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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is widely used to measure fluorophore diffusion in artificial
solutions and cellular compartments. Two new strategies to analyze FRAP data were investigated theoretically and applied
to complex systems with anomalous diffusion or multiple diffusing species: 1) continuous distributions of diffusion coeffi-
cients, (D), and 2) time-dependent diffusion coefficients, D(f). A regression procedure utilizing the maximum entropy method
was developed to resolve «(D) from fluorescence recovery curves, F(t). The recovery of multi-component «(D) from simulated
F(t) with random noise was demonstrated and limitations of the method were defined. Single narrow Gaussian «(D) were
recovered for FRAP measurements of thin films of fluorescein and size-fractionated FITC-dextrans and Ficolls, and multi-
component «(D) were recovered for defined fluorophore mixtures. Single Gaussian «(D) were also recovered for solute
diffusion in viscous media containing high dextran concentrations. To identify anomalous diffusion from FRAP data, a theory
was developed to compute F(f) and «(D) for anomalous diffusion models defined by arbitrary nonlinear mean-squared
displacement (x?) versus time relations. Several characteristic (D) profiles for anomalous diffusion were found, including
broad «(D) for subdiffusion, and «(D) with negative amplitudes for superdiffusion. A method to deduce apparent D(t) from F(t)
was also developed and shown to provide useful complementary information to «a(D). «(D) and D(f) were determined from
photobleaching measurements of systems with apparent anomalous subdiffusion (nonuniform solution layer) and superdif-
fusion (moving fluid layer). The results establish a practical strategy to characterize complex diffusive phenomena from
photobleaching recovery measurements.

INTRODUCTION

Fluorescence recovery after photobleaching (FRAP) hastative determination of fluorophor@ in the aqueous phase
been used extensively to study fluorophore diffusion inof cell cytoplasm, we introduced a calibration procedure
artificial solutions containing solutes and polymers, and inwhere the half-timet(,,) for fluorescence recovery in cells
cellular membrane and aqueous compartments. In spot phis compared td,,, measured in thin layers of fluorophores
tobleaching, fluorophores in a defined volume are irreversdissolved in artificial solutions of known viscosity (Kao et
ibly bleached by a brief intense laser beam; the subsequeal., 1993; Seksek et al., 1997). These analytical and empir-
kinetics of fluorescence recovery in the bleached regionical methods are useful for determination of single, time-
provides a quantitative measure of fluorophore translationghdependent diffusion coefficients, but are not easily
diffusion. For spot photobleaching in two dimensions (as inadapted to complex diffusive phenomena such as anoma-
lipid membranes), computational methods have been repys diffusion or diffusion of multiple species with different
ported to deduce fluorophore diffusion coefficieB) from diffusion coefficients.

bleach spot profile and fluorescence recovery curve shape, so|yte diffusion is described as “normal” or “simple” in
F(t) (Axelrod et al., 1976; Barisas and Leuther, 1979;3 homogeneous medium such as a liquid solvent, in which
Yguerabide et al., 1982; Van Zoelen et al., 1983; Soumpagase solute transport is described adequately by a single
sis, 1983). However, it is often invalid to apply exact gitfysion coefficient. There are many environments and
theories to determin® because of nonidealities in laser gjy,ations in which solute diffusion cannot be described in
beam profile, fluorophore diffusion during the bleach time,;orms of a single diffusion coefficient. One example is
and other complexities such as noncylindrical beam z-prog g majous diffusion. The diffusion of a solute is said to be
file in three-dimensional aqueous compartments. For quans,omalous if the mean-squared displaceméal,(see The-

ory section) varies with time in a nonlinear manner. In such
systems the diffusion coefficient is not constant, but time-
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1993, 1994a, b, 1996). Another example of nonsimple dif{Dt] so that the curve shape &Dt) is identical for any

fusion is the presence of two or more diffusing species, eacfiuorophore in any liquid. We defindé(Dt) as thebasis

of which is described by a single diffusion coefficient. recovery curve shape for simple diffusion of a single species

Without prior knowledge of the presence of multiple dif- (see below). A single parameter (for example, the recovery

fusing species, as is the case in cellular environments whetalf-time, t,,,) is thus sufficient to determine the diffusion

heterogeneous binding can occur, the data can be wronghpefficient of a single diffusing species. When there is more

interpreted as anomalous diffusion. Recently, anomalouthan one fluorophore in the sample, each with a different

diffusion of fluorophores in planar membranes and polymediffusion coefficientD;, F(t) becomes,

networks has been found (Feder et al., 1996; Schutz et al.,

1997; Starchev et al., 1997). Ft) = > af(D) ®)

Photobleaching data in cell membrane and aqueous com- i

g.artm'ents have genera}lly beep analyzeq n terms of a.smglv?/herea,- is the fractional bleach depth of fluorophare
iffusing component with or without an immaobile fraction. e S

In one study the possibility of two distinct diffusing species Anomalous diffusion of a solute is distinguished from

was considered (Gordon et al., 1995). The potential pitfallsSlmple (also called normal) diffusion by the time-depen-

in the assumption of simple diffusion and the significance Ofdence of the mean-squared displacentfitin single par-

