross-bridge distortion:

r12 5 1000@k9xb/2pRT#1/2exp@2k9xb~x 2 xo!
2/~2RT!# (6a)

r23 5 10001 5000/exp~x! (6b)

r31 5 x . 0: 2x; x # 0: 2100x (6c)

The numerical constants in the above equations are set to
have units that give appropriate dimensions in the rate
functions. Thus, in Eq. 6b, distortion is normalized to 1 nm,
and the two numerical constants have units of s21. In Eq. 6c,
the numerical constants have units of nm/s.

Although myriad strain dependencies can be posed, this
particular set gives reasonable force-velocity behaviors (see
Simulation Results). We follow Pate and Cooke’s (1989)
assumption that in the unbound state, the cross-bridge binds

favorably in a forward position (;7 nm), and after the
release of Pi, that 7-nm offset is removed, andxo 5 0
corresponds to the strain-free position of the cross-bridge.
Such a 7-nm offset corresponds to approximately a 50%
efficiency in the conversion of ATP energy (one hydrolysis
of phosphate) to mechanical energy. Moreover, the change
in rest length drives the free energy changes in a direction
that favors force generation through the cross-bridge cycle.

We use a Monte Carlo simulation to compute instanta-
neous force development and ATPase rates. At each time
step of durationdt, the state of each cross-bridge is exam-
ined, and the probability of a transition is computed from
the distortion of the cross-bridge if bound (states 2 and 3),
or from the distance to a binding site if unbound (state 1).
For an unbound cross-bridge, the search algorithm seeks the
two nearest available binding sites. For these binding sites,
the probability of binding is computed from the rate con-
stants (p12 5 dtr12). Thus the probability of binding to either
of these sites is calculated, and the larger of these proba-
bilities is used in computing the likelihood of attachment
(usingkxb 5 1 pN/nm in Eq. 6a, a myosin head effectively
needs to be within 2 nm of a possible binding site to have
any appreciable probability of attachment—those myosin
heads residing in the intervening space (.2 nm) have such
low binding likelihoods as not to affect any computational
results). If that probability exceeds a random number gen-
erated at that time step, binding occurs.

For a bound cross-bridge there are three possible situa-
tions: 1) it may undergo a forward transition with probabil-
ity r ijdt; 2) it may undergo a reverse transition with proba-
bility r jidt; or 3) it may remain in its current state with
probability 12 dt(r ij 1 r ji ). To simulate this set of situations
we use a two-tailed probability function to determine the
likelihood of either forward or reverse transitions giving rise
to three intervals:

reverse transition: [0 . . . Pji ]
no change: [Pji . . . (1 2 Pij )]
forward transition: [(12 Pij ) . . . 1]
Thus the right tail of the distribution corresponds to a

forward transition, the left tail corresponds to a reverse
transition, and the central lobe of the distribution corre-
sponds to no change of state. At each time step we compute
Pji and 1 2 Pij and compare these values to a random
number (between 0 and 1). The state transition is deter-
mined by where, in the above three intervals, the random
number falls.

Once the new state and distortion of each cross-bridge are
calculated from the above algorithm, we then solve at that
time step the instantaneous force balance (Eq. 2) to compute
a new distribution of myosin heads and binding sites. Our
set of 20 cross-bridges and 30 thin filament binding sites
gives rise to a 203 30 matrix for which we use L-U
decomposition and back-substitution algorithms in the ma-
trix solution. The distance to a binding site is computed for
each cross-bridge at each time step before solving the ma-
trix for the relative locations of binding sites (xj) and cross-
bridges (yi).
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The step size in the algorithm is selected to give a dwell
time in any state for any cross-bridge of;10 time steps. As
such, our typical simulation step size was set at 10ms for a
total simulation duration of 0.5 s. The simulations were
launched from an initial condition in which all cross-bridges
were unbound and all binding sites were available (fully
activated thin filament). Because of the stochastic nature of
this model, we ran 50 independent trials and averaged the
predicted instantaneous force and total ATP utilization.
Unlike traditional mass action models, which compute the
force by summing the contribution of all bound cross-
bridges, we computed the force on the first series spring in
the thick filament (see Fig. 1).

