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Energetics of Inclusion-Induced Bilayer Deformations

Claus Nielsen,* Mark Goulian,” and Olaf S. Andersen*

*Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021 and *Center for Studies in
Physics and Biology, The Rockefeller University, New York, New York 10021 USA

ABSTRACT The material properties of lipid bilayers can affect membrane protein function whenever conformational
changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the
protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy
cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein’s hydrophobic exterior
surface and the average thickness of the bilayer’s hydrophobic core, using a (liquid-crystal) elastic model of bilayer
deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion,
splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus
renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion
energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers.
When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to
the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the
boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring
formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 A,
an increase in hydrophobic mismatch to 1.3 A can increase the Boltzmann factor (the equilibrium distribution for protein
conformation) 10-fold due to the elastic properties of the bilayer.

INTRODUCTION

The hydrophobic membrane-spanning domains of integralithin models that approximate the lipid bilayer as being
membrane proteins (Singer and Nicolson, 1972) couple thequivalent to a thin sheet of liquid hydrocarbon, which is
proteins to the bilayer (Owicki et al., 1978). This hydro- stabilized by the phospholipid polar groups.
phobic coupling entails protein conformational changes Lipid bilayers, in fact, are self-assembled structures of
possibly perturbing the structure of the surrounding bilayeramphipathic molecules with material properties similar to
As a result, the free energy difference between two proteithose of smectic liquid crystals (Helfrich, 1973; Evans and
conformations will depend on the deformation energy assoHochmuth, 1978). Thus it is necessary to extend the liquid-
ciated with the bilayer perturbation. This provides a mech-hydrocarbon descriptions of the bilayer to incorporate the
anism by which the lipid composition of the bilayer could bilayer curvature component of the deformation energy
play a role in determining protein conformation and protein(Canham, 1970; Helfrich, 1973; Brochard and Lennon,
function. 1975; Brochard et al., 1976), changes in bilayer thickness
Numerous studies show that the function of integraland the associated compressibility modulus (Evans and
membrane proteins is affected by bilayer lipid composition.Hochmuth, 1978; Mouritsen and Bloom, 1984; Bloom et al.,
Systematic investigations of this dependency of membran&991), and changes in bilayer surface area and the associ-
protein function on the lipid bilayer composition show that ated interfacial tension (Abney and Owicki, 1985; Marcelja,
chemical specificity is relatively unimportant for protein- 1976; Owicki and McConnell, 1979).
lipid interactions (Devaux and Seigneuret, 1985; Bier'eenu  The theory of liquid crystal elastic deformations (Hel-
and Marie, 1994). Rather, changes in membrane proteifrich, 1973), which provides for a coherent continuum de-
function can be correlated with changes in the bilayer mascription of the shapes of lipid vesicles, can be used to
terial properties: bilayer hydrophobic thickness (Caffreydescribe free energy differences associated with membrane
and Feigenson, 1981; Johannsson et al., 1981; Criado et gherturbations due to protein-bilayer interactions (Huang,
1984; Baldwin and Hubbell, 1985) and monolayer curvaturel986; Helfrich and Jakobsson, 1990; Dan et al., 1993, 1994;
stress (Brown, 1994; Navarro et al., 1984; McCallum andRing, 1996). In this description the curvature component is
Epand, 1995). These effects are difficult to rationalizeassociated with the monolayer curvature and is a local
parameter, i.e., only dependent upon the conditions at bi-
layer/inclusion boundary. Global curvature contributions
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FIGURE 1 The model.q) The total deformation free ] PERSN do/2
energy is determined by the bilayer deformation profile l
associated with a hydrophobic mismatch between the !
bilayer and the inclusion. The inclusion is treated as a l

rotationally symmetrical deformation of the bilayer. As-
suming midplane symmetry (a symmetrical bilayer), the
problem can be reduced to a radially varying deforma- :

tion of a monolayer with unperturbed thicknedg2, ~.
whereu(r) denotes the local perturbation in monolayer

thickness at the distaneefrom the luminal axis. At the

channel-bilayer contact surface,, the deformation is

U, The first derivative at the contact surface (the contact

slope)dudr is s. (b andc) The two different boundary

conditions considered. Bilayer deformation profiles are

drawn to scale. The circles represent the polar head- b) c)

group for a phosphatidylcholine lipid molecule, the ver- z=ulr)/A * z=u(r)/A *

tical dotted lines marked by asterisks denote integration
limits. In (b) s = s, and in €) s = 0. The deformation 20
profiles obtained using the elastic membrane model
define the average hydrocarbon/headgroup boundary. 15 !

The actual (instantaneous) profile will be less well- ulr )=—u ';:';"'_': """"""""" alro)=u
defined due to thermal motion of the bilayer lipids ot o LT oo
perpendicular to the bilayer/solution interface (Wiener dul

and White, 1992). dr|~ Smin

o 5 10 15 20 " o 5 10 15 20 'A

id-protein interactions. The purpose of the present article isude of the corresponding modulus and, as we will see later,
to examine some generic consequences of such a liquidary as a function of the other moduli.

crystal theory-based model of bilayer deformation energy. For a given set of moduli the shape of the bilayer defor-

The results demonstrate that the bilayer deformation energmation will be one that minimizes the total free energy cost

can be as large as 10-15 kJ/mol—comparable with effectsf the deformation. Assuming that the three components
of point mutations on protein function—indicating that bi- splay-distortion, compression-expansion, and surface ten-
layer material properties can play an equally important rolesion are sufficient to describe the problérine deformation

in protein function. Some of the results have appeared ifree energyAG,. for the situation shown in Fig. & can be

preliminary form (Nielsen et al., 1997). described (to second order) as the surface integral
THEORY AG 1{Ka >4 K (82u 02U c )2

o= | 5P+ Kloat+ oo
The model ol o 2|d3 o ayr P 1)
A length mismatch between the bilayer hydrophobic core 5 5
and the hydrophobic exterior surface of a membrane inclu- + a[(au) + (au) :|}dﬂ
sion (integral membrane protein) will perturb the lipid pack- X ay

ing in the vicinity of the inclusion (Fig. 1). Following

Huang (1986) we approximate the changes in lipid packingvhered, is the bilayer equilibrium thicknessi(x, y) the
as occurring in three independent modes or componentsocal monolayer perturbation, and, is the spontaneous
compression-expansion (CE, due to changes in bilayemonolayer curvature. In the following we tak® = O.
thickness) with a characteristic elastic deformation modulus

K, splay-distortion (SD, due to variation in the director

among adjacent lipid molecules) with a splay-distortion; o _

. . . *One also may have an energy contribution proportional to the degree of
mOdU|US KC’ and surfage Fen3|on'(ST, d.ue to Chang?s Ir]tilt of lipid molecules—a situation where the lipid molecule director is not
bilayer surface area) with interfacial tensianThe magni-  jigned with its corresponding surface normal (Helfrich, 1973). Also,
tude of each energy component will vary with the magni-strong hydrophobic coupling may fail for larger bilayer deformations.
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To determine the minimum free energy conformation, theboundary condition implies that the lipid molecules are
integral in Eqg. 1 is minimized with respect to variations in allowed some degree of tilt (Fig. 2,andb). Huang (1986)
u(x, y). In Cartesian coordinates used experimental results, namely the variation of gramici-
din channel lifetime as a function of bilayer thickness, to
b [d du au 9% 9% evaluate the contact slope. The analysis showed that the
AGqer = J J ‘l’(x' Yot ax gy ax? ay?)dXdy () slope was zero or close to zero (Figc)La result that differs
considerably from /ar)V2ulr, = 0. This can be rational-

and one determines the functian= f (x, y) that minimizes ized by assuming that the tilt of lipid molecules is associated

the integral by calculating the variation of the integral in Eq.
2 (Lebedev et al., 1979). The variation integral vanishes for
arbitrary variationséu if u = f(x, y) is a solution of
Lagrange’s equation;

o a( o ) a( o ) z=ulr) "

- ax a(aulay) (3) _

a)

d(au/ox)

ay

0? o 0? Y
T o2 o2y | T vl 502 =0
A\ a(a%ulox?)) - ay*\ a(a?uloy?)
Substituting Eq. 1 into Eq. 3 leads to the linear differential
equation

K.V4Uu — aV2u + (S)u =0,
do

where @ bl

Sy

oy

& - + o
9 ay?

