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Physical Mechanisms for Chemotactic Pattern Formation by Bacteria
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ABSTRACT This paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the
presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria
organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by
known biochemistry and necessary and sufficient for swarm ring migration and aggregate formation. Swarm rings migrate in
the absence of an external chemoattractant gradient. The ring motion is caused by the depletion of a substrate that is
necessary to produce attractant. Several scaling laws are proposed and are demonstrated to be consistent with experimental
data. Aggregate formation corresponds to finite time singularities in which the bacterial density diverges at a point.
Instabilities of swarm rings leading to aggregate formation occur via a mechanism similar to aggregate formation itself: when
the mass density of the swarm ring exceeds a threshold, the ring collapses cylindrically and then destabilizes into aggregates.
This sequence of events is demonstrated both in the theoretical model and in the experiments.

INTRODUCTION

Over the last 25 years, there has been a rapidly growingypical assays for motility are engineered so that there are
understanding of the mechanisms through whiesche-  sufficient nutrients for normal survival; if, however, these
richia coli moves in response to external conditions (Berg,nutrients are used up, there can be transitions in the internal
1988). By focusing on how a single bacterium responds tatate of the bacteria, affecting their motion. For example,
its environment, a microscopic picture of how bacteriawhen bacteria exhaust the exogenous carbon source, their
process external information has emerged. motility increases transiently (Amsler et al., 1993). On the

Under normal conditions, a&. coli cell consists of an  other hand, exhausting oxygen causes the bacteria to imme-
elongated body, to which several flagella are attached. Eacliately stop moving (Khan and Macnab, 1980). Another
flagellum is propelled by a rotary motor. There are twocommon environmental response is chemotaxis (Pfeffer,
modes of operation of this motor, clockwise and counter-1884; Stock and Surette, 1996), in which cells move up an
clockwise. When the individual flagella rotate counter-external chemical gradient. This response has an origin
clockwise, they form a bundle, and this bundle propels thejifferent from that of the physiological response described
bacterium forward (Block and Berg, 1984; Blair and Berg, ahove: chemotaxis does not occur to fulfill an immediate
1988); when the flagellum turns clockwise, the motions ofpytritional need, nor does it necessarily reflect an attempt to
the individual flagella are independent of each other, causayoid starvation. Indeed, cells can undergo chemotaxis to-
ing the cell to randomly change its orientation. These tWQyard attractants that do not serve any metabolic process
types of behavior were discovered by Berg and Brownynatsoever.
(1972), who dubbed the forward propulsion stage (counter- pqr £, coli, chemotaxis occurs by constant sampling of
clockwise rotation) “runs” and the erratic turning stage aitractant as they move. Careful measurements demonstrate
(clockwise rotation) “tumbles.” The motion of the cell over 4t the bacteria compute a weighted difference between the
long times is determined by the distribution of runs andgmaynt of attractant that binds to their receptors during the
tumbles. The mean of a run is on the orderof= 1S, yrevious second of motion and the amount of attractant that
whereas the mean time for tumbles is an order of magnitudg ¢ pound during the three preceding seconds (Segall et al.,
shorter. Ifvis the propulsion speed during the run, € 1955y The weighting function used for this computation
coli cvezlls perform a random walk with diffusion constant was directly measured in impulse response experiments on
D=vr ) _ single bacteria. When the convolution of the weighting

The_ enwronment must cpntam chemicals S0 that 'Fhefunction with a stimulus is positive, the probability of tum-
bacterium can live and function normally. Ba_cterla r_equweb”ng decreases; this effectively increases the length of runs
a carbon source, an energy source, and inorganic saltﬁ1 directions of increasing attractant gradient.

The combined effect of the physiological and chemotac-
) — o tic responses of the bacteria motion results in nontrivial
Received for publication 21 May 1997 and in final form 12 DecemberCO”eCtiVe behaviors, which have been the focus of inquiry
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consumption of the substance generates an attractant gradiotactactic drift, and division of bacteria. Equation 2
ent, which provokes chemotaxis. The net response is axpresses the diffusion and production of attractant.
well-defined band of cells moving across a capillary tube or ForE. coli, Schnitzer et al. established a direct connection
a petri dish (Adler, 1966, 1969). (Schnitzer et al., 1990; Schnitzer, 1993) between the param-
Recently, Budrene and Berg (1991, 1995) found condieters governing the dynamics of the bacterial dendity (
tions in which more complex patterns can form in an envi-andk) and time-averaged properties of the impulse response
ronment that is chemotactically inert. In contrast to Adler'sfunction. There is, therefore, a direct connection between
experiments, the environmental conditions induce the bache response function of a single bacterium and the collec-
teria to excrete an attractant (aspartate) toward which theyve response of macroscopically many bacteria, providing a
undergo chemotaxis. The excretion of attractant means thajgorous justification for the equations for the densjty
there is effectively a long-range interaction among the bacgndc.
teria. These conditions produce patterns that are dramati- However, several recent numerical studies (Bruno, 1992;
cally different from Adler’s initial experiments. Typical \woodward et al., 1995; Ben-Jacob et al., 1995; Tsimring et
experiments are performed on agar plates, in which the aggy]., 1995; Tyson, 1996; Tyson et al., unpublished manu-
concentration is low enough that the bacteria can mov@cript) have argued that the physical processes included in
freely. The type of pattern depends strongly on the amoungqs. 1 and 2 are insufficient to explain the Budrene-Berg
of a single carbon and energy source (succinate) that igyperiments. In these works several qualitatively different
uniformly distributed in the dish. Exposure to succinate ISphysical mechanisms were proposed for modeling (numer-
required for bacteria to perform intracellular reactions P'O5cally generated) patterns that roughly “look like” the ex-
ducing the attractant. At low succinate concentrations, th%eriments. The invoked mechanisms ranged from simple

bacteria originate in the center of the petri dish and form g iations on the model such as nonlinearity in the chemo-
swarm ring that propagates toward the boundary. At h|ghe{ ctic coefficient (Woodward et al., 1995; Keller and Segel,
succinate concentrations the swarm ring destabilizes an 70), to novel ideas such as the existence of a second

prclnldtéces a syrtnmetrlcal array of dense compact structur%pe”em field or the autocatalytic production of attractant
cafied aggregates. triggered by waste (Ben-Jacob et al., 1995; Tsimring et al.,

The focus of the present paper is to present a theoretlcilg%)_ Because all of these studies produced pictures that

framework for understanding these experimental results. An o . . o .
. . . look qualitatively like the experiments, it is unclear which

adequate theory requires understanding which aspects of the” " .% . )
sPecmc features are responsible for the pattern formation.

phenomenology are chemotactic, and which aspects reflec The goal of this paper is to formulate a minimal theory to

the changing chemical environment around Eheoli. Our X - :
analysis will show that the movement of the swarm rings isexplaln the mpst robu_st features of the e>.<|st|n.g experiments,
due to the depletion of succinate around the band of bacter>"9Y known information about the physiological responses

ria: chemotaxis holds the band together, but the net motioﬁft?(.a |nd|V|d_utaIEt. cqtl;.] \i\r/]e skeek themeEt S|m?llf|ed(;nodel
is not caused directly by chemotactic fluxes. In contrast, at Is consistent wi € known biochemistry and repro-

aggregates result from a purely chemotactic response in tl.%uces the key phenomonological aspects of the experi-

system, depending only weakly on environmental condiments. Itwill turn out that, as anticipated by the experiments

tions. As long as the bacteria produce attractant, it is postBudrene and Berg, 1995), all that is necessary for the
sible for aggregates to form. pattern formation is the bacterial density, the attractant, and

a chemical that is necessary for the production of attractant
by the bacteria. (Recent work (Tyson, 1996; Tyson et al.,
MATHEMATICAL MODEL unpublished manuscript) has also simulated a model with
only these three ingredients, in an effort to reproduce the
There is a long history of mathematical modeling of baCte‘Iarge-scaIe patterns of the Budrene-Berg experiments. The
rial pattern formation. The bgsic equations for the bacteriabresem work focuses more closely on the mechanisms for
densityp and the attractant field are ring propagation and aggregate formation.) The model leads
_ 2 to analytic solutions corresponding to both rings and aggre-
op = DuV'p = V- (koVe) + 2p @) gates. The analysis yields qualitative predictions and scaling
9. = DV + ap. ) laws relating obseryable _qu_antities. These predictions are in
good agreement with existing experiments.
Equations of this type were first introduced (in this context) Below we discuss separately the two main structures that
by Keller and Segal (1970), and (with variations) have beerare observed in the Budrene-Berg experiments, rings and
the subject of extensive investigations (see, e.g., Murrayaggregates. Ring motion occurs on a slow, metabolic time
1989; Oster and Murray, 1989). Hem, is the bacterial scale, dictated by the details of the processes through which
diffusion constantk is the chemotactic coefficieng is the  the bacteria convert chemicals in their environment into
rate of bacteria divisiony is the rate of attractant produc- attractant. In contrast, the instability of the rings and the
tion or consumption, an®, is the chemical diffusion con- formation of aggregates are largely independent of the de-
stant. Equation 1 includes the diffusion of bacteria, a chetails of the environmental conditions, and depend only on
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coarse properties, such as chemotaxis and production &b the localized density profile

attractant by bacteria.
B M3 H(MO(X - Ut))

p=-g Sec a (6)