The mass-action model

Under an assumption of inextensibility in the filaments, we
can use the above three-state model and its state transitions
to derive an equivalent mass action model. We include this
to provide a direct comparison between our spatially ex-
plicit model and mass action approaches that have com-
monly been used (e.g., Pate and Cooke, 1989; Mijailovich et
al. 1996). We thus formulate continuous equations that are
integrated over the domain of one binding site repeat to
account for the Vernier effect of misregistration in investi-
gating the limiting behavior of rigid filament systems. Be-
low we account for both spatial and temporal transients with
a coupled system of partial differential equations. With
three states for the cross-bridge cycle, our analysis is an
expanded version of the recent two-state model of Mijail-
ovich et al. (1996) and is consistent with the cycle formu-
lation we have used above.

In deriving the equations, we must account for two mech-
anisms by which a set of cross-bridges in a particular state
and location enters or leaves that set; one is driven by state
transitions, and the other by motion (convection). In a
standard formulation (Bird et al., 1960) these fluxes of
cross-bridges may be combined to describe both the spatial
and temporal dynamics of the fraction bound in each state as
a hyperbolic, flux conservative equation:

­n/­t 5 K ? n 2 ­~V~t!n!/­x (7)

where n is a vector representing the fraction of cross-
bridges in each state (5 { n1, n2, n3}), K is the matrix of
transition rates, andV(t) is the instantaneous shortening
velocity. With the condition thatSni 5 1, the system of
three simultaneous equations for the three states reduces to
two with an offset vector (u):

­n/­t 5 K ? n 1 u 2 ­~V~t!n!/­x

n 5 $n2, n3%

u 5 $r12, r13%

K 5 2~r12 1 r21 1 r23!, ~r32 2 r12! (8)

~r23 2 r13!, 2~r31 1 r32 1 r13!

Equation 7 has two limiting behaviors: 1) for isometric
conditions (V(t) 5 0), the rightmost term vanishes and we
recover the familiar system of ordinary differential equa-
tions for a cross-bridge cycle; 2) for constant shortening
velocity, the rate of change of cross-bridges occupying any
one state with any one average distortion is zero (­n/­t 5 0).
In this latter case, the resultant ordinary differential equa-
tions are identical to those used by Pate and Cooke (1989)
for computing force-velocity relationships. In its full form,
Eq. 7 permits simulation of both temporal and motion
(spatial) transients.

Importantly, Eq. 8 also gives some insight into the pos-
sible contributions of filament compliance to the dynamics
of the cross-bridge cycle. Expansion of the rightmost term
gives rise to the following:

­n/­t 5 K ? n 2 V~x, t!­n/­x 2 n­V~x, t!/­x (9)

The first right-hand term in Eq. 9 contains the traditional
flux balance due to state transitions, and the second term
contains the spatial flux due to motion. The third term,
however, contains the contribution of filament distortion
(dilation or compression of binding sites) to the total bal-
ance of fluxes. This is because it measures the spatial
gradient in the motion of binding sites (­V(x, t)/­x). If, as
shown above, there is no dilation, the spatial gradient of the
motion is identically zero. However, in the presence of
nonzero compliance, such a spatial gradient can exist. For
example, a strain rate gradient of only 100 s21 could have
profound consequences for our accounting of filament com-
pliance, essentially introducing another “state” into the
problem. This result highlights the potential importance of
compliance in either mass action or spatially explicit
models.

It is critical to note, however, that the strain rate gradient
(­V(x, t)/­x) in Eq. 9 depends upon how many cross-bridges
are bound to the thin filament and their specific location.
Furthermore, because the geometry of binding sites and
cross-bridges is unspecified in such models, in the presence
of compliance, solutions to Eq. 9 are not possible, even with
numerical schemes. However, with zero compliance (rigid
filaments) the gradient term is zero and the equations,
although nonlinear, can be solved numerically. Here we use
this zero compliance condition to compare mass-action
(rigid filament) models against our spatially explicit model
with compliance.

We developed a numerical method to solve Eq. 9 (with
zero compliance) based on implicit time differencing and an
upwind spatial differencing scheme (Press et al., 1992). We
computed, therefore, the fraction of cross-bridges bound in
each state. In turn, we use these fractions, along with the
spring constant of the cross-bridge, to compute the total
force by integration over all possible binding sites, account-
ing for the Vernier effect of binding site distribution:

F~t! 5 1/asE
2as/2

1as/2

kxb~n2~x 2 xo! 1 n3~x!!dx (10)
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SIMULATION RESULTS: MODEL TESTING

Here we compare our spatially explicit, compliant model
and our mass action model (with zero compliance) to ex-
amine the consequences of filament compliance for dynam-
ics of force generation. We use several tests, drawing
heavily on published experimental observations of the me-
chanical behavior of active muscle.