T ticle analysis. For simple diffusion in dimensions{x?) =
long tail kinetics in diffusive phenomena have been recog- e . . o : .
. 2nDt. For anomalous diffusiokx®) does not increase lin-
nized (Nagle, 1992), and recent papers have begun to con- L .
: . : . _early with time. The exact time-dependence (af) for
sider how to interpret photobleaching data in systems with e :
e i anomalous diffusion depends on the physical structure (bar-
complex or anomalous diffusion (Feder et al., 1996; Coelhoriers channels, etc.) of the medium in which the solute
etal., 1997; Oveczky and Verkman, 1998). In this study we ' ’ i

introduce the idea that fluorescence recovery can diffuses (see Discussion). Various mathematical forms for
dmﬁl 2 H _ fa
be resolved in terms of a continuous distribution of diffu- (<) have been described, such(@$) ~ t*, wherea # 1

sion coefficientsa(D). An effective regression method to (Bouchaud and Georges, 1988). Anomalous diffusion is

recovera(D) from F(t) was developed, validated, and ap- CIaSS'f'e.d as subdiffusivex(< 1), superd|ffu3|ve2c(z - 1.)’
: . ; or transiently anomalousy(# 1 fort; <t <t,). (x) canin

plied to experimental photobleaching measurements on de- .
. . general be written,

fined fluorophore mixturesa(D) curve shape was then

related to specific models of anomalous diffusion, and ex- (x3) = 4tD(t) = 4tD,g(t/7) 4)

perimental examples are presented of anomalous subdiffu-

sion and superdiffusion. An independent method to analyzevhereD, is a constant (unit cAfs), andr is a characteristic

F(t) for anomalous diffusive processes in terms of time-time constant for anomalous diffusion (to matke dimen-

dependent diffusion coefficientf)(t), was also developed sionless). If Eq. 1 is valid for an anomalous diffusive

and validated experimentally. The results indicate that deprocess witlD replaced byD(t) (see below for a case when

termination of ¢(D) and D(t) from photobleaching data this is not true), then time can be parametrized,in

provides a systematic approach to identify and quantify

simple and anomalous diffusive phenomena.
dCla¢ = D,V?C; ¢ = | g(t/n)dt (5)

THEORY

. . . The spatial concentration profile of the solute obtained in
Multicomponent and anomalous diffusion

anomalous diffusion at scaled tinjés thus identical to that
Solute diffusion is described by the Smoluchowski equation,obtained for simple diffusion at time In the context of
photobleaching experiments, the scaled variablg] cor-
aC(r, t)/ot = DVZC(r, t) (1) responds tot] for simple diffusion. Thus, the fluorescence
recovery curve shape f§Dt) for simple diffusion (see Eq.

whereD is the diffusion coefficientC(r, t) is the space- and o
2) andf(D,¢) for anomalous diffusion.

time-dependent solute concentration, &ffdis the Lapla- e .
cian operator. The time course of fluorescence recovery One example of anomalous superdiffusion is simple dif-
after photobleaching(t), is obtained by solving Eq. 1 with 1USion coup_led with d|_rect|onal solute transport, such as
appropriate initial and boundary conditions. The generaflUid flow with a velocity of v cm/s. The mean-squared
form of F(t) for spot photobleaching (circle of radivg in  displacement increases nonlinearly with time,

two dimensions is (Axelrod et al., 1976), (%) = 4Dt + V12 (6)

PO = 1K, Uro) 2) The time-dependent diffusion coefficient in this case is
whereK is the bleach depth ang, = w?/4D is the “char-  D(t) = D,(1 + V*/4D). However, Eq. 1 is no longer valid
acteristic” diffusion time in two dimensions. Equation 2 is unless an additional transport term is included (Axelrod et
valid for FRAP experiments in planar membranes and imal., 1976). In this case the fluorescence recovery curve
thin films of liquids. For fixedK andw, F(t) is a function of  shape cannot be rigorously determined by time-scaling the
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recovery curve shapé&(Dt) obtained in the absence of specifying an initial distribution fom (50 or 100) diffusion
transport. coefficients equally spaced in Idg) space. Without prior
information about the distribution, a flat distribution of
equal amplituded; ~ 1/m) is assumedF(t) is calculated
using Eq. 8, followed by the calculation of (for x* com-
Two independent formalisms are described for the analysigutation) and appropriate partial derivatives (Skilling and
of FRAP data in a model-independent manner. In the firsBryan, 1984). The distribution is modified using an
case, experimentd(t) is fitted to a continuous distribution dimensional correction vector generated to decrgasend
of diffusion coefficients,a(D). For multiple diffusing spe- increaseS (Skilling and Bryan, 1984). An option to retain
cies each undergoing simple diffusiag(D) rigorously de-  Nnegativeq; values (or set them to zero) is exercised before
scribes the contribution of each species to the recovery. Athe next iteration. The process is continued iteratively until
demonstrated in Resulte(D) is also useful for identifica- the residuals are acceptably randomyddoes not decrease
tion of anomalous subdiffusive and superdiffusive pro-further. For eacti(t) the MEM analysis is repeated 10 times
cesses. In the second caBé) is directly converted t@(t). with different amplitudes for initial flat distributions to
As shown in ResultsP(t) is useful for identification of ~ensure robustness of the fittedD).
simple and complex diffusive phenomena. For simple dif- Applications of MEM to various types of experimental
fusion D(t) is constant; for anomalous diffusion of a single data, including biological systems, have been reviewed (La-
diffusing speciesp(t) formally defines the diffusive pro- valette et al., 1991; Brochon, 1994). The MEM algorithm
cess and can permit computation(af) versus time. used here is similar to that described to obtain a distribution
of lifetimes from fluorescence decay data (Swaminathan et
al., 1994; Swaminathan and Periasamy, 1996). The basis

Strategies for analysis of F(t)

COMPUTATIONS function for lifetime analysis is an exponential exi(),
Distribution of diffusion coefficients whereas the basis function for analysis of FRAP data is
f(Dt).