Four boundary conditions are needed to solve Eq. 4 (see
Fig. 1 a). Three of these are straightforward. Using radial
symmetry (withr = VX% + y?), for r — =, the bilayer
perturbation will approach zero. We thus have the following
two conditions:

z=ulr)

u(r,) =0, (5a)

dul o ol r
arx—O. (5 )

z=u(r)

v
ay

A third boundary condition arises from the hydrophobic
coupling between the hydrophobic core of the bilayer and
the hydrophobic exterior surface of the embedded inclusion
at the bilayer/inclusion contact surface, which determines
the deformation at the bilayer/inclusion boundary:

u(rg) = Uy = (dy — /2 (5¢)

Eq. 5c is valid only in the limit of strong hydrophobic
coupling, i.e., the case where the strength of the interaction
is such that there is no exposure of hydrophobic residues to
water. " . FIGURE 2 Lipid packing close to the inclusiore)(Situation with no
The fourth boundary condition has been formulated injipig molecule tilt ands < 0. The molecule directod is parallel to the
several different ways (Huang, 1986; Helfrich and Jakobssurface normaf at every point. This hypothetical situation will create a
son, 1990; Dan et al., 1993, 1994; Ring, 1996). Helfrich andvoid at the inclusion-bilayer boundary)(When the first lipid molecule is
Jakobsson (1990) pI’OpOSEd ttiatdr|ro =Sy, the value of forced to be closely aligned at the boundary $ox 0 implies that the
n

. . L . molecule director cannot align with the corresponding surface normal, i.e.,
the contact S|0p8 for which Gdef is minimized (Flg. 1b)' the molecules are tiltedc When there is close alignment at the boundary,

This “free” boundary condition implies thad/or)V2ulro = the need for lipid molecule tilt will be diminished with tise= 0 condition
0 (cf. Landau and Lifshitz, 1986, p. 44). Physically, the free(in the case of cylindrical inclusions).

|

r
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with a significant energetic penalty (see Figc)2as previ- and the expression for the deformation free energy becomes
ously discussed by Helfrich (1973). (see Appendix II)

To partially account for the ensuing uncertainties we 5 5
investigate two different boundary conditions: a free contacttGeer = ~ oKL S(A. K Ho(K, o) + A_KZIHo(k-To))

slope and a clamped contact slope + U(ACTy(Kero) + AR (K 1) + yUos] (13)
EVZUIro =0(s= Sy, (5d)  Toinvestigate the interdependence between specific energy
ar contributions we solved the Euler-Lagrange equation nu-

au merically. To do so, Eq. 4 is expressed as
ar|fo=5 (5e)

——+—-——=+
We cannot exclude that more elaborate boundary conditions rPdr rfde® rde o drt
should be used, but they would require more parameters 1du  d2u K,
than can be justified when using a second-order continuum - a(rdr + dr2> + a2 u=20
approximation (Eg. 1). In Appendix | we examine a specific 0

set of boundary conditions that were proposed by Ringrhe total deformation free energy integral Eq. 1 can also be

(ldu 1d2u 2d% d“u)
i (14)

(1996) and show how they reduce to Eq. 5d. expressed in cylindrical coordinates:

. =K 1du d2u\? du\?
Solution AGdef = WJ [d; w + KC(rdr + dr2> + Ol(dr> ]rdr
The Euler-Lagrange equation, Eq. 4, can be rewritten as oo 0 (15)

Viu—+yVu+pu=0 (6) _
where the energy component corresponding to the compres-
where sion-expansion modulus can be identified as
« Ka
= — = fee Ka
YTk PTax (7) AGee = f 5 vrdr, (16a)
0

0

Solutions of Eqg. 6 that vanish far— « can be expressed

as a linear combination of modified zero-order Bessel functhe energy component corresponding to the splay-distortion
tions of the second kind (see Appendix Il) which satisfy modulus as

2 —
VeI o(kr) = keHo(kr) (8) [ 1du  d2u\2
We therefore have AGsp=1| |K g T gz) [rdr.  (16b)
5 _ , Y + V/yz — 48 .
K—ye+p=0>K ="—""7"—, (9) and the energy component corresponding to the surface
2 tension modulus as
andu(r) can be written as '
- u
u(r) = A Ho(kor) + A_FHo(kr) (10) AGgr=m J 0‘<dr> rdr (16c)

The boundary conditions at the bilayer/inclusion boundary °
(for clamped contact slope) provide the constraints: For the energy decomposition we solved Eqgs. 14-16 nu-

merically as a two-point boundary value problem using

U(ro) = uo = AvHo(k:ro) + A-Ho(k-ro) =Uo  (118)  gtandard relaxation methods (Press et al., 1986).

and (for a fixeds)
u'(ro) = s=> Ak JHq(korg) + Ak I, (kro) = —s (11b) Parameters

whereJt, is the modified first-order Bessel function of the TO facilitatg comparison with previous studies (Huang,
second kind (Abramowitz and Stegun, 1968). The coeffi-1986; Helfrich and Jakobsson, 1990), our reference system

cientsA., are is a thin, solvent-free lipid bilayer with an embedded inclu-

- sion that has dimensions similar to those of a gramicidin

A k- Ha(k-ro)u + Ho(k-ro)s (12a) channel (see Fig. & and Tables 1 and 2). The standard
"

- K_Ho(kyrg)Hi(kro) — ki Ho(k_ro)I(kirg) parameter set used by Huang (1986) and Helfrich and
Jakobsson (1990), which is listed in Table 2, defines this
—KiHa(kiro)up — Ho(K.ro)s (12b) reference membrane. These parameter values are identified

A7 =
K- FHo(Kyro)Ila(kro) — Ky Ho(K-ro)Ita(k ro) by asterisks in the following.
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TABLE 1 List of symbols phosphatidylcholine (SOPC) bilayetrsThe modulus in-
Symbol Meaning Unit creases with increasing cholesterol mole fraction: from 2.6
u N omolaver erturbation A 10 ** N/A in SOPC bilayers with 14 mol % cholesterol to
S i - 1.2-10 *°N/A in SOPC bil ith 58 mol % cholesterol

r Radial distance from inclusion symmetry axis A ' n llayers W! m_o 0 C o_gs €ero
dy Unperturbed bilayer thickness A (Needham and Nunn, 1990). Given this variability, we
I Hydrophobic length of inclusion A investigate the behavior of the model over two decades in
Ug Mon_olayer defqrmatlon at |nc|u3|0n_—bllaye_r bou_ndary A K, centered around the reference value.
ro r at inclusion-bilayer boundary radius of inclusion AA The splay-distortion moduluk, (dimensions of energy)
r. Radial distance limit where(r) = 0 . c .
s Contact slope at inclusion-bilayer boundary _ is expected to be 10° J, as estimated from elastic energy
Co Spontaneous monolayer curvature A densities in vesicles approximated as a sum of nearest-
Ka Area compression-expansion modulus N’ﬁz neighbor contributions (Helfrich, 1973). This estimate is
B Volume compression-expansion modulus N remarkably close to the experimental value obtained by
Ke Splay-distortion modulus (dimensions of energy) N/A E d Rawi 1990) for SOPC bil .
Ky Splay-distortion modulus (dimensions of force) NA vans an awicz ( ) or - llayers using mea-
« Bulk interfacial surface tension N/A surements based on thermal fluctuations. They fadner
T Bilayer interfacial surface tension N/A 9- 10 2°J; the corresponding value for DAPC bilayers was
igdef L"ta'_ delformat'on free energy t kaT 4.4-102°J. Addition of cholesterol to the bilayer increases

ominal compression-expansion ener componen . . _
AGZE Nominal spla;)-distortion gnergy compgﬁent ’ KT the elastic bending modulus threefol; = 2.5- 10 3
AGs;  Nominal surface tension energy component KT for SOPC bilayers with 50 mol % cholesterol (Evans and
B~  Characteristic length scate V&, A Rawicz, 1990). Using a different technique (tether forma-
H Phenomenological spring constant A KTA tion form giant lipid vesicles) Song and Waugh (1993)
Pu Radial distance from, beyond whichju| < |u/fe found comparable values for SOPC bilayeks: = 1.2 -
Py Radial distance from, within which one has 19 . .