Peak deformations within the lattice and
periodicity changes

Two recent x-ray diffraction studies of striated muscle
(Huxley et al., 1994; Wakabayashi et al., 1994) showed
significant periodicity changes in thin filament structure
during maximum tension generation. In particular, the actin
monomer spacing increased by;0.2–0.3% from an initial
value of;2.7 nm. For a thin filament 1mm long, maximum
activation would lead, therefore, to a length change of;2
nm in all. Our simulation, using separate data for thin
filament compliance (65 pN/nm for a 1-mm thin filament;
Kojima et al., 1994), shows a much more conservative value
for thin filament deformation (0.2 nm, Fig. 3), whereas a
10-fold increase in filament compliance more closely
matches the 2-nm measurement. Several factors, however,
are critical in understanding this difference. First, our model
examines only the interaction of one thin filament with one
thick filament. In reality, however, each thin filament inter-

acts with cross-bridges from three thick filaments, giving
rise to three times the total force. Furthermore, Isambert et
al. (1995) indicate that the compliance of the thin filament
may strongly depend upon its level of activation. For a
regulated thin filament (with tropomyosin and troponin), the
stiffness can fall by a factor of;3 when calcium is present.
This additional decrement in the stiffness, combined with
the threefold amplification of force due to the actin-myosin
ratio, leads to a total distortion of 1.8 nm, far more consis-
tent with the measured value of;2 nm.

For any nonzero level of compliance in the filament
lattice, our results show an important inhomogeneity in thin
filament strain (Fig. 3). At the left (free) end of the thin
filament (see Fig. 1), where no cross-bridges bind, there is
logically no strain (also with zero compliance, there is, of
course, no strain anywhere in the thin filament: theabscissa
in Fig. 3). As cross-bridge forces accumulate along the thin
filament toward thez disk, strain rises nonuniformly. Each
increase is associated with the accumulation of force from
one additional cross-bridge. Note that the strain jump asso-
ciated with the binding of each additional cross-bridge
varies along the thin filament, with larger values occurring
on the interior of the thin filament. Because the force borne
by each cross-bridge is directly proportional to that strain
difference, our results also show a spatial inhomogeneity in
cross-bridge forces. Such inhomogeneities in cross-bridge
forces are problematical for mass action models that assume
no dependence on location along a thin filament.

A key issue here is that compliance introduces a realign-
ment of binding sites in response to cross-bridge forces, as
seen with the strain distribution in the thin filament (Fig. 3).
Thus local binding site motion could be crucial for under-
standing the dynamics and mechanics of the cross-bridge
cycle, a result consistent with that of Mijailovich et al.
(1996).

Energetics, isometric tension, and
fractional binding

The filament distortions resulting from cross-bridge forces
noted above have two important consequences. First,
greater compliance generally leads to greater isometric
force generation (Table 1). This result follows from a
greater probability of attachment with increased compli-
ance. Moreover, we predict a rather conservative range of
attachment probabilities (;0.2–0.3) with rather significant
changes in isometric force. A second result is that, over a
rather broad range of filament compliance values, we pre-
dict a conservative range of ATPase rates (between one and
three ATP/cross-bridge/s) that agrees nicely with experi-
mentally observed values (Chase and Kushmerick, 1995;
Crow and Kushmerick, 1982).

Intriguingly, although greater compliance is generally
manifested as greater tension and higher binding probabil-
ity, that increased tension occurs with a disproportionately
higher ATP utilization rate. Thus compliance not only af-

FIGURE 3 Calculated strain (% local distortion) along the thin filament
for a thin filament spring constant of 1743 pN/nm (black dots; Kojima et
al., 1994) and for a spring constant of 174.3 pN/nm (gray dots, bottom).
The more compliant value (lower spring constant) gives an average strain
that is consistent with the x-ray data from Huxley et al. (1994) and
Wakabayashi et al. (1994). In both cases, the strain is highly nonuniform,
with discontinuities corresponding to binding locations of cross-bridges.
Because of the stochastic nature of our simulations (and that of thermal
force cross-bridges), the strain inhomogeneities are not pure step functions.
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fects the tension developed, but also the “efficiency” of
contraction (tension/ATP/cross-bridge/s; see Crow and
Kushmerick, 1982). Because our model deals explicitly
with the filament geometry, we can probe this interaction of
sarcomere length and compliance in a way that is not easily
done with a mass action modeling approach. Indeed, for a
sarcomere length of 2.5mm, there is a local maximum for
the efficiency of contraction that corresponds to the stiffness
estimates from Kojima et al. (1994); for a 2.2-mm sarcomere
length, this maximum occurs with stiffer thin filaments.