Fluorophore diffusion is described by a distribution of dif-

fusion coefficients (D),

Experimental determination of basis
function f(Dft)

Fluorescein in PBSI¥ = 2.6 X 10 ® cnmé/s) was used for
generation of the basis functid(Dt). F(t) (0—200 ms) with
bleach depth~20% was obtained as the average of 100
measurements using a sample of thicknegsrb The basis
function was found to be independent of bleach depth for
depth <30%, and independent of sample thickness for
thickness<8 um. F(t) was empirically fitted to a triple
exponential function and the resultant smooth curve was
converted to basis functidi(Dt) by multiplyingt by 2.6 X
10°©.

F(t) = fa(D)f (Dt)dD ©)

wheref(Dt) is the basis function defined above. The maxi-
mum entropy method (MEM) is used here for determination
of a(D) from F(t). Explained briefly, leta(D) be the con-
tinuous distribution function witlD in the range oD,,;, to
Dpmax (typically 10°° to 10 * cné/s here). For numerical
computationw(D) is discretized at equal intervals in )
space,

m
F(t) = Z o f(Dit) (8)
o D(t) computation
wheremis the number of discrete components, and the
amplitude corresponding to thith diffusion coefficientD,.
The MEM analysis gives a distributia#n(D) that minimizes

x> and maximizes entrop$

As described above, the basis functibfy) for simple
diffusion (y = Dt) is equivalent to that for anomalous
diffusion withy = D,¢. D(t) = dy/dtwas computed from
experimentaF(t) as follows: a smooth curve representation
o= 2 2= D [F(t) — F(t)o? (9) of y was obtained by cubic spline interpolation using
[ [ F.(t) = f(y;), whereF(t) is the smooth fitted datum for
experimentaF(t). D(t) = (Vir1 — Vi D/(ti1 — i) was
S= —Yaloge (10)  then computed.

wherer; is the residualf-(t;) the computed time course, and
o, is the variance of the experimental data. Maximization o
S assures that the distribution is as wide as allowed by thé&(t) for specifieda(D) was computed using Eq. 8 with cubic
information content in the data (Swaminathan and Periaspline interpolation as necessary. Random noise was added
samy, 1996) so that a structureqD) is obtained only if to each data point-(t]) + gz, whereq is an amplitude
warranted by the data. The analysis IBft) begins by factor related to signal-to-noise (S/N) ratio, agdis a

fF(t) simulations
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Gaussian-distributed random number with zero mean antlibutions were prepared as described previously (Seksek et al., 1997).

unit variance (generated as described by Press et al., 198@yueous samples consisted of fluorescein, FITC-dextrans, and FITC-
icolls, individually or in combinations, in phosphate-buffered saline

(PBS). In some experiments, up to 45% nonfluorescent dextran (40 kDa,
Pharmacia) was added to the saline. In an experiment to simulate subdif-
fusion, a PBS solution of fluorescein of nonuniform thickness in triangular
trough channel (interferometry calibration standard described in Farinas
and Verkman, 1996) was photobleached. In an experiment to simulate
The FRAP apparatus for these studies was described in detail previouskuperdiffusion, the microscope stage was translated linearly at specified
(Kao and Verkman, 1996; Seksek et al., 1997). The output of an argon ioRelocity during the bleach and probe periods. In all experiments beam
laser (488 nm, Innova 70-4, Coherent Inc., Santa Clara, CA) was moduintensity and attenuation ratio were adjusted to prodd88% bleaching
lated by serial acousto-optic modulators (response tin2eus) and di- and to avoid photobleaching by the probe beam. Measurements were done
rected onto the stage of an inverted epifluorescence microscope. The bea#n23°C in a temperature-controlled darkroom. Generally, data from 5 to 20
was reflected by a dichroic mirror (510 nm) onto the sample through anindividual FRAP experiments were averaged for each stored recovery
objective lens (Nikon 28 dry, numerical aperture 0.75). For most exper- curve, except for the experiment simulating superdiffusion where no av-
iments, the laser beam power was set to 50—-100 mW and the attenuatigtaging was done.
ratio (the ratio of bleach to probe beam intensity) was set to 5000-15000.
Sample fluorescence was filtered by serial barrier (Schott glass OG515)
and interference (53 15 nm) filters and detected by a gated photomul-
tiplier (9828A; Thorn EMI) whose gain was decreased transiently duringRESULTS
the bleach period. Photomultiplier signals were amplified and digitized at
1 MHz using a 14-bit analog-to-digital converter. Beam modulation, pho-Fig. 1 shows fluorescence photobleaching recovery curves
tomultiplier gating, and data collection were software controlled. SignalsF(t) for single fluorophores in PBS: fluoresceif)( two
were sampled before the bleach (generally dfita points in 100 ms), then FITC-Ficoll size fractions 3 and C), and 70 kDa FITC-
at hlgh_resolutlon (1 MHz gampllng rate) over 10—-100 ms, followed by low dextran D) Using the MEM fitting procedurea(D) with
resolution (generally 0Opoints) over 0.1 to>10 s. . . 6

single peaks were obtained at 2710 ® cm?/s (fluores-
cein), 3.5x 107 cn?/s (FITC-Ficoll, fractions 30-33),
8.7 X 10 8cn/s (FITC-Ficoll, fractions 10—13), and 223