(1 — 1/6) of AGyy 1077 J, and for SOPC bilayers with 50 mol % cholesterol,

e . .
w Exponent fork, dependenceAG ~ K& or H ~ K¥) — K. = 3.3- 10 *° J, in good agreement with the threefold
v Exponent forK, dependenceAG ~ KgorH ~ K  — increase observed by Evans and Rawicz (1990). Our stan-
8 &

8 Exponent for, dependencedG ~rgorH ~ry)  — dard parameter set has a rather low valueKpr= 2.85-

1029, but we investigate the behavior of the model for a
range of values up to 10K% corresponding to the elastic
bending modulus for cholesterol-containing bilayers.

. There“ IS, Ihovxf/ever, unfek:tamty at,’OIUt what Wou'I:q be thhe The surface tension in a monolayer spread at an air/water
correct” value for any of the material constants. First, the; .ot~ o has a finite value which is3 - 10~ 2 N/A (Nagle,

measured parameters are macroscopic entities whereas 80): that of a hydrocarbon/air interface. For bilayers with

ntities in Eq. 1 refl he micr i havior cl . .
quantities g. 1 reflect the microscopic behavior close tozero local and global curvature—giant vesicular mem-

the inclusion; there may not be exact correspondence b%'ranes in osmotic equilibrium, for example—the situation is
tween the two classes. Second, the measured parameters af

fferent. The unperturbed bilayer will, under these circum-

not unique in the sense that different experimental methods unperturb rayer wii, under i reum-
: : ) Stances, adopt a state in which the attractive interactions in
have provided different values for a given parameter (cf. . . . . .
Niggemann et al., 1995): even more importantly, the matezhe hydrophobic chains and the interfacial region balance
N ' ' the repulsive interactions between the headgroups (Seddon,

rial properties var function of membran mposition, ) L !
al properties vary as a function of membrane compositio 990). In this case the free energy is minimal with respect

Pipette aspiration methods [for reviews see Evans an the area of the membrane- that is. the derivative of the
Needham (1987) and Needham, (1995)] have been used 8 . ' IS, \vative ot
ree energy with respect to area vanishes, the result being a

obtain area compression-expansion vallesthat range . ) . : .
from 5.7+ 10~ 12 N/A for diarachidonylphosphatidylcholine state of optimal packing of the lipid molecules, i.e., a bilayer

(DAPC) bilayers to 1.9 10 ** N/A in 1-stearoyl-2-oleoyl-

2The area compression-expansion modidysan also be determined from
the volume compression-expansion moduBisas K, = d,B. Bilayer

TABLE 2 Reference parameters capacitance measurements (White, 1978), although indirect, allow for

Symbol Value Unit Reference comparison between glycerolmonooleate (GMO) bilayers and phospho-
- lipid bilayers. Using this method Hladky and Gruen (1982) estimated that
do 28.5 A E”!Ott etal, 1983 B = 5-10 **N/A2 for nominally solvent-free GMO bilayers (formed with
I 217 A Elliott et al., 1985 squalene). Alvarez and Latorre (1978) estimated Ehat 8 - 1013 N/A?
Uo 3.40 A @-"nre for nominally solvent-free GMO membranes formed using pentane and
To 10 A Hendry et al., 1978 1.3 10~ *2 N/A? for nomimally solvent-free bacterial phosphatidylethano-
Co 0 A — lamine bilayers. For our reference bilayer thickndsshe corresponding

K% 2.85-101° NA  Helfrich, 1973; Schneider et al., 1984; —11 . 10-11
Engelhart of al., 1085(, = dKy K, values range from 1.410 ** N/A to 3.7- 10 ** N/A.

K% 1.425-10°** N/A  White, 1978; Hladky and Gruen, 1982
(Ka = doB)

o* 3-10°% N/A  Elliott and Haydon, 1979

3In liquid crystals the splay-distortion modulus sometimes is determined as
a force, denoted bit, (= KJd,). K, has been estimated to be 207 ** N
when the lamellar repeat distance was 60 A, and@ ** N when lamellar
repeat was 20 A, which correspondsto= 2- 10 2°J (de Gennes, 1974).
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where the interfacial bilayer surface tensionvanishes a)
(Jahnig, 1996).

For bilayers surrounded by a Plateau-Gibbs border the
difference between the interfacial bilayer surface tension
and the bulk interfacial tensioa of the Plateau-Gibbs
border is finite, reflecting the free energy of thinning the
bilayer. Under these experimental conditiangan be de-
termined using the Lippmann equation (Requena and Hay--
don, 1975), and for GMO/squalene membranes;s 3 - I}
10 ** N/A (Elliott and Haydon, 1979). For phosphatidyl-
cholineh-decane bilayers vary between 1.6 1013 N/A
and 4.8- 10 ** N/A (Neher and Eibl, 1977; Requena and
Haydon, 1975).

In the following we will consider a solvent-free mem- AGer
brane with zero local and global curvature (ie.5= 0) and . ; ois
use the GMO/squalene value as our reference parameter for s
the bulk interfacial surface tensian b)

AGgp
AGeg

RESULTS 5 1
1): s=sy;
Choice of boundary conditions (1% 35
The bilayer deformation energy varies as a function of
mechanical moduli as well as the boundary conditions at
r = ro. Fig. 3a shows (analytical and numerical) solutions
to Eq. 4 as a function o for the reference membrane
(Table 2). The results agree with those of Helfrich and
Jakobsson (1990). The energy is at a minimum wien
—0.446, in which casAGj; = 4.05 kT. This solution does 11
not, however, consider the energetic cost associated with the
packing of the lipid molecules immediately adjacent to the 0 4 : : : ,
inclusion. This could be a problem because lipid molecules 0 1 2 3 4

cannot just sway away from the inclusion, as this would uo/A

create a void at the inclusion/acyl chain boundary (Fig).2

Thes = s,,,, boundary condition therefore implies that the FIGURE 3 @) The deformation free energy associated with insertion of

acyl chains are allowed to tilt, meaning that the |ipid mol- arn inclusion with dlmensmns' of a.gramlmdln dimer channel in a lipid
bilayer. Parameters were as listed in Table 2. The energy components for

ecule director is not parallel to the membrane normal (Segpjay-distortion 4Gs,), compression-expansiodGy), and surface ten-

Fig. 2 b). sion AGg,) are indicated. The analytical solution (Eq. 13) for specific
If the penalty for tilt is high, then for cylindrical inclu- values ofs is indicated by solid squares; the lines represent numerical

sions (Fig. 2(:), the headgroups of the |ipid molecules in the solutions to Eq. 15 and Eq. 16a—b) Comparison of different solutions to

- . . . . . . _the deformation energy problem. The deformatigris varied in steps of
concentric annuli surrounding the inclusion will be nearly in ;5 A. and the corresponding values f8G,, are connected by lines.

the samez plgne, which correspond.s to a Situatio_n W_hereOtherwise, reference parameters (Table 2)AG). for the case where the
s = 0. In this case, the deformation energy will differ contact slope is determined by the minimum energy constrsirt,s,,;,

considerably from the results obtained wher s, (see  (Fig. 1b). (2) AG, for the case of = 0 (Fig. 1c).
Fig. 3 b).