RING DYNAMICS The localization of bacteria in the band results from a

In this section we formulate a theory for the dynamics ofcompetition between chemotactic attraction and diffusive

swarm rings. Because the motion of the rings is slow,smearing. The velocity corresponds to an external attract-

metabolic effects are important, and it is necessary to deant gradient across the band. However, in the experiments

termine which environmental conditions cause the ring tono external gradient is imposed, so this solution is incon-

move. It will turn out that contrary to what might be sistent. (We note that in Keller and Segal’'s model of Adler’s

expected from dynamical Egs. 1 and 2, the relevant nonlinexperiments (Adler, 1966), the above model also does not

earities causing propagating rings is not the chemotactitead to moving bands (in that the cell density becomes

flux term, but instead involves the rate of attractant productionnegative!). Keller and Segal solved this dilemma by posit-
It is useful to begin by listing the time scales of the ing that the chemotactic coefficiektin Eq. 2 is a nonlinear

competing physical processes operating during swarm rinfunction of the attractant concentration.)

migration: consider a ring with characteristic thicknéss

and traveling velocityJ. The time that it takes for the ring

to move over its thickness is. = L/U. The time needed for Coupling to succinate

the attractant to diffuse over the ringss = L%D.. For the

A o How can motion occur without an externally imposed at-
Budrene-Berg experiments,~ 10"~ cm, andU ~ 1/3 X

ay o~ e tractant gradient? Note that unlike Adler’s original experi-
10" cm/s, yieldingre = 3 X 10%s, D, = 10 ®cn/s and  mens, in which bacteria create attractant gradients by con-
7> =~ 10% s. The other important characteristic time scale is

e e atabiells suming an attractant, in the present experiments the
that of bacterial division: the doubling time is aroungl, = 4giractant is actually produced. To understand how motion
10* s. These estimates give the orderipg< . < 74;,. The

i Ve By liv- 1 can occur, it is necessary to consider the mode of attractant
fastest process in the vicinity of the ring is the diffusion of

X =r production. The attractant (aspartate) is produced by the
attractant, and the slowest process is cell division.

- ] ) . enzyme aspartase from fumarate and ammonia:
This separation of time scales suggests two approxima-

tions for the local solution in the neighborhood of a ring. Succinate—~ Fumaratet Ammonia— Aspartate. (7
First, cell division only weakly modifies the structure ) ]
around the swarm ring, and so can be neglected. (Ceﬁ’resumabl_y, cells (_axposed to ;uccmate convert succinate to
division does induce a slow time variation of the number ofumarate via the tricorboxyl acid cycle:

bacteria in the ring. This has important consequences for the
dynamics, and will be considered in a subsequent section.)
Second, in the vicinity of the ring the attractant diffusesBudrene and Berg (1995) have shown experimentally that
much faster than the ring moves. Under these assumptionghe rate of aspartate production is determined by the con-

Succinate- H, — Fumarate. (8)

Egs. 1 and 2 become centration of exogenous succinate. This succinate is being
exausted by the cells during the experiments. In the follow-
ap = Vp — V- (pVo) (3)  ing, we will argue that it is the depletion of the succinate
5 that is necessary for the attractant production that drives the
0=V<T+p, (4)  motion of the ring.

The dynamical equations coupling the bacterial density,

where we have nondimensionalized by choosing the denSitXttractant, and succinate follow from the fact that the at-

2 B -
scaleDcD;/(akL"), the attractant scalBy/k, and the char tractant production rate is a linear function of the succinate

—cTb >
acteristic time scalée"/Dy, concentration. For local bacterial density the rate of

These equatllons are mcgpable of reprodupmg the rln%spartate production &pf, depending on the product of the
solutions seen in the experiments. To see this, we use t acterial density and the succinate concentration,

trans{prmﬁno-nv = Veandp = =V - v, yielding the This modifies the attractant production (Eq. 4) and re-
equation forv. quires an additional dynamical equation for the succinate
oV + (VoW =VV-v (5) concentration. Under the assumptions outjmed above about
the relative time scales of the various physical processes, the

In one dimension, this is the well-known Burgers equationfUll €quations become

(Burgers, 1948). This relationship between the chemotactic 90 = V2 — V- (oVeC 9
equations and Burger’s equations was noted independently ® p (pV) ©)
by R. E. Goldstein (private communication). A solution of 0=V&c+fp (10)

Eq. 5 for a traveling ring with mass per unit length, is
given byv = M, tanhMy(x — Ut)/4)/2 + U, corresponding 0. f= —vyp + BVH, (11)
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where we have nondimensionalized the equations using thee have not dropped the time derivative in the equation for
same scales introduced above for the density and attractatite succinate. The reason for this is that, as we will see
concentration, as well as the concentratigrof succinate below, substantial analytical progress can be made When
on the plate. The dimensionless succinate consumption igs much smaller tha,,. In the limit where food diffusion
is small 3 << 1), the traveling wave solutions can be solved
_ 1D exactly. Although this limit does not directly apply to the
Y= 25K’ (12) experiments, these exact solutions considerably clarify how
succinate coupling can cause ring motion. In the Appendix,
wherer is the rate of succinate consumption dbdis the  we also consider the limit wher®; ~ D, and show
diffusion constant for succinate. The parame8er D;/D,,  numerically that the qualitative properties of the exact so-
is a dimensionless measure of food diffusion. lutions for B << 1 are robust; in particular, the constraints
The most important issue in understanding travelingof matching to the outer solution are identical. In a later
bands is to understand what is actually driving the ringsection we consider a modified model for ring motion in
forward. There are two possibilities: 1) an imbalance ofwhich the correct limit is employed.
chemotactic fluxes, or 2) succinate consumption coupled The analysis begins by definir®= c’, so that the second
with attractant production. We will see below that the sub-equation becomeS = —fp. The equations can be solved
tleties of the bacterial response when the succinate is nearlyxactly by considering andSas functions of instead of a
exausted determine which of these two driving forces domfunction of x. This can be done with the transformation
inates. We will present two different models of the ring
motion: the first model studies Egs. 9—11. In a distinguished d_d_»d
limit, the model can be solved exactly, and it will turn out dx ' df uPaf’
that collective migration results from the fore-aft symmetry
breaking caused by succinate consumption. Indeed, theMshere the second equality follows from Eq. 15 (wih=
are forward-moving solutions even when the bacteria if?)- Equations 13 and 14 become
front of the band sense a negative gradient stronger than the
positive gradient sensed by the bacteria behind the band. pr = v (-U+9 (16)
The construction of a traveling band requires the match- Y
ing of two different regimes: on the scale of the front,
diffusion of attractant is fast (see above); far from the band S = _9 f
diffusion, diffusion is slower. The matching of the solution Y
for this model will present a paradox, that traveling solu- . . . . .
tions do not exist in steady state. In an effort to resolve thé’vhICh can be integrated immediately to give
problem, we introduce a second model that takes into ac- U
count the fact that when the succinate on the substrate is S=A—f? (18)
exausted, bacteria begin to consume aspartate. 2y

17)

U2
p:B+U/'y(A—U)f—wf3. (19)
Structure near the band Y
A traveling wave ansata(x — Ut), c(x — Ut), andf(x — Ut) ~ Imposing the boundary conditions thaif = fo) =
in Egs. 8—10 reduces the solution in the regime near the(f = 1) = 0 gives
front to the ordinary differential equations
Y | B= — U(6y)(fo+ 1))

—Up=p"—pc 13 ang
0=c'+fp (14) A=U + Ul(6y)(1+f,+ ).
—Uf" = —yp + Bf". (15) The velocity of the solution can be related to the mass

The imposed boundary conditions are that 1) the succinat%Ither by integrating Eq. 13 or just by computing

concentratiorf — 1 asx — «; 2) the succinate concentra-
p Ul—f
dxp = df—:fz Mo,

tion f — f; asx — —o, wherefy is a constant to be
f/

determined; and 3) the bacterial density approaches zero far
from the ring.