The above results show a clear dependence of isometric
tension on sarcomere length. This dependence is further
illustrated by a simulation of isometric tension for a wide
range of sarcomere lengths showing results similar to those
reported by Gordon et al. (1966) (Fig. 4). In our results,
there is a plateau region between 2.0-mm and 2.3-mm sar-
comere length. The tension declines to zero at a sarcomere
length of 3.7mm. The variation from a linear decrease in
tension on the descending limb of the graph results from 1)
the small number of contributing cross-bridges (;4 at full
filament overlap: of 20 possible cross-bridges, this corre-
sponds to 20% cross-bridge recruitment, a value consistent

with that suggested by Howard (1997)), 2) changes in
binding site registration, and 3) realignment of binding sites
in response to cross-bridge forces, all of which depend on
sarcomere length. Despite this variation from the monotonic
decline observed in intact muscle preparations (Gordon et
al., 1966), there is good agreement between the spatially
explicit model and experimental data. Because mass action
models do not account for filament geometry, these simu-
lation results are unique to a spatially explicit model.

Force-velocity behavior

Simulations of force-velocity behavior show several intrigu-
ing results (Fig. 5). Our predictions exhibit a force-velocity
behavior qualitatively similar to that shown experimentally:
1) we predict a maximum contraction velocity (Vmax) of
;1.5 half-sarcomeres/s; 2) there is an inflection in the
force-velocity curve at low shortening velocities, a predic-
tion that is consistent with Edman’s (1988) “double hyper-
bola” response for low shortening velocities; and 3) there is
a marked increase in force, compared to the mass action
prediction (solid line in Fig. 5), with active lengthening of
fibers. Although predictions forVmax can result from many
traditional mass action kinetics models (e.g., Pate and
Cooke, 1989; Piazzesi and Lombardi, 1995), the inflection
of the force-velocity curve at low velocities and the increase
in force during active lengthening have both been problem-
atical (Harry et al., 1990). Thus the spatially explicit model
is an improvement over mass action models in this regard.

As with our analyses of isometric tension above, binding
site realignment plays a crucial role in our interpretation of
the predicted force-velocity behaviors. The inflection of the
force-velocity curve near low shortening velocities arises
from the contribution of both motion-induced translocation
of binding sites as well as a realignment of binding sites in
response to cross-bridge forces. At these low shortening and
lengthening velocities, the dynamics of force generation are
dominated by this binding site rearrangement—forces are
higher than predicted from our mass action model because

TABLE 1 Predictions from the Monte Carlo simulations for isometric force generation

SL
Thin

compliance
Thin
stiff ATPase To To/ATP Pbinding xb dist.

2.5 0.1 10.0 1.26 12.87 10.23 0.19 1.36
2.5 1.0 1.0 1.09 12.68 11.63 0.19 1.40
2.5 10.0 0.1 1.58 16.18 10.22 0.22 1.47
2.5 100.0 0.01 3.63 20.24 5.57 0.31 1.61
2.2 0.01 100.0 1.85 17.08 9.23 0.26 1.82
2.2 0.1 10.0 1.89 19.45 10.28 0.27 1.82
2.2 1.0 1.0 2.01 19.80 9.83 0.27 1.82
2.2 10.0 0.1 2.08 20.20 9.73 0.27 1.71
2.2 100.0 0.01 4.02 21.66 5.39 0.31 1.69

We varied sarcomere length (SL inmm; 2.2 and 2.5) and the stiffness of the thin filament (Thin stiff: varied from 10, 1, 0.1 and 0.01 times the value reported
by Kojima et al. (1994)). We monitored the ATPase rate (ATP/cross-bridge/s), the total tension (To in pN), the efficiency of contraction (To/ATP/cross-
bridge/s), the mean binding probability (Pbinding 5 fraction bound), and the mean distortion of bound cross-bridges (xb dist in nm). We note increased
tension with increased compliance (lower stiffness), but only at the expense of increased ATP utilization. The variances in the mean tension data areall
;0.8 pN.