The two curves in Fig. ® represent solutions of Eq. 14
for the boundary conditions Eqgs.dband 5e, respectively.
The curve labeled (1)s = s, shows the deformation
energy versusl, for thes = s, boundary condition (i.e.,
the value of 4.05 kT foAG; at ufy = 3.4 A in Fig. 3b
corresponds to the minimum in the curve shown in Fig).2
The curve labeled (25 = 0 represents a solution similar to
that obtained by Huang (1986) with much larger deforma- . . .
tion energies 4Gy = 11.86 KT foruf), = 3.4 A) than the The bilayer deformation profile
S = Syn Solution. In both cases(= s,,, ands = 0) we  The shape of the deformation profile varies as a function of
assume strong hydrophobic coupling between inclusion anthe elastic moduli. Using Eq. 4 we find that the surface

AGgor/kT

the first annulus of surrounding lipid moleculeg,[=

(dy — 1)/2], meaning that the vertical position of the lipid
molecules is determined completely by the hydrophobic
part of the inclusion.
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tension componentAGgy) can be neglected provided that criterion the absolute values fpr andp, will be different,
but the qualitative trends are unchanged (results not shown).
KaKe In Fig. 4a, s = —1, the bilayer expansion is small, and
a << 5, a7 : S . .
dg the maximal expansion is less thagle, which results in a

is th for the ref b In thi h small value forp,,. Fig. 4d shows the same situation but for
as is the case for the reference membrane. In this case thefeg gar» bilayer (a bilayer with a large¢/K or 8~Y4). In

is only a single length _scale in the free_ energy express_imghis case the maximal expansion is greater e, andp,
(cf. !Eq. 1). It is convenient to characterize the deformatloniS not a single-valued function af(r), which results in a
profile using the length scale higher value forp,. The AGg; contribution t0 AGyg; in-
(K d2/K V4 = B4 = V@’ (18) creases twofold, apd its relative importance becomes more
pronouncedAGg+ is 5% of AG; in the reference mem-
whereé = VKJK, (see Egs. 7-10 and Appendix Il). For a brane, but increases to 18% &G, in the softest bilayer
given d,, the deformation energy (and profile, see below)(see Table 3).
are functions of the raticK /K, and K, (or K,). We now In the second pair of profiles (Fig. #,ande) s = —0.5,
examine some consequences of this. which is close t,,,. Both profiles display maximal bilayer
Depending on the value o, the bilayer deformation expansions less thap/e. An increase in bilayer “softness”
profile may be nonmonotonic. That is, the energy minimi-by a factor of 100 (Fig. 4) does not significantly affegi,,
zation requirement may cause a bilayer compression adjand the shape of the deformation profile is fairly similar in
cent to the inclusion to induce an expansion further awayhese two situations. Several features of the energy decom-
from the bilayer/inclusion boundary. Such shapes arise begsosition are noteworthy, however. First, the absol@&-¢
cause the deformation profile is determined by the need toontribution to AG,.; decreases almost 30-fold whéf,
minimize of the overall deformation energy, which haschanges fronkK% to 0.01K?%, whereasAGgp, decreases only
implications for lipid packing. The packing problem arisestwofold. Second, in the reference (“hard”) bilayer the rela-
because the hydrophobic core volume per unit bilayer surtive contributions ofAGg, and AGg are inverted as one
face will deviate from its equilibrium value. A§, increases goes froms = —1tos= —0.5, which is not the case for the
(for a constanK,), the AG.z component oAG,;will tend  softer bilayer. ThirdAGgy is a larger component (29%) of
to increase, which is reflected in the shape of the deformaAG,; in the softest bilayer as compared to the reference
tion: the deformation will be localized close to the inclusion bilayer (8%).
as splay-distortion becomes relatively inexpensive (in terms Finally, the third pair of profiles (Fig. 4¢ andf) when
of energy) and the minimization will primarily affediG.. s = 0 shows an example of monotonic deformations. For the
As K. increases (for a constamt,), AGgp will tend to  soft bilayerAG.g > AGgp, Which is not the case for the
increase, which leads to “long-range” deformations (mini-reference bilayer (see Fig.&3. Hence the need to minimize
mization will primarily affectAGgp at the cost of increasing the compression-expansion component is less, and the bi-
compression-expansion). This is illustrated in Fig. 4 andayer primarily minimizes the\Ggp component, which re-
Table 3. sults in long-range (i.e., several times the bilayer thickness)
The profiles shown in Fig. 4 illustrate the bilayer defor- deformations (see Fig. #).
mation for different choices of parameters and for three To get further insight into how the system responds to the
different choices ok. Fig. 4, a—c was generated with the choice of boundary conditions it is helpful to examine how
reference parameterg¥ ¥* = 11.3 A); Fig. 4,d-f was  p,andp,¢ vary as a function of for different values oK_,
generated usind, = 0.01 K%, which corresponds to a This is shown in Fig. 5. The different values fki, corre-
“soft” bilayer (3”4 = 35.7 A). When describing the bi- spond to different values o~ becauseK, is kept
layer deformations it is helpful to introduce a characteristicconstant. For softer bilayers [curves@ ¢4 = 20.1 A) and
deformation lengttp, = ry,. — ro, wherelu(r,,)| = u/eand 3 (874 = 35.7 A)] and negative, p, increases markedly
eis the base of the natural logarithm. In case of nonmonowith decreasingbecause of a bilayer expansion close to the
tonic deformations, wherg, may be a multivalued func- bilayer/inclusion contact surface (Fig.d. A continuous
tion, we definep, to be the maximal functional value. A change irs, going froms = —1 (Fig. 4b) tos = —0.5 (Fig.
characteristic energy length ) can be defined similarly, 4 d), causes a discontinuous changepjpreflecting the
as the distance,g = rag — ro, Wherer,g is the radius nonmonotonic deformation (the jumps in curves 2 and 3 in
within which one has (- 1/e) of the total energ\AGg.+ Fig. 5a.* Fors ~ —0.5, the deformation extension length
and the total free energy of deformation are decoupled:
otee K, 1du d2u\? du)\? variations in3~*4, due to changes iK,, produce no change
™ [df) u K0<r ar dr2> a(m) ]rdr (19) in the radial extent of deformation when measuregpfcf.
Fig. 4,b ande), but the absolute energies change (from 4.05

= (1 - 1/e)AGdef

The seleCteq.b criteria 'for deformati?” fdnd energy distribu- “the reference membrane (curve 1) also displays a pronounced expansion
tion are arbitrary. With a 10% criterion instead of @1/ at very negatives (results not shown).
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FIGURE 4 Bilayer perturbation profiles for different choices of boundary conditions and material constan}1ofiles for the reference membrane
and different values of. (8) s= —1.00, p) s= —0.50, and ) s = 0.00. @-f) Profiles for a soft bilayeK, = 0.01K? (reference parameters otherwise).
(d) s= —1.00, €) s= —0.50, andf) s = 0.00.

KT for the reference membrane to 1.33 in the softest bilayeFor the reference parameter pgt; is ~5 A (= 1/28* %4

whereK, = 0.01K%). Fors > —0.5, all curves increase in independent of the contact slopeThis surprisingly small

a sigmoidal manner. A¢ = 1, the value op /B Yis~2  value of p,; shows that most of the deformation energy

for all three bilayers, whereas fer~ 0, p, is only slightly  results from deformations in the first annulus of lipids

larger thang~*#in all cases. surrounding the inclusion (see below). This result also em-
In Fig. 5b p,g is plotted for the same parameters as inphasizes the importance of the boundary conditions-=at

Fig. 5a. The points labeleek correspond to ths,,,, values.  rq. For the softer bilayers (Fig. b, curves 2 and 3)p,¢ is
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TABLE 3 Absolute and relative proportions of the energy
components for different K, and s values

KJKE s AGu/KT SDIKT CEKT ST/KT %SD %CE %ST
1 -1.00 16.05 1284 241 080 80 15 5
-050 412 128 251 033 31 61 8
0.00 11.86 403 759 024 34 64 2
01 -100 1152 885 166 101 77 14 9
-050 176 111 032 033 63 18 19
000 287 103 166 018 36 58 6
001 -1.00 817 556 114 147 68 14 18
-050 135 0.8 009 039 64 7 29
000 083 029 040 014 35 48 17

a nonmonotonic function o§. WhenK, = 0.01 K%, pac

displays a peak close = 0 (cf. Fig. 4f). Nevertheless,
pac is only =~ p /2, andp, is <B~Y*for all cases exam-
ined.