Before proceeding, let us comment on the approximatior$0
that has been made thus far. We have neglected the time
derivative of the attractant concentration by arguing that it U= Mo (20)
diffuses much faster than the bacteria. On the other hand, 1—fo
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The complete profiles are I '

DENSITY i
Mo 1+ f,+f3)  f?
S(f)_l—fo YFTe )72 (1)

2

S M e ‘
PN =g @ NE-fa+i+h. (@2 - ‘

The solution has two free parameteM, and f,. The /\
former is fixed by the number of bacteria in the ring; the

latter is fixed by the condition that the attractant gradient
behind the front§(f,) matches the attractant gradient far
behind the moving front. This matching condition fixgs w
behind the front, and thus the ring velocity. SUCCINATE

Before considering the matching condition in more detail, |
we remark on qualitative features of these solutions. An
interesting feature is that at smalthe ring moves forward,
even when the attractant gradient in front of the band has \
negative sign and is stronger than the gradient in back of the
band! Thus the motion of the ring does not result from an /¢URE 1 Traveling wave solution for the ring with, = 0. The
. . . . . _lowermost figure gives the succinate profile, the middle profile gives the
'mba_lance In _ChemOtaCtlc fluxes on the two sides of the rlngattractant concentration, and the uppermost profile gives the density pro-
but instead is a result of the effect of the depletion oOffje. Al profiles are forM, = 1, in the limit of smally.
succinate on the attractant production. As an example, when
fop = 0 andy = 1/12, the attractant profile is perfectly
symmetrical, and the band still moves at velocily =  essentially vanishes, and the succinate concentration is cor-

My/12. The role of the attractant gradient is to localize therespondingly constant. The equation for the concentration
bacteria in the band. The density profile is asymmetricalof attractant is

however, regardless of the attractant distribution, because of

the asymmetry in the succinate. e = Ve + p(x — Uf (x — U (25)
The spatial dependence follows from integratifig=

vlUp = p/Mg and using Eq. 22 fop(f). As an example, if

fo = 0, the solution is

T
I

/

wherepf is the source of attractant produced by the moving
band of bacteria. On a length scale much larger than the
width of the band, the attractant source can be approximated
( expMy/6x )1/2 by p(x — UDf(x — Ut) — B&(x — Ut). The strength of the
=\l . (23) delta functionp = [*. p(y)f(y)dy = My(1 + f)/2. The
2 coshMy/6x solution to Eq. 25 is

which implies the density profile

2 c(x, t) = fdmdt 7L (X, — Utp)ex —(X_XO)Z]
p = I\go(zexp_'\/l(}/lzal(z). (24) , 0 \j47T(t - to) 0 4(t - to) '
coshMy/6x (26)

This profile is plotted in Fig. 1 and is valid for all nonzero As t — o, after the transients die out, the concentration
v. Note the asymmetry in the profile: the decay rate of theapproaches the steady-state solution,
cell density on the trailing edge is slower than the decay rate
on the leading edge. The attractant profile and succinate CoualX, ) = %(1 +f) x<Ut 27)
profile are also shown in Fig. 1 in the limit of sma}l ouen 2U
The profile differs from that in the front (Eq. 6) found M
above for the case where there is no food consumption, = J(l + fe ¥ x> Ut
which is perfectly symmetrical. 2U

This solution must be matched to the front solution con-
structed above. The matching condition is that attractant
gradients Cé)uter(x)|xeut+ - 31)1 and Cé)uter(x)|><%ut, -
Now we consider matching to attractant gradients far fromY(f,), where§1) and(f,) are the far-field attractant gra-
the front. This matching determines the valudgdnd thus dients from the inner solution in Eq. 21. Note that because
the velocity of the ring. At a distand®@/U ~ 3 mm from  the jump in attractant gradient across the front is the same in
the front, it is not valid to assume that the attractant diffu-the inner and outer regions, the conditions3t) andS(f,)
sion is fast. BecausB /U is much larger than the charac- are equivalent. This matching condition leads to the deter-
teristic width of the band, in this regime the bacteria densitymination off,, and thus the velocity of the front.

Matching to outer solution
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We now proceed with the matching. Equation 27 impliesadditional experimental fact that is necessary: there is a time
that in steady state the matching condition is Bdt) = 0.  delay 74e10y ~ 20 min after which a bacterium in a low
Equation 21 implies thét, = ¥ = V9/16 + 3y. Neither of  succinate environment begins consuming aspartate. The
these solutions are in the physical ranges@, = 1. Thus  reason for this is that aspartate consumption uses a chemical
it is not possible to consistently match the two regimes! pathway different from that of succinate consumption,

The physical reason for this problem is that when thewhich requires a shift in the bacteria metabolism. (There is
attractant gradient behind the front vanishes, there is notha subtlety of aspartate consumption that we are not going to
ing to keep the bacteria in back of the ring from diffusing treat here: namely, succinate serves primarily as a carbon
away from the band. This difficulty is not a result of the source forE. coli. The bacteria also need nitrogen to func-
approximations employed, but is an inherent problem aristion normally. The primary nitrogen source is ammonia salts,
ing from the fact that the steady-state profile of a movingwhich are fixed in every experiment at the initial concentration
band producing a constant amount of attractant per unit timef 3 mM. Eventually, of course, the ammonia will be con-
has no attractant gradient behind the front. From formula 2umed. It is known that under these conditions aspartate
for the attractant profile in the band, the smallest attractanbecomes a nitrogen source (Reitzer, 1996). Hence aspartate
gradient that holds the traveling bands together occurs wheconsumption is probably triggered in the experiments both
fo = 0, whereS,;; = My(y + 1/6). by the depletion of the ammonia salts, as well as the

How is this problem resolved? depletion of succinate. We believe that the essential features

1. One possibility is that the traveling band seen in theof the model are the same in each case; because current
experiments is not in steady state. That is, there is insuffiexperiments systematically vary succinate (and not ammo-
cient time for the solution in Eq. 26 to approach steady statenia), we focus only on this case.) The consequence of this
The time it takes for convergence tg,.., depends on the time delay is that there is a region of s'lz@deelay~ 1 mm
boundary conditions on the attractant far behind the front. Irbehind the band, where the succinate concentration is es-
the experiments, there must be sufficient time for the atsentially constant and aspartate is not consumed. The size of
tractant production to fill up the entire interior of the swarm this region is larger than the width of the band, which
ring to the level dictated by the steady solution. Because thenotivates dividing the solution into three regions: the front
amount of time needed for attractant to diffuse across af the band, where attractant diffusion dominates; the back
typical swarm ring of radius 2 cm is on the order 0k410°  of the band, where attractant diffusion and consumption are
s and thus is already on the order of the total time of thébalanced; and the region of the band. For reasons that will
experiment, it is implausible that a steady state is reachediecome clear, within this model it is possible to proceed
Before the steady state is approached, there is a positivenalytically when the food diffusion constant is large (i.e.,
attractant gradient behind the band. As long as this gradierd; = D, the physically appropriate limit).

is larger than the critical gradie&,;;, the band will move The solution near the band obeys
forward. Of course, within this scenario, the ring motion is . ~
only a transient behavior. The reason the ring does not stop —Up" = p" = (pC)) (28)
in the experiments is that a steady state is not achieved 0=c +fp (29)
before the bacteria reach the end of the petri dish.