FIGURE 4 The predicted relative tension is plotted against sarcomere
length for simulations that used the spring constants and geometric param-
eters shown in Fig. 3. The plateau of tension extends to;2.3 mm. The
tension declines to zero at a sarcomere length of 3.7mm. Because of the
misregistration of binding sites and myosin heads and because very few
cross-bridges contribute to force production, there is some variation in the
tension, and its decline is not cleanly linear.
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there is an effective recruitment of binding sites to unbound
cross-bridges. At high shortening velocities, the dynamics
of strain-induced release of cross-bridges dominates ob-
served dynamics. Here, predictions from the mass action
and the spatially explicit models converge.

Compliance plays a crucial role here. Lower filament
compliance leads to the mass action limit, with less increase
in tension for active lengthening and a modest change in the
inflection of the force-velocity behavior at low velocities.
When compliance is increased to values that would mimic
the 2-nm extension observed from x-ray data, the force-
velocity behavior more closely approximates measured
values.

Tension transients in response to step changes
in length

Rapid length transients applied to single muscle fibers have
formed an experimental underpinning of our understanding

of the cross-bridge cycle, giving rise to the classic T1 and
T2 behaviors (Ford et al., 1977). These measures of me-
chanical responses are interpreted, respectively, as rapid
redevelopment of tension by bound cross-bridges (on the
order of milliseconds) followed by slower cycling of cross-
bridges (Ford et al., 1977, 1981). Our simulations of rapid
length perturbations also show behaviors qualitatively con-
sistent with those reported experimentally (Fig. 6). Al-
though the predictions for very large step changes in length
deviate from observed behaviors, several crucial results
arise from all of our analyses. In particular, tension recovery
consists of two phases: an initial rapid increase in tension
followed by a slower phase. In our results, the more rapid
phase is associated with a 25% increase in the fraction of
bound cross-bridges due to realignment of binding sites. In
time, some of those that were bound before the length
perturbation become negatively strained and, ultimately,
release. This release of negatively strained cross-bridges is
manifested as a rise in total tension. Thus, immediately after
the length transient, the fraction bound initially rises and
then declines.

DISCUSSION

In this study we have examined the consequences of fila-
ment compliance with the dynamics of force generation by
comparing two models: 1) a spatially explicit model of
cross-bridge cycling in the context of local force balances
within a compliant filament lattice, and 2) a simple mass
action kinetics model that assumes zero compliance. A
central issue here is that filament compliance leads to some
level of dilation or compression of thin filament binding
sites in response to cross-bridge forces. Therefore we asked
whether, with observed estimates of filament and cross-
bridge compliances, such redistribution of binding sites
affects our interpretation of the force generation in muscle.

Our spatially explicit model successfully predicts a rather
wide set of observed behaviors for contracting skeletal
muscle that, in some instances, are beyond the predictive
capacity of simple mass-action models. Filament strains,
force-velocity behavior, and tension transients during step
length changes all show predictions that encompass exper-
imentally observed behaviors. In addition, two intriguing
results emerge from the combined set of tests of the model.
First, there is an important inhomogeneity in thin filament
strain. Second, there is a realignment of binding sites in
response to cross-bridge forces. Both of these issues can
alter our present views of how cross-bridges generate force
within the lattice of compliant filaments.

Strain inhomogeneity

In isometric conditions, the strain inhomogeneity shown in
Fig. 3 is present regardless of the amount of compliance
within the filament. Its magnitude, however, is sensitive to
the level of compliance, tending toward zero at zero fila-

FIGURE 5 Model predictions for the force-velocity behavior are shown
for three different simulations, all of which assume an initial sarcomere
length of 2.5mm: the curve corresponds to the force-velocity predictions of
the mass action (partial differential equation) model, the black dots corre-
spond to the Monte Carlo simulation with a thin filament spring constant
of 1743 pN/nm, and the gray dots correspond to the Monte Carlo simula-
tion with a thin filament compliance of 174.3 pN/nm. All of these simu-
lations converge at large shortening velocities (low force), giving rise to a
maximum shortening velocity of 1.5 half-sarcomere lengths/s. Significant
deviation between the various models is seen at low shortening velocities
(near isometric force). Filament compliance leads to greater force at low
shortening velocities, with a change in the slope of the force velocity
hyperbola that is consistent with Edman’s (1988) observation. Further-
more, thin filament compliance leads to a significant increase in force for
active lengthening. These increases in force are greater for the lower value
of the thin filament spring constant (higher compliance).
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ment compliance. For a compliance that would give rise to
a 2-nm extension of the thin filament, as predicted by x-ray
data (Huxley et al., 1994; Wakabayashi et al., 1994), we