Radial decomposition of deformation free energy

Depending on the choice of boundary conditioh&g can
be less than, equal to, or larger thAGgp,. The relative
contributions of these two major components\G,; vary

LA

b

Paa/A

80 q

60 +

40

(3) K=0.01K,*

(3)

(2) K,=0.1K,*

(1} K,=K,*
20
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20 ‘\—/K K=0.01K.*
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s

FIGURE 5 Length scales for the bilayer deformatior$ o, and 0) pac
different compression-expansion moduli as functions ¢f) K, = K%, (2)

K, = 0.1 K% (3) K, = 0.01 K% Reference parameters otherwise. The

corresponding3~— Y4 values are~ 11.3 A, = 20.1 A, and~ 35.7 A,
respectively.
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as functions of two parameters, the contact skopedg 14
(Table 3). This parameter dependence can be further illus-
trated when the deformation free energy is decomposed
radially into the component energy per unit length away
from the inclusion (Eq. 16a—c). At both= 0 ands = s,;,,,
AGcg > AGgp (see Fig. 3). The radial distribution of the
energy, however, shows a more complex behavior (Fig. 6).
Fors = 0, u, = 4 A (Fig. 6 a), the splay-distortion
component dominates close to the interface but decreases to
become nearly zero at 10 A=(B* %4, with a marginal
contribution at 20 A ¢2p* % from the interface. The
compression-expansion component has a maximunah

A away from the inclusion and decreases more slowly than
the splay-distortion component, thus dominating the defor-
mation energy at distances5 A (= 1/2 g* Y4 from the
bilayer/inclusion boundary. The surface tension component
is negligible (cf. Table 3), and not shown for reasons of
clarity. When a minimum energy constraint (Eq. 5d) is
imposed on the interface slope (Fig.bh the component
energies are less, but the splay-distortion energy continues
to dominate close to the boundary. The compression-expan-
sion component begins to prevail only at distances 6fA

(= p* Y% from the interface. Again the surface tension
component is negligible (cf. Table 3).

For the soft bilayer, = 0.01K%) ands = 0, the radial
distribution of energy components bears qualitative similar-
ities to what is seen for the reference membrane (cf. Fig. 6,
aandc). The splay-distortion component again decreases to
nearly zero ap~** (=35 A), and the compression-expan-
sion component dominates further away from the inclusion,
but now a significant surface tension component is present.
For thes = s, solution in the soft bilayer, = 0.01K%)
surface tension has become the dominant energy component
(Fig. 6d). The splay-distortion component is approximately
of the same magnitude, whereas the compression-expansion
is negligible. Under selected conditior&Ggr may be a
major component of thAG ¢

The linear spring description

In Fig. 2 b, the energy versus deformation curve has a
parabolic shape, which suggests ths®,,; could be a
quadratic function ofu. Such a quadratic relationship is a
characteristic of simple linear springs and is simple to use in
practical applications. It thus becomes important to inves-
tigate to what extent a spring approximation is valid. Setting
U = u/uy and using Egs. 5d and e, Al1, and A12:

C

AGger = > U(Z)j ((Ba? + V20)2 + 4|VUPdQ
o

_ou ‘ _
Yo | =To
(20)

This has the implication that for eithe#/gr)VZulr, = 0 or
(au/ar)|ro = 0 the terms in the brackets are independent of

2 Ju 2 —a 257
= K7 oUg —§Vu+u§Vu—
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FIGURE 6 Radial decomposition of the deformation energyThe AG,.;components as a function of distance from bilayer/inclusion boundasy=for

0 andu, = 4 A (standard parameter set otherwise). The free energy per unit length for the total energy and for each of the components &jeSstroevn. (
as in @), except that the contact slope is allowed to relax to its minimal free energy \&akies(,;,). (C) Same as ind), except thak, = 0.01KZ, (d)
Same as inlf), except thaK, = 0.01K%,

Up andAG,; (EQ. 20) is a quadratic function of. Gener- 0 ands = s, In either situation we find thagt + v~ 1

ally, AG4;is a homogeneous 2nd order functionugfand  (the physical basis for this relation is not clear). Hence

S i.e.,AGye = a,U3 + a,5° + aguysfor constants,, a,, a,. 2 2 b e2v

The consequences of this are illustrated in Fig. 7. Fig. 7, AGeer = Hup ~ Ko™ = Kot (1)

a—c shows results fos = 0; Fig. 7,d—f shows results for H (and thusAG,.y) also scales with the inclusion radius

S = Smin- Fig. 7,a and d show the quadratic relationship (Fig. 8 and Table 5). F&g = s,,;, (Fig. 8a), H ~ r5, where

betweenAGy.; and u, for different values oK, Fig. 7,b 8 = 0.976. The relative energy contributions do not vary

andc ande-f shows the phenomenological spring constantswith increasing,, buts,,;, changes from-0.4466 (, = 10

H (AGyes = HU3)® calculated fois = 0 (Fig. 7,bandc) and  A) to —0.3288 forr, = 50 A (Fig. 8b). Fors = 0 (Fig. 8

S = Smin (Fig. 7,eandf) for the same range of compression- ¢) H ~ r§, whered = 0.815. In this case the relative energy

expansion modulK, and splay-distortion moduK.. Em-  contributions change slightly with increasing the relative

pirically, the results are well described by power laws:- CE/SD/ST contributions (in %) varies between 64/34/2 for

K¥ for fixed K,, andH ~ K for fixed K. Table 4 summa- r, = 10 A and 71/27/2 for, = 50 A (see Table 5). An

rizes values fo and v for both boundary conditions = increase inry also changes the characteristic lengths, i.e.,
the p,(s) and p,(S) curves in Fig. 5. For, = 30 A the
shape of the curves are preserved but they are shifted

SFor integral membrane proteins it may be more convenient to use the totaT+0'1 s units. Fors = —0.5 ands = 0 the differences in

deformation rather tham,. If that convention is usedGqe = (H4)(d, — P Values atry = 30 A andry = 10 A amount to<10%

1)? (cf. Eq. 5¢), i.e., the appropriate spring constant will be four times |ess.(results not ShOWﬂ).
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FIGURE 7 The phenomenological spring model AG,.;whens = 0 as a function ofi, for different values of the compression-expansion modulus
relative toK%. Standard parameter set. The points denote the calculd#gg values as a function af,. The curves are nonlinear least-squares fits to a
linear spring modelAG = Huj3 (the correlation coefficient = 1.000 in all cases)b(andc) The phenomenological spring const&hplotted as a function

of KJK% andK /K%, The points denote calculated energy values and the curves are nonlinear least-squares fits to paergitgK?)* or H ~ (K/K%)"

(the correlation coefficient > 0.996 in all cases)dEf ): Same as ing—c) but fors = s.,;, (the correlation coefficient > 0.997 in all casesy, v values

are listed in Table 4.

Interdependence between energy components

One might expect that a specific energy component assoc
ated with a bilayer deformation should be completely de
scribed by the associated mechanical modulus. This is n
the case, as already could be inferred from the results i

these relations are preserved (Figc @ndd), but with a
decreased sensitivity cdhG¢ to variations inK_ and an
Ihcreased sensitivity dhGg, to variations inK, (see Table
('g[). As for AGye, n and v depend upon the boundary
onditions, but for each energy compongnt+ v ~ 1.
ence

Figs. 4 and 5. Given the importance of this issue, it is further

examined in Fig. 9. The results are summarized in Table 6.