2. Another possible resolution is that the experiments are 0=f"—vp, (30)

in steady state and attractant is degraded behind the front. . ) o
When the succinate concentration is low, there is a natura?herey = (DpDcr)/(f.akDy). When the band width is much
mechanism for triggering aspartate consumption: namelyjarrower than the diffusive scale, the food equation de-
succinate serves as a carbon sourceEfocoli metabolism.  couples from the density and attractant equation. The suc-
When it is exausted, the only carbon source that is left foCiNate concentration is a constagtacross the band and
metabolic function is the attractant itself. Thus it is plausiblelnCr€ases to its initial value in front of the band. In this limit,
that under conditions of low succinate, the bacteria consumBCth p and c reduce to the Burger's profiles constructed
aspartate. In other experimental situations (e.g., the origingtP0Ve! The solutions are

experiments of Adler, 1966), aspartate consumption is com- 2 Mq(x — Ut)

mon. If such attractant consumption occurs, the rate of  pe= B sec ( 2 ); (32)

consumption would cause an attractant gradient behind the

band. The strength of the gradient would be determined by Mofo

the rate of degradation of attractant. Cinner = 5 tanf(Mg(x — Ut)/4) + U (32)
finer= A+ LMO tanhMy(x — Ut)/4) (33)

Steady bands with aspartate consumption nner 2 0 :

This mechanism of aspartate consumption is sufficientlyThe free parameters in the solution are the mass per unit
plausible that we proceed to formulate a model for thelength M, of the ring, the succinate concentratify) the
structure of the band under this assumption. There is onaverage succinate gradiest and the ring velocityJ.
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In front of the band, the attractant (succinate) satisfies a of the swarm ring, we expect these to contribute a cor-
diffusion equation with a source (sink), as in the previous rection of ordeiD/(Ur) ~ 0.01 to the velocity. This is too
subsection. The attractant concentratigg,, = Be Y%, and small to explain the observed acceleration in the exper-
the succinate concentratip,,, = 1 — yMy/Ue "*. In back iments (Budrene and Berg, 1995).)
of the band, the succinate concentration is constant, and the The characteristic thickness of the ring scales inversely
aspartate concentration is set by the balance of diffusion and with the cell density per unit lengti, of the ring. As the
consumption: the steady-state attractant prajile, obeys ring moves across the dish, it will therefore sharpen; we
Chack = ®Cpack Wherea is the consumption rate (depending  have observed this qualitatively in the experiments, al-

on both the rate of aspartate consumption and the number though quantitive measures have not yet been carried out.
of bacteria that are consuming). The solution to this is

_ N ax
Cpack = BeY ™.
These three regimes must be matched to each otheRejation to Keller-

. - . Segal bands
Matching the attractant and succinate gradients of the back

to the inner solution yieldé& = yMy/2 andM,fy2 + U = It is interesting to contrast the swarm ring solutions pre-
BV a. Continuity of the succinate concentration across thesented here with those constructed by Keller and Segal
front implies that (1970) to describe the original bands of Adler (1966). The

crucial difference between the Adler bands and those in the
Mo _ (34) present experiments is that in Adler's experiments the bac-
1-1o teria consumed attractant, whereas in the present experi-
Matching the solution in front of the band to the inner ments the bacteria consume are{:\ctant fqr the productiop of
solution yields—BU = —M,fy/2 + U. These equations attractar_n. In constructing a traveling _solutlon for a bacterial
can be solved simultaneously f@, U, andf,. In the band drllven by attra(_:tant congumptlon, Keller and Segal
limit of slow food consumptiony << 1, the solution is @S0 arrived at the dilemma discussed above (Keller and
B = MyfyVa, U = 3My/(1 — 27), andf, = 27. Segel, 1970; Keller and Odell, 1975) that there are no
traveling solutions to Egs. 1 and 2 (with positive bacterial
density) without an external attractant gradient. Their ap-
Comparison to experiments proach to resolving the dilemma differs from that presented

To summarize, we have constructed two different modeldiere: they introduced a nonlinearity in the chemotactic
for traveling bands. The first solution uses succinate confesponse coefficieritin Eq. 1. They found that for traveling
sumption to power the ring. Because of the fact that a bangolutions to the basic chemotactic Egs. 1 and 2 to exist, it
that produces a constant amount of attractant per unit im@as necessary that the chemotactic response coeffikient
has no attractant gradient behind it in steady state, thigiverge with vanishing attractant concentration. Physically,
solution is necessarily transient. The second solution getsteady ring motion requires that the bacteria in regions with
around this difficulty by using the biochemical fact that at very small attractant respond quickly. Otherwise, if this
low succinate concentration, the bacteria consume aspartag@sumption is not fulfilled, a nonsteady “diffusive” tail of
to power a steady motion. For the reasons discussed aboveacteria is left behind the front.

on the basis of the present experiments, it is not possible to Experiments on the chemotactic respons& ofoli have
distinguish between these two models. Indeed, both solusubsequently demonstrated that this assumption about the
tions provide a biologically consistent mechanism for ringchemotactic response is invalid. Impulse response experi-
migration in the absence of an externally imposed gradieniments by Berg and collaborators (Segall et al., 1986; Berg,
Moreover, the qualitative properties of the both solutions1988) measure the chemotactic constant directly, and find
match well with experiments. For example, no dramatic increase in chemotaxis as the attractant con-

e The velocity of the swarm ring (formulae 20 and 34) centration vanishes. . )
decreases with increasing succinate concentration. This 1€ Present study gives another mechanism that may

inverse relation between velocity and succinate concen¢@use the ring to move. In the context of the Budrene-Berg
tration is also demonstrated by the experiments (BudrengXPeriments, the mechanism requires 1) the existence of
and Berg, 1995). In the Fischer’s equation model for ringanother external field that the bacteria consume and 2) that
motion, the ring velocity is independent of the substratethe rate of attractant production depend on the concentration
concentration (Murray, 1989; Tsimring et al., 1995). of the additional field. This mechanism can also be gener-
e The velocity of the swarm ring increases linearly with the alized to encompass Adler's experiments, in which the
number density of bacteria in the ring. Thus the ringbacteria consume the attractant instead of producing it. In
accelerates as it moves across the plate. ExperimentBis case we again require the presence of an additional
verify this tendency (Budrene and Berg, 1995). (Anotherfield, and that the rate of attractant consumption decreases
possible source for the acceleration of the band as iwith increasing concentration of the additional field. As a
moves across the plate is effects of the curvature of theimple model for how this might work, we létdenote the
ring. If € is the thickness of the band, aRds the radius  concentration of an additional (nonchemotactic) field. The

U=%y
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equations for a traveling band are then argued long ago by Nanjudiah (1973), and elaborated in the
. definitive paper of Childress and Percus (Childress and
~Up=p"—Cp (35)  Ppercus, 1981; Childress, 1984), who dubbed this phenom-
0=c" — F[hlp (36) enon “chemotactic collapse.” Recent studies have examined
chemotaxis collapse in generalized mathematical models
—Uh" = —yp + gh’, (37)  (Raschle and Ziti, 1995).