107 cmP/s (FITC-dextran, 70 kD). Thex(D) produced
Specified microliter solution volumes were “sandwiched” between two QOOd fits tOF(t) (SmOOth curves, top pan¢IW'th random

glass coverslips to produce aqueous layers of uniform thickn@&sgm. diStribUtiO_nS of residuals\F(t). The«(D) diStribUti(_)nS had
Doubly size-fractionated FITC-dextrans and Ficolls with narrow size dis-narrow width except those for the large FITC-Ficoll (frac-

EXPERIMENTAL METHODS

Fluorescence recovery after photobleaching

Sample preparation and
photobleaching procedures

A 1.0y fluorescein B 1.0 FITC-Ficoll c 1.0r  FITC-Ficoll D 1.0r FITC-dextran
fractions 30-33 fractions 10-13 70 kD
F(t) F(t) F(t) F(t)
0.8 0.8 0.8 0.8
i 1 1 ey L 22 taunl toa sl Il L 1] | il L 1l 1 saganl o
104 103 102 1071 103 102 101 1 103 102 1071 1 103 102 10°t 1
time (s) time (s) time (s) time (s}
0.025 0.025 0.025
AF(t) AF(t) AF(t) |: |: Ay
-0.025 -0.025 -0.025 ! 0.015

-«— 40 ms—>1<—160 ms—

«— 04s —>:<—1.65—>

<—0,4s-—>[<—— 1.6s —>

|
<—0.4s—>1<—1.es—>

0.81— 0.50— 0.18 — 0.60—
o (D) o (D) o (D) o (D)
109 108 107 106 105 100 108 107 108 105 109 108 107 106 105 109 108 107 106 105
D (cm2/s) D (cm2/s) D (cm2s) D (cm2/s)
3r . 9 3 or
Y
DM oL DY) 6 D) o DY) el

x10-6 ] x10°7 x1077 x1077
em?is [ cm?/s cm?/s emelis VT

0 0 ol

0 time (s) 02 0 time (s) 0.3 0 time (s) 1 0 time (s) 03

FIGURE 1 Fluorescence recovery data and fitted diffusion coefficient distributions for single fluorophores inAyB3udrescein (50uM), (B)
FITC-Ficoll (fractions 30-33, 4 mg/ml)Q) FITC-Ficoll (fractions 10-13, 4 mg/ml)[X) FITC-dextran (70 kD, 4 mg/ml)Top panelsExperimental(t)
data and fitted curvesmooth ling obtained by MEM analysisSecond paneldResidualsAF(t) of the fit. Residuals are shown on contiguous linear time
scales as acquired experimentally (see Experimental Metfibdl panels:Fitted distributions of diffusion coefficients(D) by MEM analysis.Bottom
panels:Time-dependent diffusion coefficieli(t) determined fron(t) (see Computations section).
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tions 10-13). A narrow distribution indicates that the infor- to the random noise\F(t) in Fig. 1] in typical experimental
mation content in thé-(t) data is excellent at the level of photobleaching data.

experimental noise (computed signal-to-noise ratié0).
The wider distribution for the large FITC-Ficoll is attribut- Gaussian random noise (0.005, SA\40) was added to the
able to polydispersity in FITC-Ficoll size, and/or decreasedsimulatedr(t) in Fig. 2B to give S/N comparable to typical
data quality (see below). Computé&(t) (bottom panels
were essentially constant i, B, and D. The decreasing

D(t) in C is consistent with the possible polydispersity in (migdle panel. The (D) distributions fitted to thé=(t) data
FITC-Ficoll size mentioned above. These results establist);iih added noise are shown in Fig.2 a—e For one and

the utility of the basis function approach, and indicate tha

MEM analysis was used to recover(D) from F(t).

experimental data. Simulatédt) with this level of noise for
the two-component system (cabgis shown in Fig. 3A

two component systems, narrow, single and double-peaked

recovery curve shape is invariant for simple diffusion of ayistributions were recovered. The peak positiona(@) are

single species.

Simulations ofF(t) were done to test the ability of the

MEM analysis to recovew(D) distributions for nonsimple
diffusion. Fig. 2A shows fivea(D): (a) single fluorophore
undergoing simple diffusion;bj two fluorophores with

different diffusion coefficients, each undergoing simple di
fusion; () Gaussian distribution;dj asymmetric Gaussian

distribution; €) exponential distribution. Fig. B shows
simulatedF(t). The parameters for eaal(D) (see Fig. 2
legend) were chosen to give identical recovgry as seen
by the common intersection point g, = 40 ms. TheF(t)
curve shapes for the differem{D) distributions were qual-
itatively similar but had subtle quantitative differences. A indicate limitations for quantitative recovery e{D) that
magnified view of the differences in curve shape is providedesult from one or more of the following causes: poor
in Fig. 2 C, showing the difference between each curve andignal-to-noise ratio, incomplete or truncated recovery
curve a, [F () — F t)]. The maximum deviation (0.005— curve, and insufficient or poor discretization of @)(
0.015) of any curve froni(t) is comparable in magnitude space.