Fig. 9a showsAGg as a function oK /K% for s = 0. For
a constank,, a variation inK_ will affect the magnitude of
AGce. Similarly, a variation ink, will affect the magnitude
of AGgp, (Fig. 9b). In both cases the functional relations can
be described by power laws (see Table 6). When s,

TABLE 4 Scaling parameters for AG ¢

AGSD -~ Kagzu = Kc§72'} (22)

AGCE -~ Kagzu = chizv- (23)

DISCUSSION

In this study we provide an analysis of the energetic con-
sequences of an inclusion-induced membrane deformation
using a continuum theory of smectic liquid-crystal defor-

s ® v B mations as applied to lipid vesicle shapes (Helfrich, 1973),
s=0 0.334 0.667 1.001  which was extended to inclusion-induced deformations by
S = Smin 0.287 0.717 1.004

(AGyer ~ KE; AGyer ~ K2).

Huang (1986). We note that perturbations in the bilayer
thicknessu are expected to decay over a length scale that is
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TABLE 5 Effect of inclusion radius on AG

a)
20 AG s 1A AGufkT ~ AG.KT  AGgkT — AGg/kT
def

s=0 10 4.05 2.83 0.92 0.30
20 7.81 5.59 1.75 0.48
15 30 11.60 8.36 2.58 0.66
40 15.38 11.13 3.42 0.84
> 50 19.18 13.90 4.26 1.01

~ .
a'° S = Smin 10 11.86 7.54 4.08 0.24
4 20 19.12 12.93 5.83 0.36
30 26.44 18.34 7.62 0.48
51 AGgp 40 33.77 23.76 9.41 0.60
/ 50 41.11 29.18 11.21 0.72

AG
O T T T T 1 ST
[} 10 20 30 40 50 .
ro/A Boundary conditions
b) The results of our analysis confirm and extend the findings
030 of Huang (1986) and Helfrich and Jakobsson (1990), as we

show that the seemingly contradictory results obtained by

—0.35 these investigators arise simply from their different choices
» -0.40 of boundary conditions. In principle, however, these results
emerged as solutions to two quite different problems.

_ZI:Z Huang (1986) used experimental data to deternsirmand
o 10 20 30 40 50 concluded thas is close to zero. Helfrich and Jakobsson
ro/A used energy minimization to determiseBoth approaches
assume perfect hydrophobic coupling between the inclusion
cl and the bilayer hydrophobic core. In both cases Eq. 4 was
50 - solved by integrating from the inclusion-bilayer boundary to

infinity. The deformation energies, however, differ by

40 AGe roughly a factor of two, the smaller values being obtained
by the Helfrich and Jakobsson approach. $hke 0 bound-
30 4 AGes ary condition is in better accord with experimental results
(Huang, 1986), and the apparent failure of the= s,
20 - boundary condition could arise because the continuum pa-
rameters that are used in the model are inappropriate at the
/ AGgp short length scales that are of interest here or because there

AG/KT

are additional contributions thG;, which are neglected in
the model. One such component could be the tilt contribu-
tion to the deformation energy (cf. Helfrich, 1973). At the
ro/ A present time, however, there is insufficient information to

establish the appropriate choice of boundary conditions at
FIGURE 8 The deformation free energy and its components as a functhe bilayer/inclusion boundary.
tion of inclusion radius.d) Results fors = s,,;,. AGges ~ 3, Whered = In a somewhat different approach Ring (1996) introduced
0.976 = 0.001 (mean= SE from least-squares fit)b: The minimum  an apparent relaxation of the hydrophobic coupling in which
contact slope as a function nf. (c) Results fors = 0, § = 0.815+ 0.006. a non-zercs is taken to imply that the lipids slide outward

in a way that maintains strong hydrophobic coupling at the

bilayer/inclusion boundary. Under this boundary condition
of order of the unperturbed thickneds which is the largest  the integration starts from the center of the lipids that
relevant length scale that characterizes a bilayer. Beaiuse surround the inclusion. As expected, the deformation energy
is a microscopic length, the continuum elastic description ofn this model is less than that obtained by Huang (1986) or
the bilayer that we employ (Eqg. 1) should be viewed as &Helfrich and Jakobsson (1990); but the formal development
phenomenological model. The model thus is an approxiis very similar to that of Helfrich and Jakobsson (1990, see
mate description of bilayer deformations at short lengthAppendix I).
scales (and fairly long time scales), which should capture The lack of experimental information about the nature of
much of the relevant physics. The constakjsK., and«,  the bilayer/inclusion boundary is problematic because the
as well as the boundary conditions, are fitting parameterdength scales for which the continuum description is appli-
they need not bear a simple relation to the macroscopicable are determined by the residual, or time-averaged,
quantities that are measured experimentally. “texture” of the microstructure that remains after integrating
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FIGURE 9 Free energy decomposition as a functiorkKgK? and K /K% The points denote calculated energy values and the curves are nonlinear
least-squares fits to power lawsS.¢ ~ (KJKDH or AGgp ~ (KJK%) (the correlation coefficient > 0.995 in all cases)a(andb) s = 0; (c andd) s =

Smin- (@) AGce as function ofK JK?, for different K /K% () AGgp, as function ofk /K% for differentK/K%. (c) Same as ind), but fors = s, (d) Same

as in @), but fors = s, (The u, v values are listed in Table 6.)

the molecular motions over the relevant time scale. TCEnergy components and membrane shape

examine length scales on the order of A it is necessary t . . . .
ihe radial decomposition of the component energies (Fig.

) show that splay-distortion contribution G ; energy
r(;Iominates at the bilayer/inclusion interface, whereas the
compression-expansion contribution is predominant further
away from the inclusion. Any inclusion-induced membrane
deformation will thus involve a complex interplay of com-
pression-expansion and splay-distortion of the surrounding

average the molecular motions over time periods that are o
the order of ms (cf. Bloom et al., 1991), which is much
longer than the average residence time of a lipid molecule i
the inclusion-perturbed bilayer.

TABLE 6 Scaling of energy components

bilayer.
s Component r v rEY Importantly, but not surprisingly, the relative contribu-
s=0 AGgp 0.348 0.638 0.986 tions of AG.g and AGgp, to AGy are similar. That is, the
AGce 0.328 0.652 0.980  pilayer deformation energy cannot be attributed solely to
S = Snin AGgp 0.273 0.746 1.019  either compression-expansion or splay-distortion, which has
AGce 0.244 0.739 0.983  implications for understanding how the lipid bilayer mate-

Component~ K¥; Component~ K. rial properties affect protein function. The bilayer responds
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to an imposed distortion by minimizing the overall defor- the free energy of deformation will be due to surface ten-
mation energy by varying both the CE and SD componentssion. Thus, for thicker and softer (solvent-containing) bilay-

and the effect of this minimization can lead to a largeers, surface tension could be a significant energy contribu-
repertoire of shapes (Fig. 4). Taken together with the relation to the total deformation free energy.

tive paucity of experimental values for the relevant mechan-

ical moduli in different lipid systems and variation in avail-

able values, this complexity has led to the development of .