We now discuss the structure of the collapsing solution.
During the initial stages of aggregation, the depletion of
for F[h] might be F[h] = 1 — ah. In the 8 = O limit, the succinate is unimportant. Succinate consumption occurs on

equations can again be solved exactly. The solutions denft ime scaley ™, whereas aggregate formation is smgula_r

onstrate that localized traveling rings exist whenever thé2nd thus happens faster. Close enough to the collapse point,

nonlinearity couplingh to the attractant depletion is strong the high bacterial densities will cause. the dgpletlon of all pf

enough:a > 3y. the oxygen near the aggregate, which will stop bacterial
There is some evidence for this type of mechanism in thénotion and chemotactic aggregation (Anderson and von

Adler experiments. Adler (1966) studies migrating bandsMeyenburg, 1980; Adler and Templeton, 1967). This effect

both in capillary tubes and in agar plates. In all experimentds considered in detail below.

cited, bands only form when there are two or more consum- To start, we consider the coupled Egs. 3 and 4. To study

able chemicals that are interacting, which is consistent witthe time dynamics of the singular solutions, we take the

the above mechanism. The only experiment Adler mentionghree-parameter family of initial conditions,

that has only one active chemical (galactose) shows no

rings. (Adler also does experiments with only oxygen, 2(p — PNeP?

which show the formation of rings. However, he states that p(r,t=10) = T @+ rp (38)

these rings “oxidize an endogenous energy source known to

be present.” Thus there is another active chemical for th%nd numerically solve the “radially symmetrical® versions

oxygen rmgs..) The complication  in |ntgrpretlng Adler's of Egs. 3 and 4 by using a standard implicit finite-difference
experiments is that generally the bacteria are chemotactic . . ) ) )

. .~“scheme with adaptive mesh refinement. In two dimensions,
toward more than one of the chemicals that are bein

consumed. Thus the analog of the attractant feeld the QEhe parameteN is the total number of bacteria. Figure 2

above equations would be a linear combination of the conrc’hOWS the bacterial density for a case where a singularity

centrations of the various chemicals toward which the bac2¢curs N = 50,p = 4,a = 1). The initial profile quickly
teria are chemotactic. More work along these lines isd€Velops a singularity at the origin. The inset shows the
necessary. dependence of the maximum bacterial density as a function

of the characteristic width of the collapsing region, which
obeys the scaling law(0) ~ L2

whereF[h] reflects how the consumption of the attractant
depends on the presence of the field\n approximate form

AGGREGATE FORMATION

The other major structure appearing in the experiments are

aggregates. The fundamental feature of aggregate formation ,, g \ , 1

is that they form on a much faster time scale than the motion 25

of the ring. Whereas the swarm ring moves across the petri 84k

dish in about a day, aggregate formation occurs in several !

minutes. The theory of aggregate formation is based on the !

fact that the chemotactic Egs. 3 and 4 have solutions that; ©-8[}

form finite time singularities, with the bacterial density & £

diverging. These solutions exist in both two and three di-

mensions. Two-dimensional collapse corresponds to a cy- o Bt X S

lindrical mass of bacteria contracting to a line; three-dimen-

sional collapse corresponds to a spherical mass of bacteria

contracting to a point. Note that one-dimensional collapse, )0

in WhIC.h amass of bacteria collapses to a tyvo-dlmensmnal 0.000 0002 0004 0008 0008 0070

plane in finite time, cannot happen; this is because the v

one-dimensional chemotactic equations are equivalent to

Burger’s equation, for which singular solutions do not exist.FIGURE 2 Numerical simulations of the finite time singularity in the

The physical mechanism for the singularities is that thePacteria density. The solifil,ldotted,dashed,:a\fd dot-dashed lines cg:respond
) o Cfot=0,t=7.69X 104t = 7.89X 1074 andt = 7.90 X 107%,

aC(?umUIatlon F’f bacteria mcreases,the attra,‘Ctant prOdch[Iorl:'espectively. The inset shows the maximum density versus characteristic

which further increases the bacterial density. The fact thafigth of the singularity ¢olid ling), as well as the scaling lap(0) ~ L2

chemotactic equations can admit singular solutions wagdotted ling.

for) B ~
° \\ ~ o -10 -8 -6 -4 -2
- 5.2+ S v LogulL) _
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The entire singularity is described by a similar solution ofwhere{,y,,is the run length in agar. A 10-fold decrease in

Egs. 3 and 4, of the form
p(r,t) =L ?R(rL™Y (39)
c(r,t) = S(rL™). (40)

The characteristic scale has the time dependende ~ .
(t* — )2 up to logarithmic corrections. The logarithmic
corrections are an interesting mathematical property of the
solutions (Herrero and Velazquez, 1996; S. C. Venkatara®
mani et al., unpublished manuscript) and will be discussed
in a subsequent publication. We remark that (modulo the
logarithms) the same scaling laws are observed in our
simulations for both two-dimensional collapse and three-
dimensional collapse.

Extensive numerical simulations show that the occur-

the run length leads to a 1000-fold increaseéNin

There are several strong experimental indications that the
aggregates in the Budrene-Berg experiments indeed repre-
sent chemotactic collapse:

First, the time scale for aggregate formation is much
faster than any other experimental time scale, a hallmark
of singularities.

A second experimental indication that chemotactic col-
lapse is occurring comes from experiments in which the
bacteria are homogeneously distributed in a liquid me-
dium (see Budrene and Berg, 1991). In this case, the
bacteria are much more mobile, and in a short time (3-5
min) the medium is filled with three-dimensional aggre-
gates. Experiments demonstrate that the number of ag-

rence of collapse into dense aggregates depends strongly ongregates scales linearly with the initial number of bacte-

the number of bacteria in the initial cluster, but only weakly
on the parametesandp in the initial conditions above. For
N below the “Chandrasekhar limifl*, the bacteria decay to
a uniform state. Abovel* singularities always form. In two
dimensionsN* = 4 in dimensionless units; in three dimen-

sions the critical mass depends on the system size (S. C.

Venkataramani et al., unpublished manuscript). The exis-
tence of a criticaN in two dimensions was originally noted
by Childress and Percus (1981) and Childress (1984).

For the present experiments, the critical number in two
dimensions is

4D, D,
ka '

N*(2D) = (41 °

ria over a wide range of cell densities. For the initial
bacterial densities T0 1%, and 2 x 10° cells/ml, the
number of final aggregates was counted to be 287, 33,
and 6, respectively; as predicted, a 10-fold (fivefold)
decrease in the bacteria density leads to a 10-fold (five-
fold) decrease in the number of aggregates. At much
higher bacterial concentrations than’1€ells/ml, the
process of secondary merges of initial aggregates occurs
too rapidly to accurately count the number of aggregates.
These experiments were performed with a thin layer of
liquid covering a petri dish. More quantitative interpre-
tations of these experiments are discussed in Appendix 3.
Another (visual) indication of singular collapse is shown
in Fig. 3. The aggregation produces very densely packed

where the parameters are defined in Eq. 1. Measurements of structures, with a density so high in the center of the

D, andk have been made by Berg and Turner (1990) for

aggregate that light cannot penetrate through the layer.

swimming in a liquid medium. Their experiment consists of ot coyrse, in the actual experiments the aggregation singu-
two closed cells joined by a 0.05-cm permeable plate. Byayity does not proceed until the bacterial density is infinite.

controlling the relative attractant concentrations in the twoyypat stops the singularity? We first note that because the
cells, and counting the number of bacteria migrating fromagtractant concentration does not diverge at the collapse

one cell to the other, it is possible to extr_aect bopandk.  hoint, the saturation of the chemotactic response at high
Bgrg and Turngr report th&, = 6.6 X 10 ° cmé/s. From .attractant concentration (Dahlquist et al., 1972) cannot stop
Figure 4 of their paper, we have extracted the chemotactifhe collapse. Correspondingly, we also note that bacterial

coefficientk = 10 ** cm/s. Both of these numbers are giision does not modify the collapse because the rate of
consistent with expectations: _the diffusion constBgt= " jivision ap ~ a(t* — 1)~ is asymptotically smaller than
€v, wheref (= 30 u) is the typical run length and (= 30 ap ~ (t* — 1) whent — t*.

pm/s) is the swimming velocity (Berg, 1988). The chemo- "rpgre gre essentially three possibilities for stopping the
tactic coefficient can be similarly expressedkas c¢?v, collapse:

where the constart represents the strength of the chemo-

tactic response. The attractant production rate= 10° 1. Nonlinearities in the cell division rate can stop the col-
molecules/s/bacteria (Budrene and Berg, 1995). Putting lapse as long as they are strong enough. For a cell
these numbers together implies that in a liquid medium, division rateap(a — bp), the nonlinearity~ p* ~ a,p

N*(2D:liquid) ~ 10%cm. Most of the experiments dis-
cussed in this paper take place in agar. Here it is known
(Wolfe and Berg, 1989) that obstructions in the agar shorten

the characteristic run length, leading to a dramatic de- 2.

crease in botlk andD,. The critical number in agar is

1
N*(2D:agap ~ 103/cm€T,
agar

whenp ~ (t* — t)~*. Thus ifbis high enough, we expect
this to arrest the collapse. This effect is apparently ob-
served in the simulations of Tyson et al. (1997).
Another possibility is depletion of succinate, which
would halt (and indeed eventually reverse) attractant
production. Because, f ~ —p ~ (t* — t)~*, the succi-
nate will vanish after a finite time. When this occurs, the
bacteria will continue to migrate up the attractant gradi-
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FIGURE 3 () Bacterial distribution far from an aggregate in a growing colony, obtained by phase-contrast light microscopy. White dots represent the
bacteria. B) Densely packed bacteria in an aggregate. The central dark spot represents such extreme local cell density that light does not penetrate the layer.
The bright halo around the central spot corresponds to intermediate densities. Colonies were grown as in Budrene and Berg (1991).

ent already produced, although the gradient will notorder of
steepen further.