FIGURE 2 Simulated=(t) and fit-
ted a(D) for five diffusion coefficient
distributions. p) The five distribu-
tions @—¢ used for theF(t) simula-
tion are shown: &) single diffusion
coefficient,D = 3.2 X 107 cn¥/s;
(b) two diffusion coefficientsD, =
10 cné/s andD, = 1.1 X 1077
cn?/s with fractional amplitudes 0.5;
(c) Gaussian distributionD, ., =
3.3X 10 7 cn?/s and width= 0.5 in
log(D) space; ) skewed Gaussian
distribution, D, = 5.9 X 1077
cné/s, and widths 0.51¢ft sid and
0.1 (right sid@ units in logD) space;
(e) exponential distributionD,,,. =
7.2 X 1077 cné/s and “decay” con-
stant 0.5 units in lodd) spaceD val-

ues and distribution widths were cho-

sen to give identical t;,, for
fluorescence recovery of 40 mdB)(
F(t) simulated for the distributions

(shown without added random noise).

(C) Difference between curvé (t)
(single diffusion coefficient) and each
of the other curve§,(t) shown on an
expanded scale.D) Random noise
(S/N = 40) were added to simulated
F(t) in A and «(D) determined by
MEM analysis.
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in good agreement with simulated parameters (see figure
legend):D = 3 X 10~ cné/s for single diffusion §), and

1.0 X 107 and 9.7x 10 7 cn¥/s for two-component
diffusion (b). For Gaussian and skewed Gaussian simula-
. tions, thea(D) recovered by MEM analysis was broad and
the shape of the distribution was similar 4¢D) used for

F(t) simulation. The peak positions were close to those used
for simulation: 4.3x 107 cm?/s (Gaussiang) and 5.3X
107 cn¥/s (skewed Gaussiam). However, (D) recov-
ered for case (peak at 5.3 10~/ cné/s) did not have the
sharp rising edge of the exponential distribution. The results
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A ' . B oo5. 0.94, whereas unimodal broagD) were recovered with
101 signal-to-noise ' earlier truncation. Discretization of loD space also mildly
affecteda(D) width; empirically, use of 10—-20 intervals in
log(D) per decade was found to be optimal for & curve
fitting done in this study.
The MEM analysis was next tested on experimeR{a)
for two-component and three-component fluorophore mix-
tures consisting of combinations of fluorescein, FITC-Ficoll
(fractions 30-33), and FITC-Ficoll (fractions 10-13) (see
Fig. 1 for data on each individual component). For the

101 40 02r two-component mixtures (Fig. 4 andB), «(D) gave two
Fo | (D) peaks withD values (1.5 10" ° and 2.8x 10’ cn¥/s in
A; 1.9 X 107 and 6.3x 10 8 cm?s in B) in agreement to

ratio = oo
F®

1.0r 200 0.25

within a factor of 2 with those measured for the individual
fluorophores (2.7x 10°° cné/s, Fig. 1A; 3.5 X 10/
cné/s, Fig. 1B; 8.7 X 10 8 cné/s, Fig. 1 C). For the
three-component system (Fig. @), «(D) showed three
peaks (1.8x 10°° 1.9 x 107, and 2Xx 10 ® cné/s) in
reasonable agreement with peak positions for the faster two
of the three diffusing species. These results demonstrate the
ability of MEM analysis to resolve the presence of multiple
diffusing species, with typical accuracy for determination of
individual D values to within a factor of 2.
T , ExperimentalF(t) for fluorescein in complex heteroge-
0001.001.01 .1 1 10 9 8 7 6 -5 neous media were obtained for analysisagb) and D(t).
time (s) log (D, om?/s) The samples consisted of fluorescein in viscous dextran
FIGURE 3 Resolution of diffusion coefficients in a two component SOIUtIO.nS (Flg.. oA andB), fluorescein in a PBS. layer of
system as a function of signal-to-noise ratio (S/M)). $imulatedrF(t) for nonuniform thickness (trough channel simulating anoma-
two diffusion coefficients (1®and 1.1x 10~ 7 cn/s, fractional amplitudes ~ lous subdiffusion, Fig. %) and fluorescein in a glycerol
0.5) with added Gaussian random noise to give indicated 8NFifted  solution in which the solution layer was translated at con-
«(D) by MEM analysis. stant velocity (simulating directed transport giving anoma-
lous superdiffusion, Fig. ). «(D) obtained by MEM
analysis is shown for each case together Wi{t) computed
The effect of signal-to-noise ratio iR(t) was examined from F(t). In viscous dextran solutions (30 and 45% dextran
by the ability of MEM to resolve two diffusion coefficients with relative viscosities of~-6 and 30, respectivelyy(D)
(D, = 10 ®andD, = 1.1 X 10 7 cn?/s, fractional ampli- was a narrow unimodal distribution arid(t) is nearly
tudes 0.5). Fig. A shows simulatedr(t) with added noise constant, indicating simple diffusion. For photobleaching in
giving indicated S/N. RecoveregD) are shown in Fig. 8 the trough solution geometry, where fluorescence recovery
with corresponding fitted~(t) as the smooth curves in Fig. requires diffusion from a thin to a thick region of the same,
3 A. Up to a noise level of S/N= 20, the two diffusing «(D) was broad and a peak at lolv was seen, an@(t)
species could be resolved as narrow peaka(iD). How-  decreased with time. For anomalous superdiffusion in Fig. 5
ever, the accuracy dD value recovery was lessened with D, F(t) could not be fitted by MEM dashed curve in top
lowered S/N; in this example the position of one peak wagpane) with the constraint that al; are equal to or greater
shifted to lowerD. The accuracy of the recovered diffusion than zero, as was imposed in the previous analyses. How-
coefficients was also tested in simulated) with S/N of 40  ever, F(t) could be fitted reasonably well if the positive
for differentD,/D, and fractional amplitudes. For fractional value constraint was omitted. The mathematical basis for
amplitudes of 0.5, a bimodal(D) with two distinct diffu-  negative o; values in superdiffusion is described in the
sion coefficients could be obtained whepandD, differed  Discussion, where it is concluded that the need to include
down to a factor of 3 (not shown). F&,/D, = 9, two  negativew; is a useful signature for anomalous superdiffu-
diffusion coefficients could be obtained when fractional sion.D(t) in Fig. 5D increased with time, as expected for
amplitudes differed by up to a factor of 10. Where th{®) anomalous superdiffusion due to the moving liquid layer.
fits were inadequate, unimodal broad distributions were The results above indicate that simple diffusion can be
recovered with peak positions located between the corect confirmed by a single-peakegD) and constanD(t). Other
values. Truncation of(t) tended to broadea(D) distribu-  forms of «(D) andD(t) indicate nonsimple diffusion. Sim-
tions. For examplef=(t) in Fig. 3 A (curveb) was analyzed ulations were done to show qualitative shapes(@) and
from zero time to times correspondingf@) = 0.90—0.99.  D(t) for several types of anomalous diffusion. In Fig Fgt)
Increasingly broad bimodat(D) were obtained for 0.99— was simulated for diffusion models defined by the mean-
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FIGURE 4 Resolution of multiple diffusing species for fluorophore mixtures in PBSMixture of fluorescein and FITC-Ficoll (fractions 30—-33R)(
FITC-Ficolls (fractions 10—-13 and 30-33L)(Mixture of fluorescein and FITC-Ficolls (fractions 10—-13 and 30-33). Experiméiftaland the fitted
curves shown in top panel, residud&(t) in middle panel, and fitted(D) in bottom panel.