simpler approaches that may be used to explain specifiecaling properties

cases of protein-lipid interactions. For the chosen reference parameter set, the length scale of
the bilayer perturbatiop, (Fig. 5a) depends on boundary
conditions (the contact slopg. The corresponding scale
property for the total deformation free energy is fairly
In the case of gramicidin channels incorporated in planaindependent o$ (Fig. 5b).
lipid bilayers, for example a phenomenological spring Roughly two-thirds of the total deformation free energy is
model, e.g., the mattress model (Mouritsen and Bloomdue to the bilayer deformation within the first annulus of
1984), appears to be a useful approximation (Andersen dipid molecules surrounding the inclusion. With increasing
al.,, 1992; Durkin et al., 1993; Lundbeek and Andersensoftness both length scales become more sensitive to
1994; Lundbezek et al., 1996). In the mattress model thehanges irs (Fig. 5, a andb, curves 2 and 3). A relative
different contributions to the overall deformation free en-decrease in the compression-expansion modulus will in-
ergy are combined and the problem is simplified to thecreaseg, but p, andp, scale differently. For example, in
deformation of a linear (Hookean) spring. Somewhat SUrthe case of ~ 0 andK, = 0.01K* the maximalp, is just
prisingly, this simplificatior) al§o applies in the case of 3pout half ofp,, the former being comparable tgg2 /4
systems with energy contributions from both SD and CErpe gifferent scaling is a reflection of the manner in which
Components. In the case. of contact slspe 0 andg - Smins the bilayer adapts to the inclusion induced perturbation. The
the spring model constitutes an exact description of thesystem can tolerate long-range perturbations (meaning
membrane qleformation. Th.is considerably simplifi.es the x —1/4 > d,) as far as they are associated with a minimal
EZ‘;’; dci)r]: elrisot:jce?obduilsit tggtesmﬁgjtd;@sitgtec?ﬂ prerzsblloenmaggnergy cost. An increase in inclusion radius will increase the
9 ’ P qnergies AGyen AGcE, AGgp, andAGgq), but the increase

assigning appropriate values to the underlying mechanical . - - ) ]
mod%li 9 approp ying IS a sublinear function of inclusion radius.

The linear spring model

Parametric interrelations Biological implications

The separation of energy contributions in our elastic mode|mplicit in the elastic membrane model is that there may be
is problematic. Compression of a monolayer of lipid mole-5 significant energetic penalty associated with even a mod-
cules, for example, would be expected to alter the apparenist degree of hydrophobic coupling between an integral
splay-distortion modulus of the monolay&. andK,inthe  memprane protein and its host bilayer. Integral membrane
formalism presented here, in fact, are not independent des;ain function may be influenced by the host bilayer if the

scriptors of the mechanical properties of the bilayer in theh drophobic interface between protein and bilayer is altered
sense that both reflect the same fundamental parameters t a result of protein activity, e.g., a conformational change

describe lipid-lipid interactions in a monolayer (or bilayer). ssociated with an closed open transition in ion channels.

This dependence is already apparent in the shell model uarternary conformational changes have been described

Evans and Skalak (1980) according to whith = KdG. onr the nicotinic acetylcholine receptor and gap junction
One modulus therefore renormalizes the other: variations i ) . :
channels (Unwin et al., 1989; Unwin and Ennis, 1984). For

K, lead to changes inGgp, and variations irk, changes . )
2 g P ¢ g gap junction channelsr{ = 30 A) the open= close

AGce On the other hand, the interpretationkqf as a true e ) :
bending modulus has been shown to be valid jpphase transition involves a change in the membrane spanning part

systems, where the work of deformation from this sponta-Of the channel, which results in a change in the hydrophopic
neous radius of curvature is quadratic in curvature andength of the channel from 30 A to 29.7 A. If the channel is
where the associated bending moduli are related to thémbedded in a bilayer with a thickness of 30 A (perfect
moduli measured on planar bilayers (Gruner et al., 1986).nydrophobic match), and wits = 0, an open= close

The surface tension component of the total deformatioriransition would result in a rather modesGq, of 0.22 kT
free energy, as formulated in Eq. 1, constitutes a negligiblécorresponding to a 25% change in the Boltzmann equilib-
part of the total deformation free energy in the solvent-fregrium distribution between the open and closed states). For a
membrane that is our reference system. If bilayer softness isilayer thickness of 31 A (and = 0), AGy; would be 2.3
increased by two orders of magnitude, a substantial part dfT (corresponding to a 10-fold change in Boltzmann fac-
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tor).° The deformation energies can be larger if the spontathe lipid molecules at the inclusion hydrophobic surface are allowed to
neous monolayer curvature is different from zero (Nielseni‘)s_"de" outward (away from the bilayer symmetry plane), the overall
Goulian, and Andersen, unpublished observations). llayer deformation will be less. iy .

. . . . . This is formulated in a set of boundary condition suggested by Ring
The deformation profiles obtained using the elastic meMz1996) (see Fig. A1a and b). In this models is defined by energy
brane model marks the average hydrocarbon/headgrouginimization but the lipid molecules closest to the inclusion are displaced
boundary. Thermal motion of the lipids perpendicular to thein a direction parallel to the axis of the symmetry axis of the inclusion,
bilayer will cause changes in thickness (Wiener and WhiteWhich reduces the contribution of acyl chain compression of the nearest-

1992) The implications of such thermal fluctuations in theneighbor lipids. The actual displacemensin(6) is supposed to be deter-
) mined by factors such as the balance of forces between headgroups and

instantaneous thickness may in their own right affect prOp'hydrophobic repulsion of the hydrocarbon-water contact, and is assumed to
erties, but these effects are difficult to determine because thg: of the same order as the lipid-lipid separation (Ring, 1996). The formal
thickness changes depend on sample hydration levels anidference between the = s, condition and this “relaxed” condition,
lipid type. r(?fe)rred to in the(ef)oIIO\r/]ving as the = s, (g)oulndljry fonditi(:n, (les) that
. : : : ro) = U + rysin(), wherery = ry + rycos). In Fig. 1a s = tan(p) <
Relatively modest changes in bilayer properties cart’ 20U(T]) = U(re) andr) = re. Forr, — 10 At, = 0 A, the two sets of
changeAGge; by 10-15 kJ/mol (Lundbeek et al., 1996, conditions are identical. Fig. A4 shows the situation wherg = 7 A and
1997), corresponding to 4—6 KT per molecule, indicatingr, = 3 A (Ring, 1996), whereas in Fig. Al r, = 10 A andr, = 4.5 A.
that the bilayer deformation energy may be of sufficient Under these conditions the bilayer deformation energy will be less than
magnitude to affect protein function. In addition, even :‘;V IZ ;ejﬂ[griee(f)ig'ﬁ ﬁ_lc fﬁ)?:s'gaefﬁ; ;«fnth)(]3 ‘x;eglf*;ifg‘:;’;_i;n
. : : w (1) in Fig. uncti u i
thoth the defprmat!on extend%O A from the mCIL,JSIOn’ U(IPE)) = Uy + r,sin(h), hov?/ever, the resulting relaxed minimum solution is
most deformation arises in the region corresponding to theirtually identical to thes = s, solution. This is due to the fact that for
annulus of lipid molecules that are in intermediate contact, = 7 A andr, = 3 A, ry = r{, so the difference is primarily due to a
with the inclusion. This implies that one should be able tochange in the effective at the interface. The solution given by Ring (1996)
effect substantial changes in the bilayer deformation energ§2" thus be obtained from tee= s, by simple scaling of.. The distances

; o ; 7, = 7 Aandr, = 3 A are too low, however, to account for a gramicidin
by rather modest changes in the composition of this boundchannel incorporated in a phospholipid bilaygr= 10 A andr, = 4.5 A

ary layer, which could have implications for understand”“gmight be more appropriate. For these parameters the energies, when plotted
how lipid-soluble, or amphipathic, substances affect thess function ofu,, are less than fos = s, even though the effective
conformational preference of (and function) of integralinclusion radius, is larger tharr, (Fig. A1 b), u(rg) is less thanu, the
membrane proteins. Conversely, the configuration of thdesult being overall less deformation. Again this curve can be plotted as a

P ; unction of the actual deformation(rg) [arrow (2) in Fig. Alc] resulting
hydrocarbon chains in the boundary layer is affected by thén a steeper curve than for tlee= s, situation. But when the = s,

inc'|USi0nv the result being a (FranSient) Iaterallp'hase Se_pQ'urves are scaled using the power law for inclusion radius illustrated in Fig.
ration. Such a separation will change the lipid densitys [arrow (3) in Fig. Alc], these two solutions become almost identical.
around an inclusion and could trigger protein activity asThat is, solutions obtained by thg = 10 A, r, = 4.5 A boundary
noted earlier by Sackmann (1984). condition can also be found by appropriate scaling ofsthes,;, solution.