3. The effect that we believe is most relevant for stopping P ~ exp(xw). (42)
collapse is oxygen depletion. It has been shown (Khan e B

and Macnab, 1980; Anderson and von Meyenburg,As X., increases, the maximum density increases exponen-

. o . “?l'ally within the aggregates, so that a twofold increase in
come immobile immediately. The fact 'Fhat present ex'oxygen density leads to ae? increase in the maximum
periments (Budren_e and I_3erg, 1.995) f'nd. th"?‘t the COI'bacterial density. This relationship has not yet been tested in
lapse Ieaves.a residue 0 fimmobile bacteria gives Strongxperiments. Because the oxygen concentration in the petri
support to this mechanism. dish is set by the atmospheric pressure, we hope to test it in
the future by studying the aggregate densities as a function
of the overhead oxygen pressure in a closed vessel. Presum-
ably, if the oxygen concentration is high enough,, will
approach the “hard packing” limit of the bacteria.

At what bacteria density is oxygen depleted?
The dynamics of oxygelX is described with a diffusion
equation with depletion caused by bacterial density:

X = Doxygenvzx — Bp.
COLLAPSING INSTABILITY OF A SWARM RING

Using the similarity solution for the collapsing aggregatérg complete our picture of the experiments, it is necessary

gives to understand how the swarm ring destabilizes into aggre-
gates. A natural possibility for how this might happen is via
. i r a linear instability of the ring, namely, modulating the
atx -~ B 2 F ] . . .
L° \L bacterial density along the ring causes more attractant to be

produced where the bacterial density is highest. The en-
or X = X, + Blogt* — t), where X, is the oxygen hanced attractant concentration will cause bacteria to flow
concentration away from an aggregate. This implies that théoward this region, enhancing the concentration even fur-
oxygen is depleted a timt& — t ~ exp(— X../B) before the  ther. This instability mechanism is well known to operate in
collapse singularity. The fact that the maximum density ofother situations. For example, during the streaming insta-
the collapsing solution scales liké (— t)~* implies that the  bility of D. discoideumfluctuations in the local cell density
maximum bacterial density in the aggregapes, is on the  produce fluctuations in the cAMP production, with chemo-
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taxis toward regions of higher concentrations (Bonner, 1.The ring is linearly unstable (as computed in Appendix
1967; Lee et al., 1996; Hofer and Maini, 1997; Kessler and2) and breaks directly into aggregates. This scenario is the
Levine, 1993; B. N. Vasiev et al., 1994; Hofer et al., 1995).0ne that is demonstrated by all computer simulations carried
For the present experiments, this instability argument iut to date. However, as implied above, there is serious
both conceptually appealing and straightforward to demonfeason to question those results, on the basis of the validity
strate mathematically. Appendix 2 analyzes the stability ofof the assumed biochemical effects, and even on the basis of
the inner region of the traveling bands constructed abovéhe two-dimensionality of the simulations. Experiments are
and demonstrates the existence of a linear instability. Thighree-dimensional, and there are solid theoretical reasons to
corroborates the results of all computer simulations to dat®¢elieve the difference between two and three dimensions is
of the Budrene-Berg experiments (Bruno, 1992; Woodwardrucial.
et al., 1995; Ben-Jacob et al., 1995; Tsimring et al., 1995; 2. Despite our calculation, the ring is linearly stable. This
Tyson, 1996; Tyson et al., unpublished manuscript), whicHeould happen if we neglected important biochemical effects
exhibit (one-dimensional) traveling rings destabilizing viain our model of the swarm ring, or if the interplay between
transverse instability into spots of bacteria. The fact thathe outer and inner solutions neglected in our stability
these different computer simulations assume different dyanalysis played an important role. In this scenario, the
namics (agreeing to varying degrees with that proposewStap'l'ty of the swarm ring is a nonllnegr effegt. That is, as
here) implies that this instability mechanism is robust. e ring expands the number of bacteria multiply. Because
However, as is emphasized in both the preceding sectioft M iS the mass per unit length of the ring, then
and in Appendix 3, there is more to aggregate formation ) U
than just a linear instability. In fact, Appendix 3 demon- M =aM — T M, (43)
strates that there are both qualitative and quantitative dis-
crepancies between what is expected from strongly nonlinwherea is the reproduction rate, is the radius of the ring,
ear events (and what is actually observed in experimentsindU is the velocity. The mass of the band as a function of
and what would be expected from a purely linear instability.the distance from the center of the dish follows from ap-
To illustrate this point, consider the destabilization of theproximatingM ~ Ud,M and usingU = yM/(1 — f,). This
swarm rings in a hypothetical two-dimensional experimentgives the solution to Eqg. 43 as
the linear instability of Appendix 2 predicts a most unstable 1-1f)a
wavelengthc/Mg, whereMg is the number of bacteria per M(r) = - 0"
unit length of the ring. Hence linear theory predicts that will 2y

be on the order o€ bacteria per aggregate. The nonlinear\yhen M(r) exceeds the critical limit for collapse, the ring
threshold for aggregate formation is logically independentyij| collapse into a cylinder (which will subsequently de-
of this number. For this model, the number of baCteria'Stabnize into aggregates)_ A sketch of this poss|b|||ty is
aggregates formed from the linear instability exceeds th@hown in Fig. 4. From the top view, the ring is one-
nonlinear threshold. dimensional, but because of the finite thickness of the petri
In the experiments, despite the appearance of a twadish, a side view shows there is a three-dimensional struc-
dimensional plate, the aggregates are actually three-dimeture. Note that becaudd(r) is only a linear function of,
sional objects. The plate thickness is small@.5 mm) but
finite. (In D. dictosteliumexperiments, the cells are a mono-
layer on the agar surface, in contrast to the situation here, TOP VIEW SIDE VIEW
where the bacteria uniformly fill the agar plate (before the
instabilities).) Before aggregates form, the bacterial density
is uniform across the plate thickness. As in the two-dimen-
sional example discussed above, there is a critical threshold
for aggregate formation in three dimensions; that in 3D /

r+ Cr, (44)

depends on the size of the box in which the aggregate i Icl\%LTI;\’?;l}i]fTY
confined (Brenner et al., 1997). Hence we expect an inter
play between linear and nonlinear instabilities. ,,
The sequence of events that actually occur in the exper-\
iments presumably depends on an interplay between the | L ] . o ‘

initial number of bacteria placed on the petri dish (and
hence the number density in the swarm ring) and the values
of the parametersub, K, D, a) and biochemical effects FIGURE 4 Sketch of instability of the swarm ring in a petri dish. The
(above). At present, all we can do is admit that there are ﬁ?“fe on the ”gﬁthsr‘f‘_’ws atop t‘f]eW_ O'f‘ttze difh’ WiFQ the C"‘(?'e IdZPiC“’:r?
. P . . e swarm ring. The figures on the ri enote a side view (including the
number _Of theoretical pOSSIbI|ItIes, and then g,'Ve eVIdenCF,f‘inite thicknesgJ of the cﬁsh). The uppegr figure depicts the swarm ring bzfore
for possible causes of what seems to occur in the experine instability, and the lower figure depicts the collapse of the ring into a

ments. The possible causes are: cylinder.
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the number of bacteria in the ring increases only by a factoring both immediately before and immediately after it starts
of 10 in the course of the experiments, so this scenarido become unstable. It is seen that the ring is initially rather
requires that the number of bacteria in the initial swarm ringdiffuse, and then undergoes a transition to a cylindrical
is close to the critical number. shape, as described in Fig. 4.