squared displacememt® versus time relationgx?) = (a)
4Dt (simple diffusion); b) 4Dt[a + (1 — a)exp(—t/7)]
(anomalous subdiffusion type I)¢)(4Dt™, m < 1 (anoma-
lous subdiffusion, type Il); d) 4Dt™, m > 1 (anomalous
superdiffusion). Fig. 6\ shows(x?) versus time plots with
the correspondin®(t) shown in Fig. 88 asD/D, vs. log().
After inclusion of typical experimental noise (S/N 40)
into F(t) (Fig. 6 C), «(D) were determined by MEM anal-
ysis (Fig. 6D). Compared tax(D) for simple diffusion of a
single species (modea)), which is a narrow Gaussian(D)

sieving (Aon and Cortassa, 1994; Kopf et al., 1996; Licinio
and Teixeira, 1997). As discussed in the Introduction, little
attention has been given to the analysis of photobleaching
recovery measurements in terms of complex diffusive phe-
nomena. Although the task of deducing physical diffusion
mechanisms from photobleaching data is in general not a
rigorously solvable problem having a unique solution, we
demonstrated that considerable insight into diffusion mech-
anisms can emerge from analysis of the full fluorescence
recovery curve shape.

for anomalous subdiffusion was either unimodal with broad Based on the results here, practical guidelines are pro-

and asymmetric distribution (mode) or multimodal (mod-
el ¢). For superdiffusion (moded), F(t) could not be fitted
with the constraint that all; > 0. «(D) required inclusion
of negativee; (d in Fig. 6 D) (see Discussion).

DISCUSSION

posed for the acquisition and analysis of photobleaching
experiments in complex systems. The ability to resolve
complex diffusive processes requires data over extended
times (generally>10-100 recovery half-times) with good

signal-to-noise ratio (generally20:1). High-quality basis

recovery curves for an appropriate sample (with simple
diffusion) should be acquired for every set of photobleach-

The purpose of this study was to develop and evaluatéhg experiments to match optical and other instrumental
procedures to analyze fluorescence photobleaching recoparameters. It is also useful to measure the recovery of a
ery experiments on systems having complex diffusive propsecond fluorophore with simple diffusion to confirm the
erties. This study was motivated by the substantial body occuracy of the basis curve. Because of the sensitivity of the
photobleaching data on cell membranes and cytoplasm inx(D) andD(t) analyses to nonrandom deviations, systematic
dicating that diffusion in biological systems is not simple errors in data acquisition should be avoided such as bleach-
and cannot be adequately described by a single invarianihg by the probe beam and drift in probe intensity or optical
diffusion coefficient. Fluorophore diffusion in biological alignment. Another potentially serious systematic artifact
systems is often complex because of binding interactionsan be the presence of recovery processes that are unrelated
that may produce apparent heterogeneity in diffusion coefto solute diffusion, such as reversible photobleaching result-
ficients or physical constraints that produce anomalous difing from triplet state population and recovery. Finally, the
fusive phenomena such as percolation, convection, andcquisition of multipld=(t) data sets with appropriate bleach