predict an inhomogeneous strain whose average is;0.2%
of the total sarcomere length. This inhomogeneity along the
thin filament implies that cross-bridge forces are also non-
uniform along each of the filaments. Large spatial changes
in strain correspond to large forces. Thus the dynamics of
cross-bridge cycling, as mediated by binding availability,
must also vary along the thin filament. Indeed, it is possible
to have higher cross-bridge cycling near the free end of the
filament, where forces are lower and binding site move-
ments are larger. Thus the assumption implicit in mass
action models that cycling does not vary along any one
filament is contradicted by this observation.

Although strain inhomogeneities are clearly important,
their magnitude is sensitive to the values for filament spring
constants and those for the cross-bridges. Unfortunately,
there appears to be some uncertainty about these: direct
force measurements of thin filaments can vary by a factor of
3 (Kojima et al., 1994; Isambert et al., 1995). These, along
with uncertainty in cross-bridge spring constants, confound
a clear prediction of the actual level of strain with the
filament. We have also argued that accounting for the ge-
ometry of the filament lattice is crucial in understanding
how x-ray data for thin filament distortion can be explained
in the context of direct measurement of thin filament me-
chanical properties. However, in the current form of our
model—a highly reduced geometry of just two interacting
filaments—we can only indicate a critical role for compli-
ance in determining force generation. A fuller, three-dimen-
sional model would be required for a more complete under-
standing of the spatial distribution of forces within the
filament lattice. Nevertheless, even with our simple filament
geometry, we are able to show that the strain inhomogeneity
resulting from filament compliance introduces a function-
ally important mechanical coupling between cross-bridge
cycling and the spatial distribution binding sites.

Compliant realignment of binding sites

A fundamental phenomenon underlying all of the simula-
tions, regardless of our uncertainty with spring constants, is
that binding sites rearrange in response to cross-bridge
forces. The consequences of this compliant realignment of
binding sites (CRB) follows from the unequal spacing of
cross-bridges and binding sites (unstrained,;43 nm in the
thick filament and;37 nm in the thin filament; Gordon,
1989). Without force generation, only a small fraction of the
cross-bridges are actually within 2 nm of a binding site and
thus have binding probabilities that exceed 0.1. Thus, for a
rigid filament model considered here, only a small fraction
of cross-bridges can be bound at any time. Whereas Mijail-
ovich et al. (1996) predict rather high binding probabilities
(reaching 1.0), our results suggest otherwise. However,
when one cross-bridge binds, CRB makes available binding
sites that were previously inaccessible to other unbound
cross-bridges. Similarly, CRB will alter the kinetics of

FIGURE 6 Predictions for rapid length transients derived from the av-
erage of 50 runs in which we used the geometric and mechanical properties
summarized in Fig. 1. (A) The relative force for a step shortening of 2.5 nm
per half-sarcomere plotted against time. These results show rapid tension
recovery after T1 that precedes a slower recovery phase. (B) Plot of the
instantaneous fraction of bound cross-bridges for an expanded time scale
(0.1–0.2 s) to show an initial rise in cross-bridge binding followed by a
decline. The slower decline in cross-bridge binding correlates with the
slower rise in tension after T2. From these simulations of a variety of step
changes in length, we computed the T1/To (thin solid line) and T2/To (thin
broken line) behaviors (see Ford et al., 1981) and plotted them against the
magnitude of the step length change (C). Also shown are the measured
values (F) for T1/To from Ford et al. (1981). Our analysis captures much
of the behavior shown by Ford et al. (1981), but T2/To is too high for large
shortening steps. The T1/To behavior has anx-intercept that is consistent
with experimentally observed values (Ford et al., 1981). Changes in thin
filament compliance lead to changes in the T1/To behavior, with stiffer
filaments having a steeper slope (10-fold stiffer;thick long-dashed line),
and more compliant (10-fold less stiff) filaments having a shallower slope
(thick short-dashed line).
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cycling between the bound states and the kinetics of detach-
ment, because these transitions depend upon the local strain
of any one cross-bridge. That CRB strongly determines the
mechanical events underlying muscle contraction raises
concerns about how we interpret mechanical transients in
light of cross-bridge theories.