3. Another possibility is that the ring is stable, and the The collapsing cylinder undergoes secondary instabilities
formation of aggregates proceeds when the system directip the formation of aggregates. The mechanism for the
crosses the nonlinear threshold for 3D aggregate formatiosecondary instability is that density inhomogeneities in the
(avoiding the cylinder stage entirely). collapsing cylinder cause an increase in the attractant con-

4. Finally, the ring could be linear unstable (as calculatectentration where the density is highest. This results in
in Appendix 2), but aggregate formation still could not attractant gradients along the axis of the cylinder, which
happen until a nonlinear threshold is crossed. Within thiscause transverse flows of bacteria. The transverse flows
scenario, aggregate formation could happen via either routeause the cylinder to break into three-dimensional aggre-
2 or route 3. The result of the linear instability would be thatgates.
the density in the ring is time dependent, with modulations How far does the swarm ring have to travel from the
in the density in the direction transverse to the ring, evercenter of the dish before it destabilizes? Using formula 44
during the (seemingly) steady forward propagation stage. for the mass of the band as a function of the distance from

On the basis of theory alone, it is not currently possible tathe center of the dish givad(r) ~ ar/vy at large radii. The
distinguish these scenarios. It is even possible that thanstability occurs when the mass per unit length exceeds the
scenario that occurs depends on details of experiments thatitical massN* for collapse, which happens at a radial
have not been systematically controlled. What do the exdistancer* from the origin, where
periments say? Figure 5 shows a photograph of a swarm 1

r* = N*yzf—z. (45)
At low enough succinate concentrations, the critical radius
is larger than the size of the petri dish, so that the instability
does not occur. At high concentrations of succinate, the ring
moves more slowly, but the doubling time of bacteria re-
mains constant. Thus enough mass for collapse accumulates
at a smaller radius.

This dependence af* on food concentration (Fig. 6)
agrees with experiments; as an illustration we show the
critical radiusr* plotted against the thicknegsof the agar
layer for a fixed amount of food in the dish. The three-
dimensional food concentratiof2® is held fixed in the
experiments. The two-dimensional food concentrafipis
related to the three-dimensional one foy= hf3P, so that
increasingh at fixed f 2P is equivalent to increasinfy.. As
predicted, the swarm ring radius decreases with incredsing

The number of bacteria per unit length of the ring when
the instability occurs is predicted to be that given in Eq. 41.
As stated above, the exact number depends on knowing the
diffusion and chemotactic constants for migration in agar,

30.0

®
FIGURE 5 Structure of the swarm ring (magnified view) immediately 25.0 | * ° 1
before and after collapse visualized by scattered light. From top to bottom:~ °
Before collapse a traveling swarm ring looks like a dense band of cells,g 20.0 | ® 1
which transforms into a cylindrical structure that further collapses into — ®
aggregates. The time intervals between the first and the second pairs of 159 | hd 4
pictures were 6 min and 3 min, respectively. A colonysofcoli HCB 317
was grown on 2 mM succinate (see Budrene and Berg, 1991). The frames 10.0 ‘ ‘ ‘ ‘
are from a time-lapse recording made with a Hamamatsu model XC-77 0.50 0.60 0.70 0.80 0.90 1.00
CCD camera on a JVC model BR-9000U cassette recorder and were h (mm)

printed with a Sony model UP-870MD video printer. The recording was
made against a flat-black background with illumination slantwise from FIGURE 6 Measurements of the critical raditfsas a function of the
below (see Budrene and Berg, 1991). thickness of the agar layer, for fixed food concentration.
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which are not known exactly. However, assuming that thaactic coefficient with vanishing attractant concentration
run length decreases by a factor of 5 (a conservative estdoes not occur, which rules out the first mechanism for
mate based on Figure 2 of Wolfe and Berg, 1989) givesnigration. The Fischer's equation mechanism implies that
N* ~ 10°cm™ 1. This estimate is quite reasonable in view of the front velocity is independent of the substrate concentra-
the experiments. tion and of the total number of bacteria in the ring; the
Finally, we remark that these experiments demonstratenechanism presented here predicts both a decrease in the
that the instability is either via scenario (2) or (4) outlined front velocity with increasing substrate concentration and an
above. In particular, we cannot rule out or rule in (fromincrease in the front velocity with increasing numbers of
either experiments or theory) the presence of time-deperbacteria. Both of these features are observed in experiments.
dent structures in the band before the collapse. This topic is The mechanism for instability and breakdown into aggre-
left to a future investigation. gates also differs from previous studies. All previous work
(Bruno, 1992; Woodward et al., 1995; Tsimring et al., 1995;
Ben-Jacob et al.,, 1995) has modeled the Budrene-Berg
experiments with dynamical equations in two spatial dimen-
CONCLUSIONS sions, neglecting the finite thickness of the petri dish. In
This paper represents the first attempt to define a model ahese models, the breakdown of the swarm rings arises
the Budrene-Berg bacteria experiments by combining chebecause of “Turing-like” linear instabilities (Turing, 1952;
motaxis with known biochemical processes operating beMurray, 1989). In contrast, the present work shows that the
tween the cells and their environment. We have presentediastabilities of the swarm ring are inherently three-dimen-
theory of the basic structures observed in bacterial pattersional. The initial instability involves a transition in which
formation, swarm ring migration, and aggregate formationthe bacterial density becomes nonuniform in the direction
Our description is based on two simple ideas. 1) Swarm ringperpendicular to the agar plate. A secondary instability
migration is caused by the depletion of a chemical used irtauses the breakdown into aggregates. Although there are
the process of attractant production. A steady swarm ringtill serious issues remaining in understanding the instability
requires attractant depletion far behind the front. In generalmechanism, it seems clear that the most important physical
solutions for swarm rings can exist whenever the rate ofmechanism is chemotactic collapse (Nanjudiah, 1973; Chil-
production (or depletion) of a chemotactic chemical de-dress and Percus, 1981), which provides a unifying element
pends on the concentration of another external field. 2among the various physical processes (aggregate formation
Aggregate formation, as well as the instability of the swarmand the instability of the swarm ring).
ring, results from the singular collapse of a cloud of bacteria Turing’s mechanism has been applied to many instances
into more compact structures of lower dimensionality. Col-of biological pattern formation and remains the only theo-
lapse into a spatial point is the basic mechanism for aggreretical model for understanding patterns in biological sys-
gate formation; cylindrical collapse into a line is the mech-tems. There is an important conceptual and practical differ-
anism for swarm ring instability. ence between Turing’s instability mechanism and an
The mechanism for swarm ring migration by coupling to instability mechanism mediated by chemotactic collapse.
two external fields (one of which is chemotactic) allows the Turing mechanisms are based on linear instabilities, which
bacteria to migrate in the absence of externally imposedre inherently not robust. Changes in the relative diffusion
gradients. A single motile bacterium without chemotaxisconstants or consumption rates of the various species can
due to the absence of external gradients of attractant woulbdoth alter the instability threshold and change the charac-
reach the edge of the agar plate in 100 days. The presetgristics of the final pattern. The addition of different reac-
mechanism explains the observed migration-#0 h. Our  tive chemicals or other physical processes that happen on
mechanism differs from previous models of ring motion.the time scale of the instability can have substantial effects
Essentially two other mechanisms have been proposed: bn the final outcome. In contrast, the instability and break-
The study of Keller and Segal (1970) ascribes ring motiordown into aggregates occurs because of highly nonlinear
to a nonlinear chemotactic coefficient that diverges withsingularities in the chemotactic equations, in which bacte-
vanishing attractant concentration. 2) The other popularial densities and chemotactic fluxes diverge. The diver-
mechanism used in previous studies of the Budrene-Bergence of the chemotactic fluxes means that this dynamical
experiments (Tsimring et al., 1995) attributes the collectiveevent is robust. Changes in the chemical diffusion constants
motion to a “Fischer’s equation”-like mechanism, in which and consumption rates will not change the structure of the
the motion is triggered by a competition between cell divi- collapsing solution. Collapse will exist as long as the bac-
sion and the competition of individual bacteria for food. Theteria produce attractant. It is quite possible that in other
present theory ascribes motion to the consumption of sudnstances of biological pattern formation, singular events
cinate, the concentration of which limits the rate of attract-play a key role.
ant production. We believe that the experimental data pro- An important consequence of the inherent robustness of
vide strong support for our mechanism: impulse-responsghe singularities in the present study is that we expect the
experiments on single bacteria (Segall et al., 1986; Berdgfeatures of the pattern formation involving chemotactic
1988) have demonstrated that the divergence of the chemaeollapse to also apply to other species of bacteria that
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produce attractant. For examp&almonella\Woodward et ‘ * * ]
al., 1995) excreting attractant also exhibit bands and aggre=  pensiTY . ]
gate formation. Although the properties of the bands ar v
different in theSalmonellafrom those in theE. coli exper-
iments discussed here (e.g., in contrast to the situation here, )
bands inSalmonellado not move), we expect the breakup of = : . L e
the bands to be via the same singular mechanism &s fmfi. . ‘