. - It should be noted that the interpretationrgfandry is different. Forr,,

In COHC|U§I0n, the present results extend 'preV|0us W,Orlés the lower boundary for the energy integral in Eqg. 1, the integration
on the cogpllng b'etween the membrane elastic deformauor\ﬁcludes the total cross-sectional area of each of the lipid molecules in the
and protein function (cf. Mouritsen and Bloom, 1984; Sack-first annulus surrounding the inclusion (Fig.llandc), whereas for} the
mann, 1984; Gruner, 1991; Brown, 1994), and provide dntegration includes only half of the cross-sectional area for each of the
rationale for why the function of integral proteins is affectedipids in the first surrounding annulus (Fig. A,andb).
by maneuvers that primarily affect either bilayer thickness
(Cgffrey and Feigenson, 198;; Johannsson. et al, 198 opENDIX II
Criado et al., 1984) or propensity to form nonbilayer phases
(Navarro et al., 1984; Brown, 1994; McCallum and Epand,For physically acceptable deformation profiles the solutions to Eq. 6 must
1995). In either case, the manipulations of the bilayer en_be real-valued continuous functions of bounded variation in any interval

. ) T . [a b], 0 < a< b < +%. Assuming radial symmetry (cylindrical coordi-
vironment alterAG., Which in turn can affect the equilib- nates) and
rium distribution between different protein conformations

(Andersen et al.,, 1992; Gruner, 1991; Lundbesek et al., e

1997). yrlu(r)[dr (A1)
0

APPENDIX | is finite, which should pose no restrictions on the solutiancan be

. . expressed using Hankel’s integral theorem (Lebedev et al., 1979):
In the boundary conditions considered throughout the paperg,,;, and

s = 0) there is strong hydrophobic coupling between the inclusion and the "
u2) = j

©

T o(k2k f u(0)J o(k)d¢ |dk

immediately surrounding lipid molecules. If this condition is relaxed and

0 0 (A2)
5These estimates for the membrane deformations energy were obtained .
using values foK, andK_ in SOPC bilayers with 50 mol % cholesterol: a . o
situation we believe describes biological membranes better than the refer- - J 0(kZ)A(k)dk

ence values used in previous studies (see Table 1). 0
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where the integral in the parenthesis is the Hankel transformasfd 7,

1
1
I re’=ry+rycos(8)
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r=45 A

1 2
UO/A

The solutions are real-valued functionst(2) = u(2), and u(z) can be

is the zero-order Bessel function of the first kind (Abramowitz and Stegun,written as

1968).
The solutions of the quadratic expression Eq. 6 can be obtained
solutions of the equation

Viu=mnu (A3)
where
1 2 (2 c
=i () e e
(A4)
For any argument
—V2T o(k2) = kK*T o(k2). (A5)

and Eq. A2 can be used to solve Eq. A3. This leads to

—( + MAK) = 0> u@) = AT i 2 + AT o(—i \n2)
(A6)

as U@ = AlTo(i \n2) + To(—i\n2)]

= AL9o \?IZ) + Jo(— \%Z)]

where $, is the modified zero-order Bessel function of the first kind
(Abramowitz and Stegun, 1968). For vanishingly smaalli(r) has the form
f(r/V&dy,) and using Eq. A4 and Eq. 7 we hag ¥4 = V&, as a
characterizing length scale for the problem.

The solutions must satisfy the constraint of asymptotic convergency

(A7)

limu(r) =0

r—o

(A8)

The modified zero-order Bessel functions of the first kind are divergent, so
to get the desired solution we expand in terms of zero-order Bessel
functions of the second kin@, (Abramowitz and Stegun, 1968).

Yy(iz) = 19o(2) — 727 o2, —w<arg2 =2 (A9)
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and a constrained solution to Eq. 6 can be constructed as Bloom, M., E. Evans, and O. G. Mouritsen. 1991. Physical properties of
the fluid lipid-bilayer component of cell membranes: a perspective.
U@ = AYoli 12 + Vo(—i n2] ~Ho(\n2) ~ (A10) Q. Rev. Biophys24:203-397.

Brochard, F., de Gennes, P.-G., and P. Pfeuty. 1976. Surface tension and
where #, is the modified first-order Bessel function of the first kind  deformations of membranes structures: relation to two-dimensional
(Abramowitz and Stegun, 1968). phase transitionsl. Physique37:1099-1104.

Using Eg. 7, the expression for the energy (Eq. 1) is given by Brochard, F., and J.-F. Lennon. 1975. Frequency spectrum of the flicker
phenomenon in erythrocytes. Physique36:1035-1047.
11K, o Brown, M. F. 1994. Modulation of rhodopsin function by properties of the
AGyet = 3| a2 u? + K(VaU)? + o|Vul? |dQ membrane bilayetChem. Phys. Lipids73:159-180.

Q 0 Caffrey, M., and G. W. Feigenson. 1981. Fluorescence quenching in model
membranes. 3. Relationship between calcium adenosinetriphosphatase
enzyme activity and the affinity of the proteins for phosphatidylcholines

K > o ) > with different acyl chain characteristicBiochemistry20:1949-1961.
=— | (Vu?+ BU® + +[VuP)dQ.  (A11) Canham, P.B. 1970. The minimum energy of bending as a possible
Q explanation of the biconcave shape of the human red blood cell.
J. Theor. Biol.26:61-81.
This surface integral can be expressed as a contour integral around tieriado, M., H. Eibl, and F. J. Barrantes. 1984. Functional properties of the
inclusion bilayer boundarw (Landau and Lifschitz, 1986, p. 40): acetylcholine receptor incorporated in model lipid membrade8iol.
Chem.259:9188-9198.

K. - R R Dan, N., A. Berman, P. F_’incus_, and S. A. Safran. 1994. Membrane-induced
AGy = 5 ((n-Vu)VZu — u(i - VVaU) + yu(fi - Vu))dw interactions between inclusions. Phys. Il France4:1713-1725.
Dan, N., P. Pincus, and S. A. Safran. 1993. Membrane-induced interactions
@ between inclusiond.angmuir.9:2768-2771.
au 9 au de Gennes, P. G. 1974. The Physics of Liquid Crystals. Clarendon Press,
- ch-rr0<— V2u +u— VU — yu )’r =T, Oxford. . o .
ar ar ar Devaux, P. F., and M. Seigneuret. 1985. Specificity of lipid-protein inter-

actions as determined by spectroscopic technigBeshim. Biophys.
Acta. 822:63-125.

r=ro— yuos) Durkin, J. T., L. L. Providence, R. E. Koeppe, and O. S. Andesen. 1993.
Energetics of heterodimer formation among gramicidin analogs with an

2 9 2
= Kty —sVur=r0+uoaVu

NH,-terminal addition or deletion]. Mol. Biol. 231:1102-1121.

(A12) Elliott, J. R., and D. A. Haydon. 1979. The interactionmbctanol with
Using Egs. 8 and 10a and b, black lipid bilayer membrane®iochim. Biophys. Acteb57:259-263.
Elliott, J. R., D. Needham, J. P. Dilger, O. Brandt, and D. A. Haydon.
o o -
V= ro= A + AKRI(T) (ALZ) O A e e o e e Ao
9 401-404.
aV2u|r =ry= A+ki?7£6(k+r) + A,kif]{(’)(k,r) (A14) Elliott, J. R., D. Needham, J. P. Dilger, and D. A. Haydon. 1983. The

effects of bilayer thickness and tension on gramicidin single-channel
lifetime. Biochim. Biophys. Actaz35:95-103.

Engelhart, H., H. P. Duwe, and E. Sackman. 1985. Bilayer bending elas-
ticity measured by Fourier analysis of thermally excited surface undu-
lations of flaccid vesicles]). Phys. Lett46:L.395-L400.
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