564

Biophysical Journal

Volume 75 July 1998

A B C D
1.0 fluorescein in 1.0 fuoresceinin 1.0 fluorescein in PBS 10r ) Mﬂw
30% dextran 45% dextran non-uniform
solution layer
0.9} 0.9} 0.9F F(t)
F() F(t) F(t) 075}
0.8f 08 08| fluorescein in
2 . .
L moving fluid layer
0.7+, i RPN TP 075, sl | 0.7 e L sl ovn 0.5 LI FEFIRTTIT SRR BRI R |
1073 102 10°1 1073 102 1071 104 108 102 107 1073 102 1071 1
time (s) time (s) time (s)
0.01 ] 0.05 |
]
-0.01 | | -0.05*+ |
“«€—04s5—>€K—165—> «—0.1 5—>|€—045—> «— 0.4 5—>|€K—065—>
1 ] 1
1.07 —— ——0.54 0.6
0.16 ——
a A
ORT
o (D) o (D) a (D) \
T T T 1 r T T 1 T T T T \ -0.6 - v T T 1
108 107 108 105 108 107 106 105 109 108 107 106 105 108 107 106 105 10
D (cm2/s) D (cm?/s) D (cm?/s) D (cm2/s)
6 6 6 4
D Dt
D 4 b, M 4 ]
x 107 x 107 x 109 x106 2
emZs 2T om2s 21 cm2/s 2 cm2/s
° I 0 ) 0 I 0 o] 68
0 time (s) 09 0 time (s) 1.8 0 time (s) 0.15 0 time (s) )

FIGURE 5 Photobleaching recoveries for fluorescein in different environments and analygiB)gndD(t) methods. A andB) Fluorescein (5Q.M)

in PBS containing indicated percentages of 40 kDa (nonfluorescent) dex@alRluprescein in PBS in a narrow triangular trough (simulating anomalous
subdiffusion). A spot at the center of the trough was bleached where solution thickness was mé&Xjifkiofescein in PBS containing 60% glycerol in
which the microscope stage was linearly translated at veloe®® um/s (simulating anomalous superdiffusion). The upper three panels show the
experimentak(t) and fitted curve, residualsF(t) and fitteda(D). Single narrow peaks in(D) with positive amplitudes were found foA) and @), and

a broad peak with bimodal distribution fo€). For sample), «(D) regression required positive and negative amplitudes (see text). The bottommost panel
shows fittedD(t). D(t) is approximately constant foAf and B), decreases forQ), and increases foiD).

depths (generally<30%) is indicated to test the robustnessdiffusion mechanism. A single narrow(D) and constant
of the fitted results. D(t) provides strong evidence for simple diffusion of a
For the analysis oF(t) curves, we propose that both the single species. The presence of a small number of distinct
complementary distributioa(D) and time-dependerid(t) diffusing species produces narrow symmetric peaks in the
analyses be carried out. It is recognized @) formally  «(D) analysis. Superdiffusion requires the inclusion of neg-
describes the contributions of multiple diffusing speciesative amplitudes in thex(D) analysis and produces an
with differing D, and thatD(t) describes anomalous diffu- increase in diffusion coefficient over time. Anomalous sub-
sion of a single diffusing species. However, there is generdiffusion produces a decrease in diffusion coefficient over
ally little a priori knowledge about the nature of a complextime and a complexx(D) with positive amplitudes and
diffusive process in a biological system. For example, theébroad peaks. There are likely to be cases that do not easily
diffusion of a labeled membrane protein in the plane of &fit in the above categories where more than one complexity
membrane might be affected by binding to other proteins oexists. Experimental maneuvers to distinguish among vari-
skeletal elements resulting in heterogeneity in diffusionous possibilities are helpful in such situations, such as
coefficients; the complex membrane structure might pro-cellular energy depletion, use of different fluorophores, or
duce anomalous subdiffusion, or energy-dependent tran®iochemical modification of cell structure or metabolic sta-
port or convective processes might produce anomalous suds. In addition, single particle tracking could provide
perdiffusion. The complementary information afforded by unique information about complexities and heterogeneity in
determination ofy(D) andD(t) can be useful in defining the D(t) that cannot be deduced from ensemble-averaged pho-
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tobleaching measurements. Single particle tracking haserse Laplace transform (Pipes and Harvil, 1970). This
been used in many studies of two-dimensional diffusion ofargument is valid for arbitrarf(Dt) that can be expanded as
bead-labeled, membrane-associated components (Qian @&isum of exponential functions. Our experience with many

al., 1991; Feder et al.,

1996; Saxton and Jacobson, 199@xamples of simulated subdiffusion and superdiffusion (as

and references therein); our laboratory developed an apn Fig. 6) supports the contention that @a(D) always exists
proach utilizing astigmatic optics to carry out single particlewith positive ¢; for subdiffusion, and with positive and nega-

tracking in three dimensions (Kao and Verkman, 1994).
As discussed abovey(D) can be interpreted directly for

tive o; for diffusion having a component of superdiffusion.
A key feature of the analysis procedures developed here

multiple species with different diffusion coefficients under- was the use of a “basis functiori(Dt) that describes the

going simple diffusion. Althoughx(D) for anomalous dif-

fluorescence recovery curve shape for simple diffusion of a

fusion cannot be simply interpreted in terms of heterogenesingle species. The basis function approach was validated
ity in diffusive properties, there exists a mathematicalby demonstrating accurate(D) recovery for single and
rationale for its determination. In anomalous subdiffusionmulti-component fluorophore mixtures. An experimentally