CRB modulates the dynamics of the force-velocity be-
havior and rapid length transients. In the former case, CRB
gives rise to an inflection in the slope of the force-velocity
curve at low velocities (Fig. 5). This inflection arises from
the realignment of binding sites, bringing into view those
that were previously inaccessible to otherwise unbound
cross-bridges. Similarly, this realignment helps explain ten-
sion transients that follow from rapid length changes (Fig.
6). Here, too, binding site motions modulate cross-bridge
cycling. In this latter case, a rapid increase in tension
follows from CRB, again with previously inaccessible bind-
ing sites becoming available to otherwise unbound cross-
bridges. As noted above, the slower rise in tension follows
from the release of bound cross-bridges that became nega-
tively strained after the rapid recruitment of new cross-
bridges to the population. These model predictions are gen-
erally consistent with experimental studies suggesting that
the detachment dynamics of cross-bridges are important
components of tension redevelopment after rapid length
changes (Piazzesi et al., 1997; Seow et al., 1997).

If CRB is generally important to muscle function, then
filaments may be either too compliant or too stiff for effec-
tive force generation. We addressed this issue by simulating
the maximum isometric tension generation as a function of
both thin filament and cross-bridge spring constants (Fig.
7). Our results show mechanical tuning with an ensemble of
motor molecules coupled in a lattice of compliant filaments.
Such tuning follows from two key issues. First, filaments
with low compliance do not permit appreciable CRB and, as
such, lead to generally lower binding and force production.
However, if filament compliance is too great, extensive
CRB leads to situations in which cross-bridges do work
upon each other, reducing the total force. Similarly, cross-
bridges that are too stiff may not have sufficient mobility to
find binding sites with a reasonable probability (see Eq. 6a);
those that are too compliant may bind with high probability,
but do so with little force production.

The peak value of tension (Fig. 7) occurs when the local
spring constant of the thin filament is;250 pN/nm. This
value is lower than our estimate of 1743 pN/nm (for a
37.3-nm-long piece of thin filament) on the basis of the data
from Kojima et al. (1994). But, as we noted earlier, there are
cross-bridges from three thick filaments acting on each thin
filament. Furthermore, the data from Isambert et al. (1995)
indicate another factor of 2 or 3 in decreasing thin filament
stiffness due to calcium activation. Thus the tuning peak
occurs where the thin filament compliance would be high
enough to capture the thin filament deformations measured
by Huxley et al. (1994) and Wakabayashi et al. (1994).

Our results suggest that mechanical tuning emerges from
the ensemble of kinetic and mechanical events within the
lattice of muscle proteins. Significant deviations from the
range of observed mechanical properties may have pro-
found consequences for the performance of contractile sys-
tems. Although the compliances of thin filaments, thick
filaments, and cross-bridges may be rather conservative, the
linear arrangement of these elastic springs suggests an in-
triguing mechanism by which natural variation in the ge-
ometry of the sarcomere may strongly influence both the
tuning and dynamics of force generation. For example, a
series of thin filament springs (ka 5 1743 pN/nm), each 37
nm long, yields a total spring constant of;65 pN/nm for a
thin filament 1 mm long (see above). This total spring
constant decreases linearly with increasing filament length
(5 ka/M). Therefore, the total distortion induced by cross-
bridge forces will depend upon thin filament length, and
accordingly, the shape of the tuning curve and the dynamics
of cycling will depend upon a parameter that varies signif-
icantly across species and muscle types (thin filament
lengths vary from 0.3 to 6mm; Hoyle, 1983).
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FIGURE 7 Mechanical tuning of a sarcomere with compliant filaments.
Tension is plotted against the thin filament spring constant (ka) and the
cross-bridge spring constant (kxb). There is a sharp peak in tension gen-
eration that follows from compliant realignment of binding sites: thin
filaments with highka do not permit additional recruitment of cross-
bridges, whereas those with lowka deform to an extent that releases the
strain in cross-bridges. The tuning peak corresponds to a thin filament
spring constant of;250 pN/nm, a value 10 times lower than that reported
by Kojima et al. (1994), but one that gives strain predictions consistent
with those estimated by Huxley et al. (1994) and Wakabayashi et al. (1994)
(see Fig. 3).
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