Finally, our analysis predicts a number of scaling laws, I
many of which were shown to be consistent with experi-| /AM ]
ments. Several predictions remain to be tested. Probably th .
most interesting are the time dependences of the collaps
singularity. During a collapse, the bacterial densities changg
by several orders of magnitude, which should be more than
sufficient to verify the temporal scaling laws for the col-
lapse singularity. For the swarm ring, it would be interesting | SUCCINATE ]
to measure the profiles of the attractant and succinate con
centrations around the swarm ring and test whether they
agree with the present predictions. ]

i

AL MNG))

APPENDIX A: TRAVELING BANDS AND FIGURE 7 Traveling wave solution for the ring, with = 1. The

. uppermost figure gives the density profile, the middle profile gives the
FOOD DIFFUSION attractant concentration, and the lowermost profile gives the succinate
profile. All profiles are forMy = 4.15 andy = 1. The dotted curve in the

This appendix discusses solutions to the traveling wave equations ' ] - ) )
uppermost figure is the density profile f@r= 0 with the same values of

—Up = p' _ pC' (Al) Mo and y. Although quantitative features differ, qualitative features are
robust.
0=c' +fp (A2)
—Uf' = —yp + Bf” (A3)

It was remarked in the text that the separation of scales between the
thickness of the band and the diffusive scale decouples the succinate
dynamics from the band dynamics. In this limit, the dynamics is governed
by the equations

with nonzerop. As in the construction of traveling solutions above, we
require the boundary conditions that= 0, f — 1 asx — o, andf — f,
asx — —o. First we note that integrating Eq. A3 over the entire profile and
applying the boundary conditions implies the relation= yM/(1 — fy)

. V7]
between the front velocity and the mass per unit lengi¥ of the ring. dp=Vp—V: (PVC) (B1)
This relationship holds regardless of the valuepofTo find the spatial

profiles, the equations must be integrated numerically. The presence of 0=V + p. (32)

nonzeroB means that the food Eq. A3 has an exponentially growing mode

U B : "
f~ ?, asx — * which corresponds tg an additional boundgry These equations are equivalent to Burger's equation in one dimension
condition on the solutions. However, the solutions also have an addltlonailmd'_;)r the transformation = Vc. This equivalence implies that the equa-
degree of freedom in satisfying this boundary condition, because NONZeTRyns have an important symm.etry Given a solutig(x, y), Co(X, ¥), p =

. y y Lo\A ) -

B increases the order of the ODEs. ) . po(Xx — Ut, y), ¢ = cy(Xx — Ut, y) — Ux s also a solution. This symmetry
How many free parameters are there in satisfying these boundarXorresponds to Galilean invariance in the Burger equation.

conditions? We take - 0, wherep'(0) = 0 implies ¢'(0) = U. The The importance of this symmetry is that it implies that the stability of
constanty(0), f(0), andf '(0), as well as the velocity are free parameters. a traveling wave solution (within this approximation) is independent of the

For eachp(p), f(0). 7'(0). the velocityU mgst be chosen SO that the f_OOd ring velocity. Thus we can consider the stability of a stationary solytipn
concentratiorf does not grow at-e (zeroing the exponentially growing ¢, The stability analysis begins by writing

mode mentioned above). This leaves three parameters, which can be tuned
to adjustf,, f_.., and the total number of bacterd, as desired. In this

— t
respect, the solutions with food diffusion are qualitatively similar to the p=pot Fe cos(qy) (B3)
solutions without food diffusion. Figure 7 shows the solution Witk 1,

Mo = 4.15,y = 1. C = ¢y + Ge'codqy). (B4)

Linearizing Egs. B1 and B2 gives the two ordinary differential equations

APPENDIX B: STABILITY OF TRAVELING BAND

This appendix considers the stability of a propagating band to sinusoidal
modulations. We consider the second model of the swarm ring (as formu- " 5
lated in the text) and examine the response of the band to perturbations in G - q G=-F. (BG)

the neighborhood of the band. In this calculation, we do not consider the

response of the perturbations on the solution far from the band (wher&his is an eigenvalue problem far. We are interested in the stability for
attractant diffusion or succinate consumption might dominate), but insteagerturbations with wavelengths much larger than the thickness of the band.
simply examine the stability of the “Burger’s inner region.” In this limit, it is legitimate to approximate the functional formsggfand

wF = F' — ofF — piG' + 2Fp,— CiF'  (B5)
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Co as Equation B11 determine&(q). Figure 8 plots the growth rate as a
function of q (both of which are rescaled in units bfy).
po = Mod(x) (B7)
M .
b= — M) + 7o (B8) APPENDIX C: CLUMPING IN LIQUID MEDIUM

A conceptually simpler version of the experiments is to start with an

whereM, is the mass per unit length of the bawds a Dirac function, and initially uniform distribution of bacteria of density, dispersed in a liquid
9 is a Heaviside step function. ' medium, with sufficient succinate that depletion is not an issue. This
The analysis continues by matching solutions to the right and to the lef@PPendix provides estimates for the number of bacteria per aggregate, and

of the & function, and then piecing them together: Fox 0, Eq. B5 is the number of aggregates formed in this situation.
First we proceed with linear analysis. Linearizing the Keller-Segal Egs.

1 and 2 about the constant state by writing= p, + €€ andc =

oF =F" — o°F — 70 F'. de”* i implies the equations

- _ 2 2
The solution that decays at is €w Diqe + kpoq™d (C1)
F_ = ce™ dw = —D?8 + ae. (C2)

where In the limit of fast diffusion, the growth rate is

s/ 2 2 pOka
a:Mol2+\MJ£21+4(w+q)_ 0="25— Dyt
C

By symmetry, the solution at o is All modes with wavenumber smaller than the critical wavenumber

F. =ce ™. . pokax
4~ \bD.

The eigenvalue condition follows from integrating Eq. B5 across the

delta function, yielding the jump condition will grow. The fastest growing mode occurs with = 0 (i.e., has a
wavelength on the order of the box size).
, , -, ) Without taking the limit of fast diffusion, the growth rate (expanded at
FL-F.=]p'G' =2 | Fpy— | coF small g) is
D. + Dy
= (—F(0) — PG(0))M, (B9) 0= \akpd — 5 G

The jump condition B9 requires knowing(0). This is obtained by

solving Eq. B6. Foix < 0, The fastest growing mode in this limit has wavelength

G e B pr = 20+ DY
=——* . :
< ol — q \fOlkPo
Forx > 0,
ce ¥ o 0.05 ; ;
G.=-——5——+De™
< o — q
Continuity of G implies thatB = D. Continuity of G’ implies that 0.04 + B
—Cux B Cx B
- e tdB= > 5—Bq
2 2 2 2
a"—q " —q 0.03 1
or 8
ca 1 0.02 1
- q O[Z _ q21
so that 0.01 1
G(0) (o ca 1 c 1
= — + — ——
2 2 2 2
=0 qo'—¢ qa+tg 0.00 ‘ ‘ ‘ ‘
0.00 0.10 0.20 0.30 0.40 0.50
The jump condition B9 then gives q
—2a=—M,— qZG(O)/F(O) =—M,— Mqq (BlO) FIGURE 8 Growth rate as a function gf as determined by Eg. B10.

a+( The most unstable mode occursoat 0.15.
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