whereD(t) decreases monotonically with timg(t) is de-
rived from basis functior(Dt) by progressive time-stretch-
ing so that the second time derivative Fft) is negative at
all times; therefore, a uniqug(D) exists in which they; are
positive. In anomalous superdiffusion whéd&) increases
with time, the inflection inF(t) curvature produces both
positive and negative?&#(t)/dt>. (D) with only positiveq;
cannot be fitted, but a unique(D) with positive and neg-
ative amplitudes exists. Mathematically f {Dt) is a single
exponential function [1- exp(—kt)], then Eq. 7 formally
definesF(t) in terms of the Laplace transform e{D); for
experimentalF(t) with dF(t)/dt > 0, it is possible to write
[1 — F(t)] as the ratio of two polynomials, which by the

derived basis function has important advantages over ana-
lytically derived recovery curves that require specification
of laser beam profile and other details of the optics. The
f(Dt) used here is measured on “reference” samples under
conditions identical to those used for the “test” samples. It
is noted that the determination of accurb®t) is essential

for the analysis. There are some restrictions on the use of an
experimentally derived basis function. The basis function is
formally defined in Eq. 2 for consta, so that analysis of
data with large bleach depths (generai$0%) should not

be done using basis functions generated for small bleach
depths. The requirement of identical beam geometry for
reference and test samples generally restricts sample geom-

Heaviside theorem indicates the existence of a unique inetry to a thin layer, where beam width is constant. The basis
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function determined for a thin fluid layer is then applicable lous superdiffusion have been discussed (Klafter et al.,
for analysis of thin fluid layer test samples, which in cells 1996, and references therein). Probability distributions with
would include plasma membranes, cytoplasm, and nuclednfinite variances (in contrast to finite variances in normal
plasm. Analysis of photobleaching data in cellular or-and anomalous subdiffusion) become important in nonlin-
ganelles may require an analytical approach where the difear, fractal, chaotic, and turbulent systems. Such unusual
fusion equation is solved directly (Partikian et al., 1998) orprobability distributions can produce so-called Levy flights
by a Monte Carlo computation (@czky and Verkman, and consequent anomalous superdiffusion. Superdiffusion
1998) for specified organelle geometry. of this kind has been observed experimentally in turbulent
The focus of the analysis here was on relating photofluid flow (Solomon et al., 1993). Evidence for superdiffu-
bleaching recovery data to nonsimple diffusive phenomenaion by the Levy flight mechanism has also been reported in
as defined byx(D) andD(t) functions. The specification of a photobleaching study of the diffusion of dye bound to
physical mechanisms that produce various forms of noneylindrical micelles (Ott et al., 1990).
simple diffusion is an important related issue that is not The physical mechanisms of nonsimple or anomalous
experimentally addressed in this study. The details of theliffusion discussed above are applicable to systems in ther-
physical structure of the environment in which a solutemal equilibrium where solute transport is mediated by ran-
diffuses is the principal factor that determines the time andlom collisions. Living cells are thermodynamically open
length scales in which the diffusion is simple versus anomsystems in which solutes and energy are continuously ex-
alous. In pure liquids, diffusion of a solute is anomalous atchanged with the surroundings. Therefore, solute transport
extremely short and extremely long time and length scaleby mechanisms other than diffusion with random collisions
(Chandrasekhar, 1943; Ovchinnikov et al., 1989; Bhattais possible, such as directed transport of solutes (e.g., move-
charya and Bagchi, 1997). In liquids containing macromo-ment along microtubules) and fluid convection. Both pro-
lecular solutes or other obstacles, solute diffusion may beeesses can produce anomalous superdiffusion. Similarly,
come nonsimple or anomalous in microseconds to minutesionuniform distributions of solute or solvent can produce
Monte Carlo simulations of the diffusion of small solutes anomalous subdiffusion or superdiffusion, depending on the
have been done as a function of the mobility and concenlocation of the bleach spot; the experimental examples of
tration of macromolecular obstacles (Saxton, 1990; 1994apnomalous subdiffusion (Fig. 6) and superdiffusion (Fig.
In the presence of immobile obstacles, a small solute dif6 D) belong to this category. The analysis methods intro-
fuses through continuous aqueous channels surrounding tldeiced in this study should be particularly useful in photo-
obstacles. When obstacle concentration exceeds the “percbleaching studies of living biological systems having one or
lation threshold” C,)), continuous channels do not exist and more mechanisms of nonsimple diffusion.
diffusion becomes anomalous at all time and length scales.
For C < C,, solute diffusion is transiently anomalous at
short times, in agreement with theoretical results based owe thank Drs. M. Dayel, O. Seksek, and R. Swaminathan for help with
percolation theory (Havlin and Ben-Avreham, 1987). Ac- experimental photobleaching measurements, anq Drs. J Farinas, M. M. G.
cording to percolation cluster theory, the dimensionality of<Shna. and M. Saxton for helpful advice and discussions.
the percolation channel is fractal whén> Cp; forCc < Cp This work was supportgd by Natignal Institutes of Health Grants DK43840
the dimensionality is fractal for short length scale and?anOgYnglm, and National Institutes of Health Fogarty Research Award
normal at large length scale. If the obstacles are mobile, '
there is no percolation threshold at any obstacle concentra-
tion, but so.lute diffusion may be transiently gnomalqus. REFERENCES
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